

OPEN ACCESS

APPROVED BY
Frontiers Editorial Office,

Frontiers Media SA, Switzerland

*CORRESPONDENCE

Kedi Xu xukd@zju.edu.cn Xiangming Ye yexmdr@126.com

SPECIALTY SECTION

This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience

RECEIVED 24 June 2022 ACCEPTED 27 June 2022 PUBLISHED 14 July 2022

CITATION

Zhou Q, Cheng R, Yao L, Ye X and Xu K (2022) Corrigendum: Neurofeedback training of alpha relative power improves the performance of motor imagery brain-computer interface. *Front. Hum. Neurosci.* 16:977387. doi: 10.3389/fnhum.2022.977387

COPYRIGHT

© 2022 Zhou, Cheng, Yao, Ye and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Neurofeedback training of alpha relative power improves the performance of motor imagery brain-computer interface

Qing Zhou^{1,2,3}, Ruidong Cheng⁴, Lin Yao^{5,6,7}, Xiangming Ye^{4*} and Kedi Xu^{1,2,3,5*}

¹Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China, ²Zhejiang Lab, Hangzhou, China, ³Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China, ⁴Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China, ⁵MOE Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China, ⁶Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China, ⁷The College of Computer Science, Zhejiang University, Hangzhou, China

KEYWORDS

alpha relative power, motor imagery, performance variation, electroencephalogram (EEG), brain-computer interface (BCI), neurofeedback training (NFT)

A corrigendum on

Neurofeedback Training of Alpha Relative Power Improves the Performance of Motor Imagery Brain-Computer Interface

by Zhou, Q., Cheng, R., Yao, L., Ye, X., and Xu, K. (2022). Front. Hum. Neurosci. 16:831995. doi: 10.3389/fnhum.2022.831995

In the published article, there was an error in affiliations 1 and 2. Instead of "¹ Zhejiang Lab, Hangzhou, China, ² Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China," it should be "¹ Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China, ² Zhejiang Lab, Hangzhou, China."

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.