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Eye-tracking technology has become a powerful tool for biomedical-related

applications due to its simplicity of operation and low requirements on patient

language skills. This study aims to use themachine-learningmodels and deep-

learning networks to identify key features of eye movements in Alzheimer’s

Disease (AD) under specific visual tasks, thereby facilitating computer-aided

diagnosis of AD. Firstly, a three-dimensional (3D) visuospatial memory task is

designed to provide participants with visual stimuli while their eye-movement

data are recorded and used to build an eye-tracking dataset. Then, we propose

a novel deep-learning-based model for identifying patients with Alzheimer’s

Disease (PwAD) and healthy controls (HCs) based on the collected eye-

movement data. The proposed model utilizes a nested autoencoder network

to extract the eye-movement features from the generated fixation heatmaps

and a weight adaptive network layer for the feature fusion, which can preserve

asmuch useful information as possible for the final binary classification. To fully

verify the performance of the proposed model, we also design two types of

models based on traditional machine-learning and typical deep-learning for

comparison. Furthermore, we have also done ablation experiments to verify

the e�ectiveness of each module of the proposed network. Finally, these

models are evaluated by four-fold cross-validation on the built eye-tracking

dataset. The proposed model shows 85% average accuracy in AD recognition,

outperforming machine-learning methods and other typical deep-learning

networks.

KEYWORDS

Alzheimer’s disease, deep learning, eye-tracking, artificial intelligence, biomedical

application

1. Introduction

Alzheimer’s disease is a nonreversible neurodegenerative disease, which involves

parts of the brain that control thought, memory, and language and can seriously affect

a person’s ability to carry out daily activities. It is the most common form of dementia,

and subjects with mild cognitive impairment (MCI) have a higher risk of transitioning
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to dementia (Hishikawa et al., 2016). Presently, the evaluation

criteria of cognitive function state are usually quantified

through neuropsychological tests, such as the Mini Mental State

Examination (MMSE) (Folstein, 1975) and Montreal Cognitive

Assessment (MoCA) (Nasreddine et al., 2005). Although these

methods have become mainstream diagnostic methods for

detecting cognitive impairment in AD, there are still some

unavoidable limitations that hinder their wider application.

For example, such tests generally need to take 10–15 min to

complete in an absolutely quiet space under the guidance of

professionally trained medical staff. This will cause a significant

consumption both of time and manpower. Moreover, this

type of test will easily cause the subjects to be nervous and

uneasy, resulting in less objective evaluation scores. Although

Alzheimer’s disease is considered nonreversible, diagnosis and

treatment at an early stage can help to overcome the symptoms

and allow more aggressive therapy to prevent progression to

dementia (Readman et al., 2021).

As a simple, accurate and non-invasive screening tool, eye-

tracking has shown great potential for AD diagnosis in previous

research (Chaabouni et al., 2017; Nam et al., 2020; Pavisic et al.,

2021; Readman et al., 2021). Since patients with Alzheimer’s

Disease (PwAD) are usually accompanied by a broad spectrum

of oculomotor alterations, a growing body of research provides

evidence for some specific eye movements as biomarkers in

early AD stages. For example, numerous studies have shown

that abnormal saccades are associated with AD (Crawford

et al., 2017; Orlosky et al., 2017; Kahana Levy et al., 2018).

Experimental designs in such research are generally divided into

two categories: prosaccades, which require the user’s eyeballs

to move toward a presented stimulus, and antisaccades, which

require the user’s eyeballs to move away from the stimulus.

It is noted that AD patients had longer delays in initiating

prosaccades and antisaccades compared with controls. Besides,

PwAD are more prone to errors in performing the antisaccade

task than the presaccade (Kahana Levy et al., 2018). In addition,

since cognitive impairment is often accompanied by impaired

memory recognition, episodic memory deficits have been well

characterized in detecting earlier AD. Converging finding

also suggests that eye movement behavior reveals different

mnemonic processes, including before or even in the absence of

conscious recollection (Hannula et al., 2010; Bueno et al., 2019;

Tadokoro et al., 2021).

To explore the episodic memory process in AD, several

visuospatial memory eye-tracking tasks, such as the visual short-

term memory (VSTM) test (Pertzov et al., 2012; Haque et al.,

2020; Pavisic et al., 2021) and visual paired comparison (VPC)

test (Haque et al., 2019; Nie et al., 2020), have been designed

in current research. For the VSTM task, Pavisic et al. (2021)

designed an "object-location" VSTM task with 52 participants. In

this task, individuals first viewed a sample array (memory array)

of 1 or 3 fractal objects. Then in the test array, they were required

to touch the fractal they remembered from the memory array

and its original position on the touch-screen. Results focused

on two memory measures of task performance: recognition

accuracy and localization. By analyzing the experimental results,

the researchers found that presymptomatic carriers were less

accurate at locating targets than controls for shorter stimulus

fixation times. As for the VPC task, it is a recognition memory

test that has a proven sensitivity to memory decline. Typically,

participants are first presented with a series of visual stimuli

for a period of time with no explicit instructions. After a delay,

the stimuli are presented again side-by-side with a novel image.

Compared to the original image, an object will be added or

removed in the new image. Several studies have employed VPC

comparison tasks with artificial stimuli (Lagun et al., 2011; Chau

et al., 2015) and naturalistic visual stimuli (Crutcher et al.,

2009). For example, Chau et al. (2015) conducted the VPC task

by presenting PwAD and HCs incorporating artificial stimulus

to quantify novelty preference in AD patients by measuring

visual scanning behavior. In contrast, Crutcher et al. (2009)

assessed the performance of the VPC task to detect MCI under

naturalistic scenes. As indicated in review literature (Readman

et al., 2021), such tasks combined with eye-tracking technology

shows particularly promising results for the distinction between

MCI, PwAD, and HCs populations. However, It is worth

mentioning that almost the current VPC tasks only concentrate

on 2D display, and few studies have used a 3D display form.

Machine-learning-based and deep-learning-based models

have been shown to play a crucial role in identifying cognitive

function impairment with high sensitivity (Fabrizio et al.,

2021; Miltiadous et al., 2021; Murdaca et al., 2021; Rizzo

et al., 2022). These models are commonly used to deal

with medical imaging such as positron emission computed

tomography (PET) or magnetic resonance imaging (MRI),

mainly because the feature representations produced by

these models can be helpful even if the data is partially

missing (Biondi et al., 2017). In addition to medical images,

deep-learning models combined with eye tracking technology

have also shown good performance in identifying neurological

diseases (Biondi et al., 2017; Chaabouni et al., 2017; Jiang

and Zhao, 2017). Jiang and Zhao (2017) proposed a Deep

Neural Networks (DNN) based model to identify people with

Autistic Spectrum Disorder (ASD), using the eye-tracking data

in free image viewing. With a fine-tuned VGG-16 network

extracting features and a linear Support Vector Machine

(SVM) to do the classification, their model achieved an

accuracy of 92%. Chaabouni et al. (2017) built a deep-

learning architecture to predict the visual attention model of

patients with Dementia, and this model achieved a predictive

accuracy of 99.27%. However, deep-learning models for AD

recognition or classification based on eye movement data are

rare in existing studies due to the lack of large-scale eye-

tracking datasets. Biondi et al. (2017) developed a deep-learning

approach to differentiate between the eye-movements reading

behavior of PwAD over HCs. Using a trained autoencoder and a
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softmax classifier, this model conducted 89.78% of accuracy for

identifying PwAD.

The above encouraging results indicate that deep-learning

models are promising for understanding the dynamics of eye-

movement behavior and its relationship to underlying cognitive

impairment processes. However, several limitations have

hindered applying such research in broader fields. For example,

due to the insufficiency of existing eye-tracking system functions

and algorithms in 3D displays, almost all experimental stimuli

in the above studies are displayed in two dimensions. Even

though it has been pointed out that under the same content,

3D stimuli can stimulate more abundant eye movements and

brain activity behaviors than 2D stimuli (González-Zúñiga et al.,

2013). Moreover, further research is limited by the lack of

the large-scale eye-tracking dataset since the performance of

deep-learning-based approaches depends heavily on the training

dataset’s size.

Motivated by the above limitations, we propose the NeAE-

Eye: a nested autoencoder model used to identify the PwAD and

HCs with an eye-movement dataset on a designed 3D VPC task.

The hypothesis is that using deep learning to identify the key

characteristics of the patient’s eye behavior during the VPC task

may lead to a correct classification, which can be used to infer

a diagnosis of AD. Our main contributions to this paper can be

summarized as follows:

• We propose a novel deep-learning-based model with

nested autoencoder networks to classify the PwAD and the

HCs based on their generated gaze heatmaps;

• We constructed a large-scale eye-movement dataset using

the designed 3D VPC task, which can be used to analyze

the differences in eye movement characteristics of PwAD

and HCs under stereoscopic stimuli. To the best of our

knowledge, we are the first to design such task stimuli in

a stereo format;

• To fully validate model performance, two types of

models are designed based on machine learning and deep

learning, respectively. In addition, we also conduct ablation

experiments to verify the effectiveness of each module of

the NeAE-Eye model.

2. Materials and methods

In this section, we present the materials andmethods used in

the study, including participants, study design, data acquisition

and preprocessing, the framework of NeAE-Eye and models for

comparison, evaluation metrics.

2.1. Participants

A total of 108 patients with AD and 102 healthy controls

were recruited from September 2020 to September 2021 at

the cognitive impairment clinics, Tianjin HuanHu Hospital,

Tianjin, China. All participants were 40−92 years of age.

Diagnoses for AD were carried out on grounds of the patients’

clinical history, neuropsychological examination, and structural

imaging. Probable AD was diagnosed according to the criteria of

the National Institute on Aging and the Alzheimer Association

workgroup (McKhann et al., 2011). Exclusion criteria were

as follows: diagnosis of any neurological disease except AD;

patients with uncorrected dysfunctions of vision, hearing loss,

aphasia, or an inability to complete a clinical examination

or scale assessment; history of mental disorders and illicit

drug abuse; patients with acute or chronic liver and kidney

dysfunction, malignant tumors, or other serious underlying

diseases. HCs were recruited from friends and relatives of

the patients and had no history of psychiatric or neurological

illness or evidence of cognitive decline. Besides, in our research,

the PwAD group did not include patients with MCI. In our

study, all procedures followed conformed to the World Medical

Association Declaration of Helsinki.

2.2. Study design

We performed a statistical analysis of eye-tracking data

under the VPC task to compare characteristic differences

between the PwAD and HCs groups and then determined

whether these differences could serve as a screening tool to

identify AD.

2.2.1. Calibration procedure

In order to track the participants’ gaze more accurately,

each participant in the experiment performed a personal

calibration with a self-designed 3D eye-tracking system (Sun

et al., 2021). The device integrates a stereoscopic playback

system and a binocular eye-tracking system to provide users

with a comfortable viewing experience while achieving high-

sensitivity 3D gaze estimation with an accuracy of 0.66◦.

During the calibration procedure, each participant is

presented with nine points at random locations on the screen,

and each mark will be displayed for 3 s. Eye-movement images

will be captured for each mark, and gaze points will be tracked

based on these images. The data collection scene is shown in

Figure 1. The duration of the calibration process is 27 s, and

whole experimental session takes a total of 4 min and 27 s.

2.2.2. 3D visual paired comparisons task

This paper designs a 3D VPC task with stereo stimuli and

the whole process is shown as Figure 2. After the calibration

process, the task begins with the presentation of a series of

images of stereo scenes for a duration of 5 s each. There

are a total of 12 images for testing. And then, a similar

set of images will be displayed, each with an object added
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FIGURE 1

The user-friendly data collection scene with the self-designed

3D eye-tracking system.

or removed from the original image. Besides, each image is

designed or selected to contain 4–8 objects in total, and these

stereo images include different scenes, including natural scenes,

cartoon scenes, geometric scenes, etc.

During the task, participants will not be given any

instructions but only required to freely view the images.

Additionally, compared with the images displayed for the first

time, the regions where objects are added or deleted in the

second time display are defined as the region of interest (RoI).

For memory and novelty preference exploration in PwAD, the

relative fixation time on the previously displayed images and the

novel images will be measured by the eye-tracking system.

2.3. Data collection and preprocessing

The resolution of eye movement data collected by the self-

designed 3D eye-tracking system is 1,920 x 1,080 pixels, and the

sampling rate of the eye camera is 120 Hz. During the task, the

subject does not need to wear any equipment but only needs to

put his head on the forehead rest. This friendly measurement

allows the subjects to relax so that the collected data reflects their

normal state.

For each image in each group, a fixation map will be

constructed by overlaying all estimated fixation points for each

subject into a map. Then, the generated fixation map can be

smoothed and normalized with a Gaussian kernel to generate

the fixation heatmap, as shown in Figure 3. Finally, all fixation

heatmaps will be used as the source input for the NeAE-Eye

network to extract discriminative features for PwAD and HCs

classification.

Since these test images require different degrees of memory

function, the degree of difference in the fixation heatmaps

between PwAD and HCs is also different. Figure 3 shows

four samples with apparent visual differences in the fixation

heatmaps between PwAD and HCs. The two-row heatmaps for

each image are generated from the first-time view and second-

time view fixation data, respectively. As can be observed from

the fixation heatmaps in Figure 3, the participants in the HCs

group pay attention to both global images and the RoI areas.

However, PwAD prefer to look at the central area of the images

and pay less attention to the RoI areas than the HCs group.

This particular gaze-following phenomenon is further evidence

of AD’s lack of novelty preference. Therefore, it is sufficient to

hypothesize that eye-movement data in the 3D VPC task can

reflect the memory activity occurring in the subject’s brain. This

is of great value in supporting clinical practice in diagnosing AD.

2.4. Framework of the NeAE-Eye network

In this section, we give a detailed description of the proposed

NeAE-Eye model for AD identification, as shown in Figure 4.

The model of NeAE-Eye consists of three main modules: inner

autoencoder, outer autoencoder, and classifier.

2.4.1. Encoding for the internal representation
learning

The key goal of the inner autoencoder module is to

learn the image-dependent representation based on the fixation

density maps for each test image, which consists of a shallow

convolutional network with 8-layers. The first four layers of the

shallow convolutional network act as encoders, which is used

to extract low-dimensional features of fixation heatmaps. For

the last four layers, they act as decoders for reconstructing the

original input from internal representations.

For simplicity, given the subject’s fixation heatmaps x1, x2

for each test image generated when viewing for the first and

second time, the processes of the inner encoder Eae_in, inner

decoder Ede_in can be denoted as:

{

z = Eae_in(x1, x2;βai)

x̂1, x̂2 = Ede_in(z;βdi)
(1)

where z is the learned inner representation for a single image

and x̂1, x̂2 are the reconstructed input fixation heatmaps by

the decoders. Besides, βai,βdi represent the parameter set

for the encoder and decoder layers, respectively. Since the

inner representation z is supposed to preserve more intrinsic

information from the two inputs x1, x2, we train this encoding

network by minimizing the following reconstruction loss:

Lcom1 = min
{βai,βdi}

1

2

2
∑

v=1

∥

∥xv − x̂v
∥

∥

2
F . (2)

The reason that we introduce the autoencoder network

to extract the inner representation is that there is no

supervised information to guide the learning process. Besides,
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FIGURE 2

The whole process description of the designed 3D VPC task.

FIGURE 3

Some samples of the testing images and corresponding fixation heatmaps generated for each group and each time viewing. (A) Indoor far-view

scene; (B) Cartoon scene; (C) Geometric scene; (D) Indoor near-view scene.

the autoencoder network can extract the intrinsic information

from multi-view inputs while filtering out the original high-

dimensional features.

2.4.2. Outer encoder for the common
representation learning

After obtaining the image-dependent representation, we

focus on encoding them into an intact common representation

which can be used to highlight the difference of the visual

attentionmechanism between the PwAD andHCs. To this end, a

fully connected neural network (FCNN) is employed in the outer

autoencoder module, which consits of the encoder Eae_out and,

decoder Ede_out and a weight adaptive fusion layer fmap.

Specifically, let
{

zvi |v ∈ {1, 2, ...,V} , i ∈ {1, 2, ...,N}
}

denotes

an image-dependent representation set for the i-th subject,

where V is the total number of the test images and N is the

number of the total subjects, we treat the V test images of the

same sample as V different views for the degradation network’s

input. Then, the processes of the outer autoencoder can be

denoted as:

{

{z̃vi } = Eae_out({z
v
i };βao)

{ẑvi } = Ede_out(Zi;βdo)
(3)

where {z̃vi } is a low-dimensional representation of {zvi }. Besides,

the βao, βdo are the parameter sets of the outer encoder and

decoder.

After getting the latent representation {z̃vi } of V views

from the encoder network, a weight adaptive fusion layer is

introduced to seek the final intact common representation Zi of
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FIGURE 4

This figure shows the whole workflow of the proposed NeAE-Eye network. The NeAE-Eye model has three main modules, including inner

autoencoder module, outer autoencoder module, and classifier module.

multi-views:

Zi = fmap(z̃
1
i , z̃

2
i , ..., z̃

V
i ;βm), i ∈ (1,N), (4)

where fmap(·) denotes the fusion function and the

βm = {β1, ...,βV } is a group learnable parameter of the fusion

layer. Likewise, we believe that the common representations

learned by different views of the same sample should be as

identical as possible to reflect consistency between views.

Therefore, the objective of the outer autoencoder can be defined

as

Lcom2 = min
{βao,βdo,βm}

1

2
(

V
∑

v=1

∥

∥zv − z̃v
∥

∥

2
F +

∥

∥

∥

∥

∥

∥

Z−

V
∑

v=1

βmz̃
v

∥

∥

∥

∥

∥

∥

2

F

).

(5)

2.4.3. Classification on the common
representation

Based on the learned intact common representation {Zi|i ∈

(1,N)} of N subjects, the final binary classification will be

processed by a 3-layers FC network with a Cross-Entropy loss

function:

Lcls =

N
∑

i=1

yi log(σ (Zi))+ (1− yi) log(1− σ (Zi)), (6)

where yi is the label of the i th subject.

In conclusion, the total loss function of the whole NeAE-Eye

model can be represented as L = Lcls + Lcom1 + Lcom2.

2.5. Models for comparison

The major framework of some typical models for

comparison has been shown in Figure 5, which consists of

three main modules, including feature extraction, feature fusion

and classification. These comparative approaches can be divided

into machine-learning-based models and deep-learning-based

models. For approaches with machine-learning, we first employ

two different feature descriptors: the Fourier coefficients for

two-dimensional shape descriptors (FOU) and Karhunen-Loeve

coefficients (KAR), for image-dependent feature extraction.

And then, in the stage of classification, both the SVM and

K-Nearest Neighbors (KNN) are used to classify the two groups.

As for approaches with deep-learning, we adopt the widely used

VGG-16 network and Resnet-18 network to achieve the features

extraction. And then, we still use the same FC network as the

NeAE-Eye model for the final classification. For both types of

approaches, we choose to connect all feature vectors to obtain

the common representation. Moreover, we set the proposed

NeAE-Eye as the base model and set up the comparative models

as different combinations of different feature extractionmodules

and classification modules, such as FOU_SVM, KAR_KNN,

VGG16_FC, etc.

2.6. Evaluation metrics

In this paper, we introduce four assessment criteria:

accuracy, precision, recall and F1-score, to evaluate the

performance of the model, which are calculated according to the

Equations 7–10 specified below.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TN

TP + FN
(9)

Frontiers inHumanNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.972773
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Sun et al. 10.3389/fnhum.2022.972773

FIGURE 5

The main framework of the models for comparison. For the machine-learning-based methods, we employ the FOU and KAR for feature

extraction and the SVM and KNN for binary classification, respectively; And for deep-learning-based methods, we use VGG-16 network and

Resnet-18 network to extract the features and use FC networks for classification.

F1 =2×
Precision× Recall

Precision+ Recall
(10)

where TP, FP, FN,TN are the calculated true positives, false

positives, false negatives, and true negatives separately. In this

paper, we take PwAD as the positive samples and HCs as

the negative samples. Based on the assessment metric, we also

derived the receiver operating characteristic (ROC) curves and

area under the curve (AUC) values to show specific details for

the experimental results.

3. Results

3.1. Classification with statistical-based
method

To initially validate the feature distribution of the

constructed eye-tracking dataset, we first roughly classified

PwAD and HCs using a traditional statistics-based method. In

this method, we first introduce the classical principal component

analysis (PCA) for feature selection from the fixation heatmaps,

then use the Naive Bayes classifier to complete the classification

process. Since the initial dimension of the generated heatmap

is 768 (32 × 24), we set the feature dimensions selected by

PCA as m = 20, m = 40, m = 60, m = 80 and m = 100 for

comparative analysis.

The classification performance of these five different settings

is shown in Figure 6. It can be seen from the experimental results

that when m = 20, the classification accuracy is 53.5%. As m

increases, the classification accuracy first increases, and when

m ≥ 60, it remains almost unchanged. The best performance

is obtained when m = 100, and the classification accuracy is

FIGURE 6

Classification performance of Naive Bayes classifier-based

methods, where m is the selected feature dimension of the

principal component analysis.

71.5%. This result also implies that there are indeed differences

between AD andHCs eyemovement features, which can provide

a mathematical basis for machine-learning-based and deep-

learning-based models.

3.2. Classification results of di�erent
models

We evaluate the performance of each model by applying

four-fold cross-validation to assess model robustness. The

classification results of different models are displayed in Table 1.

From the Table 1, the NeAE_Eye model outperforms all other
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TABLE 1 Results comparison with the state-of-the-art models.

Categories Models Mean precision Mean recall Mean F1-score Mean accuracy

Machine-learning

FOU_SVM 0.71± 0.03 0.78± 0.04 0.74± 0.03 0.74± 0.04

FOU_KNN 0.63± 0.02 0.65± 0.03 0.64± 0.03 0.63± 0.07

KAR_SVM 0.76± 0.04 0.80± 0.02 0.78± 0.04 0.72± 0.03

KAR_KNN 0.65± 0.04 0.68± 0.05 0.66± 0.05 0.69± 0.04

Deep-learning

VGG16_FC 0.82± 0.05 0.92± 0.02 0.87± 0.03 0.80± 0.02

Resnet18_FC 0.85± 0.03 0.87± 0.01 0.86± 0.04 0.81± 0.03

NeAE-Eye 0.87± 0.04 0.89± 0.04 0.88± 0.04 0.85± 0.05

classifier models, showing 85% mean accuracy, followed by

Resnet18_FC and VGG16_FC with the accuracy of 81 and 80%,

respectively. Besides, by comparing the models with traditional

feature descriptors, we can find that the model combined with

the SVM classifier outperforms that combined with KNN. For

example, the FOU_SVM model achieves 0.71 ± 0.03 mean

precision, 0.78 ± 0.04 mean recall, 0.74 ± 0.03 mean F1-score,

and 0.74 ± 0.04 mean accuracy, which is higher than that

of FOU_KNN. Furthermore, the average performances of the

deep-learning-based models are better than that of machine-

learning-based methods.

Figure 7 shows a comparison between the ROC curves of

the approaches with machine-learning models (Figure 7A) and

approaches with deep-learning networks (Figure 7B). For these

two category models, the achieved AUCs range from 0.921

to 0.951 and 0.951 to 0.977, respectively. The methods with

machine-learning models show mean AUCs of 0.933. For the

models with deep-learning networks, the mean AUCs is 0.969,

which scores 0.036 higher than that of machine-learningmodels.

3.3. Ablation experiment for the modules
in NeAE-Eye model

To more comprehensively evaluate the performance of the

proposed model, we design an ablation experiment to verify the

importance of each module of the model. Since the NeAE-Eye

model consists of the inner encoder (ENin), the inner decoder

(DEin), the outer encoder (ENout), the outer decoder (DEout)

and the weight adaptive fusion layer fmap, we conduct the

ablation studies of different module combinations to assess their

efficacy.

As shown in Table 2, we set the combination of the inner

encoder and the outer encoder (ENin_ENout) as the basic

reference. Then, by successively adding the inner decoder, the

out decoder and the weight adaptive fusion layer fmap, we

compare their classification effectiveness also using the mean

precision, recall, F1-score and accuracy. From the Table 2, the

basic reference ENin_ENout achieves 0.80 ± 0.03 precision,

0.81 ± 0.05 recall, 0.80 ± 0.03 F1-score and 0.78 ± 0.05

accuracy for the classification. By introducing the decoders

DEin and DEout , the overall performance of the classification

model is significantly improved. The optimal classification

performance is generated from the whole NeAE_Eye model

(ENin_DEin_ENout_DEout_fmap). Compared with the basic

reference model, the performance of the whole model is

improved by 8.75, 9.87, 10.00, and 8.97% in mean precision,

recall, F1-score and accuracy, respectively.

To further verify the effectiveness of inner and outer

autoencoders in the NeAE-Eye model, we also design another

ablation experiment by replacing them with other modules.

For the inner autoencoder, we replace it with the difference

maps, which are directly obtained by the difference of the

corresponding fixation heatmaps for two-time views. As for the

outer autoencoder, we change it to a shallow CNN network

to extract subject-level common representation from the sum

of total difference maps. As shown in Figure 8, there is a

total of four models for comparison: Model1 (Difference maps

with CNN), Model2 (Difference maps with outer autoencoder),

Model3 (Inner autoencoder with CNN), and Model4 (Inner

autoencoder with outer autoencoder). Moreover, the first nine

layers of the VGG16 network is introduced as shallow CNN

module.

In Table 3, wemake a comparison of the experimental results

of these four models. As this table shows, four models show

different performances for classifying PwAD and HCs. Among

them, the Model1 shows the worst performance, achieving

0.72± 0.02 precision, 0.74 ± 0.03 recall, 0.73 ± 0.03 F1-score

and 0.71 ± 0.06 accuracy for the classification. By replacing the

difference maps and CNN network with the inner autoencoder

and outer autoencoder in turn, the classification accuracy of

the two models (Model2 and Model3) is improved by 0.09

and 0.06, respectively. Model4, which combines the inner and

outer autoencoders, shows the optimal performance for the

classification.

The reasons for the differences in the performance of these

models can be attributed to the following points: First, for the

learning of image-dependent representation, the two branches of

the inner autoencoder module can extract and fuse user’s visual
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FIGURE 7

Receiver operation characteristic (ROC) curves: (A) ROC curves of models with machine-learning models; (B) ROC curves of models with

deep-learning networks; (C) ROC curves of all models.

TABLE 2 Ablation experiment for the proposed NeAE-Eye model.

Models Mean precision Mean recall Mean F1-score Mean accuracy

ENin_ENout 0.80± 0.03 0.81± 0.05 0.80± 0.03 0.78± 0.05

ENin_ENout_DEin 0.83± 0.05 0.85± 0.03 0.84± 0.05 0.80± 0.03

ENin_ENout_DEout 0.85± 0.06 0.88± 0.04 0.86± 0.05 0.81± 0.04

NeAE-Eye 0.87± 0.03 0.89± 0.04 0.88± 0.04 0.85± 0.05

FIGURE 8

Flowchart of four di�erent models for comparison. The four branches are: Model1 (Di�erence maps with CNN), Model2 (Di�erence maps with

outer autoencoder), Model3 (Inner autoencoder with CNN) and Model4 (Inner autoencoder with outer autoencoder).

region preference features and novelty preference features,

respectively. However, the differencemapmay confuse these two

features by directly fusing the fixation heatmaps of the two-time

views. Second, for the learning of subject-level representation,

the adaptive weight fusion layer of the outer autoencoder can

provide the classifier with more instructive features through

continuous iterative learning. Assigning weights to each internal

representation in an adaptive manner is more reasonable
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TABLE 3 Ablation experiment with di�erence maps and CNN networks.

Models Mean precision Mean recall Mean F1-score Mean accuracy

Model1 0.72± 0.02 0.74± 0.03 0.73± 0.03 0.71± 0.06

Model2 0.82± 0.04 0.83± 0.03 0.82± 0.04 0.80± 0.04

Model3 0.80± 0.03 0.83± 0.05 0.81± 0.05 0.77± 0.05

Model4 0.87± 0.03 0.89± 0.04 0.88± 0.04 0.85± 0.05

than summing them directly. Most importantly, autoencoders

can retain more intrinsic information for feature learning in

unsupervised processes compared with general CNN networks.

4. Discussion and the future work

The main purpose of this study is to investigate the potential

clinical application of the machine-learning-based and deep-

learning-basedmodels on eye-tracking datasets in AD diagnosis.

Judging from the fixation heatmaps generated by viewing the

designed 3D VPC task, the PwAD group prefers to focus on

the central area of the stereo scene and rarely on the RoI area

where objects are added or removed. This result indicates that

PwAD have a certain degree of memory decline and lack of

novelty preference. These differential characteristics reflected in

eye movement data between PwAD and HCs provide adequate

support for clinical practice in diagnosing AD. As can be

seen from Table 1, most models can make full use of these

different features to classify AD and NCwith good performance.

Among them, the proposed NeAE-Eye model shows the best

performance, of which the mean classification accuracy of a

four-fold cross-validation experiment can reach 85%. Based on a

nested autoencoder network, the proposed model can accurately

extract the features of a single view, ensure the efficient fusion

of features from different views and maximize the preservation

of the original information of each view. Specifically, the inner

autoencoder can comprehensively extract the eye movement

features of a single view and the outer autoencoder is able

to further deeply compresses the features from each view and

guarantees that the final common representation provides more

useful information for the final binary classification. In addition,

the effect of each module in the overall model can be reflected in

Table 2.

Although these findings require further validation in

broader multi-source datasets, our analysis is sufficient to

demonstrate that eye movement features under VPC tasks

can serve as biomarkers for the clinical diagnosis of AD.

Furthermore, applying deep-learning-based models can

significantly improve diagnostic performance, as reporting can

be improved by up to 17.99% in our study set. Future work

will further improve the model’s performance by considering

more eye movement features, such as saccade and visual

sensitivity. Besides, we will also optimize the network structure

to achieve a refined classification of different degrees of

cognitive impairment in AD. Moreover, we will also contribute

to constructing a more comprehensive eye-movement dataset

and exploring the different effects of 2D and 3D stimuli on

classification.

5. Conclusions

In conclusion, this study validates the clinical utility of

the proposed approach combined with eye-tracking technology

to detect cognitive impairment in AD. The constructed large-

scale eye-tracking dataset strongly reflects the differences in

the eye-tracking characteristics of PwAD and HCs. Based on

these differences, both the machine-learning-based and deep-

learning-based approaches can achieve intelligent diagnosis

of AD. Moreover, by introducing autoencoder networks with

weight-adaptive fusion layers for feature extraction and feature

fusion, the performance of the proposed NeAE-Eye model can

be significantly improved.
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