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Neurofeedback has been suggested as a potential complementary therapy

to different psychiatric disorders. Of interest for this approach is the

prediction of individual performance and outcomes. In this study, we applied

functional connectivity-based modeling using electroencephalography (EEG)

and functional near-infrared spectroscopy (fNIRS) modalities to (i) investigate

whether resting-state connectivity predicts performance during an affective

neurofeedback task and (ii) evaluate the extent to which predictive

connectivity profiles are correlated across EEG and fNIRS techniques. The

fNIRS oxyhemoglobin and deoxyhemoglobin concentrations and the EEG

beta and gamma bands modulated by the alpha frequency band (beta-m-

alpha and gamma-m-alpha, respectively) recorded over the frontal cortex of

healthy subjects were used to estimate functional connectivity from each

neuroimaging modality. For each connectivity matrix, relevant edges were

selected in a leave-one-subject-out procedure, summed into “connectivity

summary scores” (CSS), and submitted as inputs to a support vector

regressor (SVR). Then, the performance of the left-out-subject was predicted

using the trained SVR model. Linear relationships between the CSS across

both modalities were evaluated using Pearson’s correlation. The predictive

model showed a mean absolute error smaller than 20%, and the fNIRS

oxyhemoglobin CSS was significantly correlated with the EEG gamma-

m-alpha CSS (r = −0.456, p = 0.030). These results support that pre-

task electrophysiological and hemodynamic resting-state connectivity are

potential predictors of neurofeedback performance and are meaningfully

coupled. This investigation motivates the use of joint EEG-fNIRS connectivity

as outcome predictors, as well as a tool for functional connectivity

coupling investigation.
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Introduction

During a neurofeedback session, participants are trained to
achieve volitional control of their neural activity through real-
time feedback (Sitaram et al., 2017). Potential applications of
this approach in psychiatry include the treatment of mood and
anxiety disorders, such as depression (Trambaiolli et al., 2021a)
and obsessive-compulsive disorder (OCD) (Ferreira et al., 2019).
Clinical benefits have been reported to persist for weeks or
months after training (Rance et al., 2018). However, not all users
will benefit from neurofeedback training, and it is a current
interest in this research field to identify potential predictors
of performance and outcomes (Weber et al., 2020; Haugg
et al., 2021). Recently, targeted functional connectivity has been
explored as a potential predictor of neurofeedback training
performance. This has been motivated by findings showing that
individual differences in resting-state functional connectivity
can identify individuals from a large group (Finn et al., 2015),
and influence task performances in different cognitive domains
(Shen et al., 2017). For example, Scheinost et al. (2014) showed
that fMRI-based whole-brain functional connectivity could be
used as a predictor of affective neurofeedback treatment success
in patients with OCD (Scheinost et al., 2014).

However, for a clearer picture of the neurobiological
mechanisms underlying the relations between resting-state
networks and task outcomes, a better understanding of
the neural activity related to spontaneous hemodynamic
fluctuations is required (Ma et al., 2016). In this context, several
studies have explored the combination of electrophysiological
and hemodynamic methodologies (Ingvar et al., 1979; Okyere
et al., 1986; Goldman et al., 2002; Mantini et al., 2007;
Scheeringa et al., 2008; Britz et al., 2010; Schölvinck et al.,
2010; Yuan et al., 2012; Talukdar et al., 2015). A previous study
combining functional magnetic resonance imaging (fMRI)
blood oxygen level-dependent (BOLD) signals with local field
potential records in monkeys observed correlated spontaneous
fluctuations over the cortex, particularly for gamma-band power
(Schölvinck et al., 2010). In humans, the neurovascular coupling
has been broadly studied by combining the fMRI-BOLD signal
with electroencephalography (EEG) recordings (Goldman et al.,
2002; Mantini et al., 2007; Scheeringa et al., 2008; Britz et al.,
2010; Yuan et al., 2012). An inverse correlation between the
BOLD signal amplitude and the EEG alpha frequency power has
been consistently observed (Goldman et al., 2002). Moreover, a
linear correlation between the EEG spectro-temporal amplitude
modulation (EEG-AM) and the blood flow through the gray
matter has also been observed (Ingvar et al., 1979; Okyere et al.,
1986; Talukdar et al., 2015; Trambaiolli et al., 2020).

Nevertheless, simultaneous EEG-fMRI recording is
challenging. The EEG signal is corrupted by magnetic gradient
artifacts due to interference caused by the MRI, and artifacts on
functional images can be caused by the electrodes positioning
(Talukdar et al., 2015). Recently, functional near-infrared

spectroscopy (fNIRS) has emerged as a useful tool combined
with EEG since there is no electro-optical interference
(Talukdar et al., 2015; Chiarelli et al., 2017). Moreover,
fNIRS data provides information about oxyhemoglobin and
deoxyhemoglobin concentration changes at the cortical surface
with relatively high sampling rates (Strangman et al., 2002;
Cui et al., 2011), allowing for the temporal evaluation of
neurovascular coupling. Joint EEG-fNIRS measurement was
recently applied to several neuroscientific questions, such as
to investigate the neurodevelopment (Roche-Labarbe et al.,
2007), language processing (Wallois et al., 2012), or to develop
brain-computer interfaces (BCI) (Fazli et al., 2012; Tomita et al.,
2014; Banville et al., 2017).

In this study, we combined EEG and fNIRS data with
a task-related connectivity modeling (Finn et al., 2015;
Shen et al., 2017) to predict participants’ performance in
an fNIRS-based affective neurofeedback task (Trambaiolli
et al., 2018). The interest in this particular task is due
to the potential of fNIRS-based protocols to be used as
an intervention outside the overcontrolled environment of
laboratories (Trambaiolli et al., 2021b). We achieved a
satisfactory performance prediction using these modalities as
inputs for a support vector regressor. We also identified that
connectivity profiles derived from the EEG-AM and fNIRS
hemoglobin concentrations are significantly correlated. These
results suggest that complementary neurovascular signatures
converge to the same task-preparation network to perform best
in the upcoming neurofeedback task.

Materials and methods

Participants

Thirty-one healthy participants (16 women), aged between
20 and 35 years (mean age of 25.71 ± 3.32 years) and all
undergraduate or graduate students were recruited. The subjects
had no diagnosis of neurological diseases (ICD-10: G00G99) or
psychiatric disorders (ICD-10: F00-F99) and had a normal or
corrected-to-normal vision. Ethical approval was obtained from
the Ethics Committee of the Federal University of ABC, and all
participants provided written consent before participation.

Data acquisition

fNIRS recording was performed using the NIRScout System
(NIRx Medical Technologies, LLC. Los Angeles, California)
with an array of 11 light sources and 11 detectors. These
optodes were arranged in an elastic cap, with 9 pairs of
source-detectors positioned over the fronto-temporal regions
and 3 pairs of source-detectors over the occipital region as
depicted in Figures 1A,B,D. We adopted four positions from
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FIGURE 1

(A) Schematic representation of EEG and fNIRS channels, and (B) an example of the cap on one volunteer. Anatomical representation of the
positioning of (C) EEG electrodes, and (D) fNIRS optodes.

the international 10–20 EEG system as reference points during
the setup: detectors 1 and 9 were positioned approximately over
the T7 and T8 positions, respectively, while the Fpz and Oz were
in the center of channels 5-5 and 11-11, respectively. Source-
receptor distance was 30 mm for contiguous optodes, and the
used wavelengths were 760 and 850 nm. This setup resulted in a
total of 32 source-detector channels. Signals obtained from these
32 channels were measured with a sampling rate of 5.2083 Hz
using the NIRStar 14.0 software (NIRx Medical Technologies,
LLC. Los Angeles, California).

Eight active EEG channels (see Figures 1A–C) were
recorded using a 72-channel QuickAmp amplifier system (Brain
Products GmbH, Germany). To ensure that any lateralization
effect was not caused by the reference placement, for half of
the subjects the reference electrode was positioned over the left
earlobe and the ground electrode over the right earlobe. For
the second half, these positions were inverted (reference on the
right earlobe and ground on the left earlobe). The BrainVision
Recorder software (Brain Products GmbH, Germany) was used
to acquire the data with a sampling frequency of 500 Hz and
without applying filters during acquisition.

Electrode and optode locations followed the same placement
as in the original neurofeedback experiment (Trambaiolli
et al., 2018). The frontal cortex includes important regions for

emotion processing (e.g., the orbitofrontal cortex and the lateral
and medial prefrontal cortex) (Lindquist et al., 2012, 2015) and
is relevant during the affective neurofeedback task.

Neurofeedback task

All volunteers participated in an affective neurofeedback
task (Trambaiolli et al., 2018) that consisted of 5 min of
continuous eyes-opened resting-state, followed by two pairs
of training-test blocks with 10 and 11 trials, respectively.
During the training and test blocks, subjects were instructed
to remember autobiographical memories with a positive affect
context or to remain relaxed (rest with eyes opened), depending
on the stimuli presented on the screen. For each trial, a 3-
s moving window extracted average values of oxyhemoglobin
and deoxyhemoglobin concentrations to compose the respective
feature set. Data from each training block was used to
train a linear discriminant analysis (LDA) model, which was
used to provide feedback to the participant during each
test block. The “performance” measure used in the next
steps corresponds to the number of trials during the test
blocks where the user achieved minimum control of the
system. The interested reader is referred to Trambaiolli et al.
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FIGURE 2

Schematic representation of the connectivity-based predictive modeling (adapted from Shen et al., 2017), summarized as: (A) Each participant
has one connectivity matrix per neuroimaging feature and one performance measurement related to the affective neurofeedback task; (B) each
edge in connectivity matrices is related to the subject’s performance using Pearson’s correlation in a leave-one-subject-out (LOSO) setup; (C)
next, significant edges (p ≤ 0.05) are selected to create a mask; (D) then, for each subject in the training group, the mask is applied to select
most important edges, which are then summarized (summed) into a single CSS value per subject; (E) next, an inter-subject vector is created for
each neuroimaging modality, containing the respective summary values; (F) finally, these four vectors are used to train a support vector
regressor (SVR) and test it in the subject-out.

(2018), where a detailed description of the protocol and
the original report of the results from the neurofeedback
task are provided.

Electroencephalography
pre-processing

Filtering and artifact correction
First, the pre-task resting block was segmented from the

raw data and then band-pass filtered between 0.1 and 100 Hz
by a second-order Butterworth filter. Then, we applied the
wavelet-enhanced independent component analysis (wICA) for
artifact correction (Castellanos and Makarov, 2006; Akhtar
et al., 2012). With this method, EEG signals were decomposed
into independent components (ICs), and the discrete wavelet
transform (DWT) was applied to each IC. In sequence, wavelet
thresholds were selected to differentiate between neural and
artifactual coefficients. The inverse wavelet transform was
applied to these thresholds, retrieving only data related to
neural activity in each IC. Importantly, the wICA method
allows for recovering neural data leaked on noisy ICs by
filtering out artifacts from the wavelet-decomposed signals
in each IC (Castellanos and Makarov, 2006). Thus, no IC
exclusion was necessary. Lastly, the artifact-free EEG data

were reconstructed using the wavelet-corrected ICs (Castellanos
and Makarov, 2006; Akhtar et al., 2012). All these steps
were performed using the EEGLAB (Delorme and Makeig,
2004) and wICA toolboxes (Castellanos and Makarov, 2006),
with the cleaning artifact tolerance set to 1.4 and the
IC artifact detection threshold to 1.6. Both values were
empirically determined.

Amplitude modulation computation
Amplitude modulations were computed following the

procedure described in Trambaiolli et al. (2011, 2020) and
Falk et al. (2012). Briefly, the full band temporal series from
all signals were decomposed into five classical spectral bands,
namely: delta (0.1–4.0 Hz), theta (4.0–8.0 Hz), alpha (8.0–
12.0 Hz), beta (12.0–30.0 Hz), and gamma (30.0–50.0 Hz), using
finite impulse response (FIR) bandpass filters. The temporal
envelope was extracted from each frequency band using a
Hilbert transform. Then, each envelope was further decomposed
into five modulation bands called: m-delta (0.1–4.0 Hz), m-theta
(4.0–8.0 Hz), m-alpha (8.0–12.0 Hz), m-beta (12.0–30.0 Hz),
and m-gamma (30.0–50.0 Hz), using FIR bandpass filters.
However, due to Bedrosian’s theorem (Bedrosian, 1963), the
envelope signal can only contain modulation frequencies up
to the maximum frequency of its originating signal. Hence, if
we use the notation “frequency band—m—modulation band,”
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FIGURE 3

Scatter plots illustrating the distribution of participants (dots)
according to predicted performance (x-axis) and observed
performance (y-axis). Red line represents the trend.

only the following amplitude modulations are relevant: delta-
m-delta, theta-m-delta, theta-m-theta, alpha-m-delta, alpha-m-
theta, beta-m-delta, beta-m-theta, beta-m-alpha, beta-m-beta,
gamma-m-delta, gamma-m-theta, gamma-m-alpha, gamma-m-
beta, and gamma-m-gamma.

As previous studies have reported that alpha modulations
are related to the regional blood flow (Ingvar et al., 1979; Okyere
et al., 1986; Jann et al., 2010; Trambaiolli et al., 2020), the present
study focused exclusively on the alpha band modulations. In
other words, we used for further analysis the beta-m-alpha and
gamma-m-alpha modulations.

Electroencephalography connectivity matrices
For each of the previously mentioned alpha modulation

bands, the connectivity between two channels was measured
using Pearson’s correlation over the whole pre-task resting block
(Bastos and Schoffelen, 2016). All possible combinations of
channels were used to generate a connectivity matrix of 8 × 8
dimensions (a total of two EEG-based connectivity matrices per
participant: one for beta-m-alpha and one for gamma-m-alpha).

Functional near-infrared spectroscopy
pre-processing

Filtering and hemoglobin concentrations
computation

The fNIRS data were pre-processed using the NIRStar
toolbox (v. 14.0, NIRx Medical Technologies, LLC. Los Angeles,
California). First, fNIRS raw data were bandpass filtered
between 0.01 and 0.2 Hz by a linear-phase FIR filter. Then,
the filtered temporal series were detrended by their respective
whole-length record (without segmentation). Next, the oxy

and deoxyhemoglobin concentrations were computed using the
modified Beer-Lambert law, with the differential pathlength
factor (DPF) set to 7.25 and 6.38, respectively, for both fronto-
temporal and occipital regions (Essenpreis et al., 1993). Finally,
the pre-task resting-state block was segmented for the functional
connectivity analysis.

Functional near-infrared spectroscopy
connectivity matrices

For each hemoglobin concentration preprocessed time
series, the functional connectivity between two channels was
measured using Pearson’s correlation over the whole pre-task
resting block (Bastos and Schoffelen, 2016). Considering the
disposition of all fNIRS and EEG channels in our experiment,
only the 25 fNIRS channels around the EEG electrodes
(Figure 1) were used to compute the connectivity. Hence, each
hemoglobin concentration resulted in a connectivity matrix of
25 × 25 dimensions (a total of two fNIRS-based connectivity
matrices per participant: one for oxyhemoglobin and one for
deoxyhemoglobin).

Connectivity predictive modeling

Connectivity profiles
Up until now, all analyses were performed using data from

each subject at a time. Now, the next steps focus on the inter-
subject approach and follow the connectome-based predictive
modeling method proposed by Shen et al. (2017) (see Figure 2).
These steps were repeated for each connectivity matrix.

In our analysis, we used a leave-one-subject-out (LOSO)
setup, as it emulates how the prediction of performance would
happen when evaluating new patients in real-world scenarios.
For each LOSO iteration, each edge of the connectivity matrices
(from all subjects but one, i.e., training group) was correlated
with their performance during the neurofeedback task, resulting
in a correlation matrix that was used to create a mask consisting
of all edges presenting significant correlations (p ≤ 0.05). This
mask was then applied to the original connectivity matrices
of each subject from the training group. The remaining
edges were summed, creating a single connectome value (here
called “connectome summary score”—CSS) for each subject.
This procedure was repeated for each modality (two from
fNIRS—oxyhemoglobin and deoxyhemoglobin—and two from
EEG—beta-m-alpha and gamma-m-alpha). As result, four CSS
values were obtained per subject, and these were used as
features to train a linear support vector regressor (SVR) to
predict the performance during the neurofeedback task. The
hyperparameter C was set to 1, and epsilon was estimated as
a tenth of the standard-deviation of the performance values in
the training set. Finally, the SVR was then tested in the left-out
subject. These steps were repeated, each time leaving a different
subject out until we tested all possible setups.
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Correlation comparison
To evaluate intra- and inter-modality correlations, we

calculated the two CSS vectors for each modality using edges
selected in at least one LOSO iteration. Then, we computed
Pearson’s correlation with these vectors. In intra-modality
analyses, for fNIRS it was oxyhemoglobin vs. deoxyhemoglobin,
and for EEG beta-m-alpha vs. gamma-m-alpha. For inter-
modality analyses, we explored oxyhemoglobin vs. beta-m-
alpha, oxyhemoglobin vs. gamma-m-alpha, deoxyhemoglobin
vs. beta-m-alpha, and deoxyhemoglobin vs. gamma-m-alpha.
Then, for each combination, we performed 106 permutations
of CSS values across subjects to establish a confidence interval.
Finally, the resulting p-values were corrected using the false
discovery rate (FDR) method for six multiple comparisons.

Results

Connectivity-based prediction of
performance

A detailed description of the neurofeedback performance is
reported in Trambaiolli et al. (2018). In the current study, we
only considered the performance in trials with real feedback
from the original experiment. The included sample presents
different levels of neurofeedback literacy, ranging from 0 to
100% of accuracy, with a median ± standard-deviation of
70.00 ± 24.18%, The performance prediction combining the
CCS values from both modalities (four features) and the SVR
showed a mean absolute error (MAE) of 19.68 ± 15.65%; a
scatterplot of the observed vs. predicted performances is shown
in Figure 3.

Multimodal connectivity profiles

Figure 4 shows ring graphs with the edges selected at
least once during the LOSO iterations of the connectivity-
based predictive model, as well as matrices with averaged
edge strengths. fNIRS oxyhemoglobin (Figure 4A) data
showed a total of 82 unique edges selected, with a balanced
number of edges in each hemisphere (20 in the left, 22 in
the right, and 40 inter-hemispheric). The deoxyhemoglobin
connectome (Figure 4B) had a total of 33 edges, with
a higher concentration in the left hemisphere (Scheeringa
et al., 2008) than in the right one (Trambaiolli et al.,
2021a), and 18 inter-hemispheric connections. From the
EEG data, both beta-m-alpha (Figure 4C) and gamma-m-
alpha (Figure 4D) had two edges selected each. Beta-m-alpha
edges were both inter-hemispheric, while the gamma-m-alpha
connectome had one edge in the right hemisphere and one
inter-hemispheric connection.

Figure 5 presents the distribution of participants according
to different combinations of CSS values. Intra-modality CSS
pairs showed a positive correlation for both fNIRS (Figure 5A)
and EEG (Figure 5B) combinations, but only EEG-based CSS
values showed a significant correlation (r = 0.767, p < 0.001).
Inter-modality pairs showed a negative correlation in all
combinations (Figures 5C–F), with a significant correlation
between the fNIRS oxyhemoglobin and the EEG gamma-m-
alpha features (r = −0.456, p = 0.030).

Discussion

In this study we evaluated if simultaneous EEG and fNIRS
recordings during a pre-task resting condition would provide
information about subsequent neurofeedback performance and
present convergent connectivity profiles. This approach revealed
good prediction accuracy and a significant correlation between
the CSS values from EEG gamma-m-alpha modulation band
and fNIRS oxyhemoglobin concentration. Moreover, both pre-
task resting-state matrices presented similar clusters of intra and
inter-hemispheric functional connections.

Our results are consistent with a recent trend of
investigations for neurofeedback performance predictors
(Alkoby et al., 2018; Weber et al., 2020). Previously, resting-
state functional connectivity showed a good prediction of
performance, or outcomes, in neurofeedback or brain-computer
interface tasks when calculated using fMRI (Scheinost et al.,
2014), EEG (Zhang et al., 2013, 2015; Lee et al., 2020), or fNIRS
data (Trambaiolli et al., 2018) individually. Complementary
to region-specific or psychophysiological predictors (Weber
et al., 2020), connectivity-based predictors provide network-
wide information about the neural mechanisms involved
in the control of the proposed protocol. These could
include information about resting-state networks involved
in preparation for the neurofeedback training or those specific
to the task (e.g., emotion processing networks for affective
neurofeedback or motor control network for motor imagery
neurofeedback). However, although the combination of
hemodynamics and electrophysiological measures is becoming
a common approach for the development of neurofeedback
protocols (Perronnet et al., 2017), this is the first time that they
are combined as a neurofeedback performance predictor. Thus,
we present an innovative perspective for future experiments
aiming to understand the neural basis of neurofeedback success.

Importantly, new EEG and fNIRS equipment are portable
and allow quick setup when using dry and active electrodes
(Lopez-Gordo et al., 2014) or modular multimodal sensors (von
Lühmann et al., 2016). Thus, these imaging modalities are ideal
for naturalistic neurofeedback implementations (Trambaiolli
et al., 2021b). Moreover, the proposed pipeline is simple and
has low computational cost. These characteristics make the
proposed protocol a promising tool for real-world applications.
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FIGURE 4

Averaged connectivity matrices showing the strength of the selected edges, and ring graphs describing the binary connections resulting from
these edges for (A) oxyhemoglobin, (B) deoxyhemoglobin, (C) beta-m-alpha, (D) gamma-m-alpha. For connectivity matrices, hotter colors
represent strong connectivity, while white squares represent connections removed by the correlation-based mask. For ring graphs, each black
line represents a binary connection between two areas.
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FIGURE 5

Scatter plots illustrating participants (dots) distribution according to (A) CSS from fNIRS oxyhemoglobin and deoxyhemoglobin, (B) CSS from
EEG beta -m-alpha and gamma-m-alpha, (C) CSS from fNIRS oxyhemoglobin and EEG beta-m-alpha, (D) CSS from fNIRS oxyhemoglobin and
EEG gamma-m-alpha, (E) CSS from fNIRS deoxyhemoglobin and EEG beta-m-alpha, and (F) CSS from fNIRS deoxyhemoglobin and EEG
gamma-m-alpha. Red line represents the trend.

For instance, affective neurofeedback shows encouraging
results in treating depression (Trambaiolli et al., 2021a). This
connectivity-based predictor could be used in the future to
select personalized treatments, identifying patients who would
potentially benefit from affective neurofeedback and those who
would benefit from other treatment options.

Regarding intra-modality CSS correlations, it is notable
that both pairs of modalities presented a positive correlation
between features. The significant result between EEG-based
features can be explained by the fact that both EEG-AM
frequencies are modulated by the same modulation band. The
EEG-AM analysis consists of the spectral characterization of
the temporal changes of the instantaneous amplitude of the
EEG signals. Thus, it provides information on the second-order
periodicities (sometimes referred to as “hidden periodicities”),
i.e., modulation frequencies, which are present in the EEG
signals (Cassani and Falk, 2018). These frequency interactions
have a fundamental importance in neural communication since
this conjunction creates different neural signatures with the
integration of activity across different temporal and spatial
scales (Canolty and Knight, 2010; Hyafil et al., 2015). On the

other hand, the non-significant result between fNIRS-based
CSS might be related to the difference in the number of
edges selected for each concentration. Also, oxyhemoglobin
and deoxyhemoglobin concentrations present a high negative
correlation (Cui et al., 2010), and the functional connectivity
analysis resulting from these measures might present different
distributions over the scalp (Sasai et al., 2011).

The oxyhemoglobin and deoxyhemoglobin time series are
spatially and temporally correlated with the superficial fMRI-
BOLD signal (Strangman et al., 2002; Huppert et al., 2006;
Toronov et al., 2007; Cui et al., 2011; Sato et al., 2013). They
show similar connectivity results to those measured by regional
fMRI signals close to the fNIRS channels (Sasai et al., 2012).
Thus, convergence between fNIRS and EEG-based connectivity
profiles is expected for features related to neurovascular
coupling phenomena (i.e., the local hemodynamic changes
driven by regional neural activity) (Shibasaki, 2008). For
example, EEG and BOLD-related functional connectivity are
related to similar phenotypes (Nentwich et al., 2020), and
share mutual information (Keinänen et al., 2018; Wirsich
et al., 2020). Also, previous studies show that different
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characteristics of the EEG alpha band (i.e., spectral peak,
power, latency, etc.) present a negative relationship with
the BOLD signal (Goldman et al., 2002; Laufs et al., 2003;
Gonçalves et al., 2006; Horovitz et al., 2008; Jann et al.,
2009, 2010; Britz et al., 2010) and BOLD-based functional
connectivity (Scheeringa et al., 2012; Chang et al., 2013). On
the other hand, EEG gamma frequencies positively correlate
with the BOLD signal (Lachaux et al., 2007; Scheeringa
et al., 2011), while local field potential gamma frequencies
are predictors of the BOLD fluctuation (Niessing et al., 2005;
Nir et al., 2007; Viswanathan and Freeman, 2007; Goense
and Logothetis, 2008). The opposite relationship between
alpha and gamma with BOLD suggests different roles from
both frequencies in the brain communication (Scheeringa
and Fries, 2019). In fact, the alpha rhythm is described
as an active inhibitor that modulates task-irrelevant brain
regions (Jensen and Mazaheri, 2010; Zumer et al., 2014),
while the gamma cycle reflects the alternation of excitability
in groups of neurons to respond to new inputs (Ni et al.,
2016). In the context of our pre-task resting-state connectome
modeling, both rhythms may be constantly integrated into
a transitional loop of inhibitory-excitatory processes while
the participant gets ready to perform the neurofeedback
task. For example, the gamma-alpha interaction was already
described in human neuroimaging, mainly over sensory areas
(Osipova et al., 2008; Voytek et al., 2010; Spaak et al., 2012;
Bonnefond and Jensen, 2015). This interaction is suggested as
a combination of the alpha function while filtering sensory
incomes with the gamma role in the active processing
information (Bonnefond and Jensen, 2015).

In both modalities, we see a predominance of inter-
hemispheric connections selected as relevant edges. Although
not linearly dependent nor perfectly spatiotemporally
correspondent (Chiarelli et al., 2017), source estimation
of EEG and fNIRS signals showed a significant level of
corresponding sensitivity to gray matter activity between
co-localized channels (Giacometti and Diamond, 2014), which
may explain this multimodal consistency. Additionally, prior
studies exploring comparable characteristics in fNIRS-EEG
recordings reported that the variation of oxyhemoglobin
and deoxyhemoglobin concentrations show intra- and inter-
areal temporal coupling with the power peaks in EEG alpha
frequencies at rest (Koch et al., 2008; Pfurtscheller et al., 2012;
Keles et al., 2016), the component amplitude of visually evoked
potentials (Obrig et al., 2002), and the whole-head alpha
band connectivity during hypercapnia (Babiloni et al., 2014).
Also, epidural fNIRS and electrophysiological recordings in
anesthetized macaque monkeys reported a temporal correlation
between the vascular and neural modulation peaks (Zaidi
et al., 2015). These phenomena might be the foundation for
the correlated trends between fNIRS and EEG CSS values and
the similar predominance of inter-hemispheric connections in
both modalities.

Our study presents some limitations which should
be considered when interpreting our results. First, fNIRS
signals may also encompass peripheral changes [e.g., skin
impedance, muscular and cranial blood flow, among others
(Nishitani and Shinohara, 2013)]. Although this was not
controlled in our design, future studies should consider using
short-separation channels to filter systemic hemodynamic
fluctuations from non-neural sources (Gagnon et al.,
2014; Brigadoi and Cooper, 2015). Similarly, for the EEG
connectivity measure, methods for volume conduction
correction could be explored to avoid signal leakage (Brookes
et al., 2012). Given the wide range of methods to infer
functional connectivity, future studies could also evaluate
other approaches for connectivity analysis, such as those
estimating directional, non-linear, or frequency-domain
interactions (Bastos and Schoffelen, 2016). Future studies
should also explore the possibility of feeding the regressor
model directly with the selected multimodal features instead
of summarizing them into CSS values. For this, penalized
regression methods, such as ridge regression, could be used
(Gao et al., 2019).

Another important point is that our experimental
design focused on positioning detectors over the frontal
cortex. Thus, relevant brain structures to the resting-state
networks, such as the cingulate cortex and the precuneus
for the default mode network (Raichle et al., 2001), or
the insular cortex, basal ganglia, and amygdala for the
salience network (Seeley et al., 2007), are not covered here.
However, to the best of our knowledge, there is no pair
of electro-hemodynamic modalities capable of recording
simultaneously some of these deep brain structures. Other
sensor configurations would also be relevant for neurofeedback
or BCI task of interest. For instance, central regions could
be relevant when predicting the performance of motor
imagery protocols (Hwang et al., 2009) and parietal regions
for attention-based experiments (Bagherzadeh et al., 2020).
Future studies using EEG-fNIRS modalities could also
explore whole-brain connectivity using evenly distributed
electrodes to evaluate the role of multiple brain regions as
performance predictors.

Conclusion

This paper provided preliminary evidence of the feasibility
of multimodal predictors of neurofeedback performance and
demonstrated the convergence of resting-state functional
connectomes across modalities. Considering the portability
and simplicity of EEG and fNIRS modalities, this type
of result is promising for a wide range of applications
which might be benefited from resting-state connectivity
analysis, such as the diagnosis or prediction of treatment
effectiveness in neurological and psychiatric disorders. Also, our
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results suggest the combined use of fNIRS and EEG methods in
the investigation and description of the neurovascular coupling
phenomena in network neuroscience.
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