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High-frequency oscillations (HFO) are a promising biomarker for the

identification of epileptogenic tissue. While HFO rates have been shown to

predict seizure outcome, it is not yet clear whether their morphological

features might improve this prediction. We validated HFO rates against seizure

outcome and delineated the distribution of HFO morphological features.

We collected stereo-EEG recordings from 20 patients (231 electrodes;

1,943 contacts). We computed HFO rates (the co-occurrence of ripples

and fast ripples) through a validated automated detector during non-

rapid eye movement sleep. Applying machine learning, we delineated HFO

morphological features within and outside epileptogenic tissue across mesial

temporal lobe (MTL) and Neocortex. HFO rates predicted seizure outcome

with 85% accuracy, 79% specificity, 100% sensitivity, 100% negative predictive

value, and 67% positive predictive value. The analysis of HFO features

showed larger amplitude in the epileptogenic tissue, similar morphology

for epileptogenic HFO in MTL and Neocortex, and larger amplitude for

physiological HFO in MTL. We confirmed HFO rates as a reliable biomarker

for epilepsy surgery and characterized the potential clinical relevance of

HFO morphological features. Our results support the prospective use of

HFO in epilepsy surgery and contribute to the anatomical mapping of

HFO morphology.
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Introduction

High-frequency oscillations (HFO), also known as ripples
(80–250 Hz) and fast ripples (FR, 250–500 Hz) have been
associated with the epileptogenic area, required for the
generation of epileptic seizures (Bragin et al., 1999; Rosenow
and Lüders, 2001; Jiruska and Bragin, 2011), as well as the
seizure onset zone, the area where the seizure is firstly observed
(SOZ, Jirsch et al., 2006; Crépon et al., 2010; Jacobs et al., 2012).
Retrospective group studies validated that the resection of tissue
with high rates of FR and, to a lesser extent, ripples correlated
with good seizure outcome (Jacobs et al., 2010; Cho et al., 2014;
Kerber et al., 2014; Okanishi et al., 2014; van Klink et al., 2014).

However, prospective studies targeting the prediction in
individual patients reported mixed results. While HFO could
correctly predict seizure outcome in intraoperative (van’t
Klooster et al., 2015) and pre-operative recordings (Fedele et al.,
2017; Dimakopoulos et al., 2021), a multicenter study showed
low predictive power of HFO with limited improvement in
standard surgical planning (Jacobs et al., 2018). Moreover, the
analysis of a large patients’ cohort highlighted high variability
of HFO spatial distribution even during the same night (Gliske
et al., 2018). Therefore, the suitability of HFO for clinical
application is still under debate.

These conflicting results might be partially addressed to
methodological differences in the HFO detection pipeline
(Fedele et al., 2019). First, the data selection should follow the
same criteria across studies. To date, non-rapid eye movement
(NREM) sleep data provided higher rates for both ripples and
FR than REM sleep or wakefulness (Staba et al., 2004; Bagshaw
et al., 2009; Sakuraba et al., 2016; Klimes et al., 2019; Cserpan
et al., 2021) and longer periods of NREM sleep significantly
improved the prognostic value of FR rates (Nevalainen et al.,
2020). Second, it is necessary to apply automated detectors
of HFO prospectively validated against seizure outcome on
different datasets (Zelmann et al., 2012; Fedele et al., 2017; Boran
et al., 2019a,b, 2021; Dimakopoulos et al., 2021). Following these
recommendations, we applied a successfully validated detector
(Fedele et al., 2017, HFO as the co-occurrence of ripple and
FR) on NREM sleep recordings in a newly collected dataset,
characterized by extensive coverage of mesial temporal lobe
(MTL) and Neocortex.

While HFO rates are the main information considered in
the delineation of the epileptogenic tissue (Chen et al., 2021),
ripples and FR are also present in the non-epileptogenic tissue
(Engel et al., 2009; Frauscher et al., 2018). However, it is still
unclear how to correctly classify epileptogenic HFO (Nagasawa
et al., 2012; Frauscher et al., 2018). One possible approach is
to examine HFO morphological features, such as amplitude,
duration, and spectral frequency (Chen et al., 2021). When
comparing HFO events detected in the epileptogenic vs. non-
epileptogenic tissues, ripples showed larger amplitude, longer
duration and lower frequency (von Ellenrieder et al., 2016,

Charupanit et al., 2020), FR consistently showed larger
amplitude but either shorter (Pail et al., 2017) or longer duration
(von Ellenrieder et al., 2016) in the MTL, while neocortical HFO
detected in the full spectral range showed either larger (Guragain
et al., 2018) or lower amplitude (Alkawadri et al., 2014). In
this study, rather than focusing on the statistical evaluation
of the individual HFO morphological feature, we considered
their multivariate information. Therefore, we applied a machine
learning approach targeting single event classification (Sciaraffa
et al., 2020; Segato et al., 2020) across all available electrode
contacts and, separately, in MTL and Neocortex (Weiss et al.,
2019).

Overall, this study aims to prospectively validate the HFO
rates (the co-occurrence of ripple and FR) as a predictor
of seizure outcome in a newly collected dataset, following
specific recommendations for HFO detection. Moreover, we
report on the retrospective delineation of the distribution
of HFO morphological features in epileptogenic and non-
epileptogenic tissues across all contacts and, separately, in
MTL and Neocortex.

Materials and methods

Cohort

We prospectively considered consecutive patients with
drug-resistant epilepsy who underwent invasive EEG recordings
and resective or thermocoagulation surgery at National Medical
and Surgical Center named after N.I. Pirogov (Moscow, Russia)
between January 2017 and June 2021, with a follow-up period
of at least 1 year. Seizure outcomes were classified according to
the International League Against Epilepsy (ILAE). The surgical
plan was independent from HFO analysis. We applied the
following exclusion criteria: absence of NREM sleep, vagus
nerve stimulation and corpus callosotomy as seizure treatment.
All patients gave written informed consent. The study was
approved by National Medical and Surgical Center named after
N.I. Pirogov Ethics Committee.

Recording techniques

For each patient, at least seven depth stereo-EEG electrodes
(electrodes: mean = 11.6, SD = 3.3, range = 7–19; contacts:
mean = 97.8, SD = 22.9, range = 53.0–128.0) were implanted
to delineate the SOZ. We used post-implantation T1 or T2
MRI to anatomically localize each electrode contact through a
semi-automated procedure (Stolk et al., 2018). Our anatomical
mapping was confirmed by the surgeon (N.P.). Stereo-EEG
data were acquired at a sampling frequency of either 2000
or 2048 Hz on multiple acquisition systems: Natus (Natus
Medical Incorporated, CA, USA), EBNeuro (Galileo, Firenze,
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Italy), and MicroMed (MicroMed, Veneto, Italy). The three
acquisition systems featured comparable noise level in the
high frequency domain (Supplementary Figure 1). To identify
intervals of NREM sleep for HFO detection, for each electrode,
we considered the EEG signal from the contact closer to the
scalp located in the neocortex (Reed et al., 2017). For all patients,
we identified from four to 14 intervals of 5-min of NREM sleep.
After excluding noisy contacts (mean = 16.5, SD = 10.0), the
mean number of contacts per patient was 81.7 (SD = 24.2).
We derived the bipolar montage along consecutive contacts for
further analysis.

Detection of ripples and fast ripples

To detect ripples and FR, we applied an automated detector
(Fedele et al., 2017), which was clinically validated in previous
studies (Fedele et al., 2017; Boran et al., 2019a,b, 2021; Cserpan
et al., 2021; Dimakopoulos et al., 2021). The automated detector
consists of two stages. In the first stage, events of interest
exceeding an amplitude threshold defining the background
activity were identified in the frequency range of ripples
and FR. The amplitude threshold was computed from the
cumulative distribution of the amplitude envelope of time
segments exhibiting high Stockwell entropy (low probability of
sustained oscillations). In the second stage, events of interest
were tested against morphologic criteria in both ripple and
FR ranges. Ripples with peak amplitude exceeding 30 µV and
FR with peak amplitude exceeding 20 µV were rejected as
artifacts. Similarly, a duration threshold of 150 ms was used
for ripples; 50 ms was used for FR. We verified that our HFO
detector provides events minimally overlapping with epileptic
spikes. Details of the overlap between spikes and HFO events
are reported in the Supplementary Material (Supplementary
Table 1).

Test-retest reliability of high-frequency
oscillations rate

In line with Fedele et al. (2017), we estimated the test-
retest reliability of HFO rate over several 5-min NREM intervals
within each. For each interval, we obtained the HFO rate
spatial distribution as a vector, whose dimension is the number
of bipolar channels. For all interval pairs, we obtained a
distribution of the normalized scalar product across HFO rate.
To test the magnitude of the true scalar product against chance,
we constructed a distribution of scalar products by randomly
permuting (N = 5000) the order of channels for each interval.
The true value of the scalar product was considered statistically
significant if it exceeded the 97.5 percentile of the distribution.
We calculated the mean value of a scalar product expressing the
test-retest reliability across all patients.

Validation of high-frequency
oscillations rate against seizure
outcomes

For each patient, we obtained a spatial distribution
of HFO rates across all available bipolar channels. We
identified the HFO area as the ensemble of channels with
at least one event per minute and exceeding the 95%-
threshold of the HFO rate distribution (for different choices
of the threshold percentile see Supplementary Figure 2).
To evaluate the predictive power of the HFO rates, we
considered a clinical case presenting seizure recurrence as
positive (if seizure free as negative), and a correct prediction
as true (an incorrect prediction as false). Thus, in line
with previous studies (van’t Klooster et al., 2015; Fedele
et al., 2017; Boran et al., 2019a,b; Dimakopoulos et al.,
2021), we defined four categories of patients to quantify the
predictive power of HFO rates against seizure outcome: true
positive (TP) indicated non-resected or partly resected HFO
areas in patients with poor outcome (ILAE = 2–6); false
positive (FP) – non-resected or partly resected HFO areas
in patients with good outcome (ILAE = 1); true negative
(TN) – fully resected HFO areas in patients with good
outcome; false negative (FN) – fully resected HFO areas
in patients with poor outcome. We calculated the positive
predictive value (PPV) = TP/(TP + FP); negative predictive
value (NPV) = TN/(TN + FN); sensitivity = TP/(TP + FN);
specificity = TN/(TN + FP); accuracy = (TP + TN)/N, with N
being the number of patients.

Extraction of high-frequency
oscillations morphological features

To characterize HFO morphological features, we extracted
the amplitude as the peak-to-peak voltage in ripples (Am-
ripples) and FR (Am-FR), the central frequency as the inverse
of the averaged interpeak distance in ripples (Fr-ripples) and FR
(Fr-FR), and the duration as the difference between onset and
offset of the HFO event (D-HFO).

Evaluation of high-frequency
oscillations morphological features

We applied Random forest (RF) classifiers to quantify the
differences in HFO features between the epileptogenic and non-
epileptogenic tissues across all contacts and, separately, in MTL
and Neocortex. Following Guragain et al. (2018), we considered
the hippocampus, parahippocampal gyrus, and amygdala as
MTL, whereas the lateral temporal lobe and frontal, parietal, and
occipital lobes as Neocortex. Similarly, we applied RF classifiers
to quantify the differences in HFO features between MTL
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and Neocortex, separately, inside the epileptogenic and non-
epileptogenic tissues. A RF classifier is an ensemble of decision
trees, each of which trains on an individual bootstrap sample of
the data using randomly chosen features at each decision node
of a tree (Breiman, 2001; Liaw and Wiener, 2002). We built
all RF classifiers using the package “scikit-learn” in Python 3.9
(Pedregosa et al., 2011). HFO features data and code for the RF
classifiers are available online.1

Dataset of high-frequency oscillations
morphological features

We divided HFO events into two classes. In Class-1 we
included the HFO events detected in resected HFO areas in TN
patients; in Class-2 we included the HFO events detected in non-
resected areas in TN patients. Therefore, Class-1 corresponded
to the epileptogenic tissue and Class-2 to the non-epileptogenic
tissue, consistently with the surgical outcome. In each class of
each patient, we removed outliers through an Isolation Forest
approach (Liu et al., 2008). Every HFO feature was z-scored
with mean and standard deviation computed across all events
available in the full set of TN patients. We applied Mood’s
median test to verify whether HFO features were separable
between the classes considering electrode contacts across all
contacts, in MTL and Neocortex (von Ellenrieder et al., 2016).
Similarly, we applied Mood’s median test to verify whether HFO
features were different between MTL and Neocortex, separately,
inside each of both classes. Due to multiple testing for all
classes, we adjusted the level of significance for 25 Mood’s
median tests (α = 0.05/25 = 0.002). We did not consider the
HFO events in TP, FP, and FN patients because we cannot be
conclusive about their epileptogenicity. Thus, we retrospectively
characterized differences in HFO morphological features of
TN patients between the epileptogenic and non-epileptogenic
tissues across all contacts, MTL and Neocortex.

Cross-validation procedure
We built our RF classifiers on the population of available

events without distinguishing across different patients.
Following previous studies (Jrad et al., 2017; Sciaraffa et al.,
2020), we evaluated all RF classifiers through nested cross-
validation (CV), which consisted of fivefold inner and outer
CV loops (Krstajic et al., 2014). This approach allows us to
randomly divide the dataset into folds with the same number
of events in both classes across all iterations. For comparison,
we also applied leave-one-patient-out CV (see Supplementary
Tables 4, 5).

For each RF classifier, within each fold of the inner CV
loop, we applied a Grid search algorithm to find the optimal
number of decision trees and nodes in each tree, bootstrap
samples, and randomly chosen features at each node. These
values further were used to train a RF classifier within each

1 https://github.com/vkarpychev/Morphological-features-of-HFO

fold of the outer CV loop. We balanced the number of
HFO events during training by the Synthetic Minority Over-
sampling Technique (SMOTE) approach (Batista et al., 2004)
using the package “imbalanced-learn” (Lemaître et al., 2017).
We quantified the performance of each RF classifier computing
the area under the receiver operating characteristic curve (AUC)
and the importance of each feature using the mean decrease in
the Gini index (Nembrini et al., 2018).

Results

Cohort

The patient cohort included 20 patients (10 females; age:
mean = 34.4, SD = 10.2, range = 19–69 years; follow-up period:
mean = 29.3, SD = 11.2, range = 13–45 months). Fourteen
patients had temporal lobe epilepsy, 12 with mesial and two
patients with lateral temporal lobe epilepsy. Among six patients
with extratemporal lobe epilepsy, two had SOZ in the temporo-
parietal area, two in the frontal lobe, one in the parietal lobe,
and one in the insular lobe. Seizure freedom was achieved
in 14 patients (ILAE = 1). Table 1 summarizes the clinical
characteristics of the patient cohort.

High-frequency oscillations detection
and test-retest reliability of
high-frequency oscillations

We applied HFO detection to the patient cohort during
NREM sleep and assessed the stability of the HFO spatial
profile across time. The weighted mean test-retest reliability
across all patients was 86.9% (SD = 9.3%, range = 65.8–97.7%)
over the NREM sleep intervals (duration: mean = 44.3 min,
SD = 18.5 min, range = 20–95 min). Thus, the spatial profile of
the HFO rate was stable in our study. In Table 1, we report the
level of test-retest reliability for all patients.

High-frequency oscillations rate
predicted seizure outcome

We describe our analysis workflow for the delineation
of the HFO area in Figure 1 in one representative patient.
Figure 1C shows the HFO rate spatial distribution, with resected
channels marked in red and channels included in the HFO area
highlighted in green. In this case, the HFO area was included
in the resected area, which correctly predicted seizure freedom.
Therefore, we classified this patient as TN. Additionally, we
provided examples of HFO rate prediction against seizure
outcome specifying stereo-EEG implantation scheme and
signals at seizure onset in the Supplementary Material for TN
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TABLE 1 Patients’ clinical characteristics.

ID Age,
gender

Pre-operative
MRI/

Pathology

Epilepsy,
SOZ

Surgery,
RA

Intervals,
min

Test-retest
reliability

[SD],%

HFO area
[Res/NRes]

Outcome
(ILAE)

Status
HFO rate

Follow-up
period,
months

1 28, F MRI-negative
FCD-IIb; L–FL

ETLE,
L–FL

FRS,
L–FL

25 82.6 [9.1] L–HC, FL
[NRes]

3 TP 45

2 36, F CA; R–PL
FCD-IIIc; R–TL

MTLE,
R–HC

FRS,
R–HC, TL

50 94.8 [2.4] L–HC, R–HC
[NRes]

4 TP 44

3 26, F HS; R MTLE,
R–HC

FRS,
R–HC, TL

45 81.7 [14.6] R–HC, TL
[Res]

1 TN 44

4 44, F MRI-negative
FCD-IIa; L–TL

MTLE,
L–HC

FRS,
L–HC, TL

30 90.1 [6.4] L–HC
[Res]

1 TN 43

5 33, F HS; R MTLE,
R–HC

FRS,
R–HC, TL

20 96.8 [1.7] R–HC
[Res]

1 TN 40

6 27, M MRI-negative
FCD-IIa; R–TL

ETLE,
R–Insula

FRS,
R–Insula, TL

60 74.5 [15.6] R–HC, TL
[Nres]

3 TP 40

7 30, F Gliosis; L–TL
FCD-IIIb; L–TL

ETLE,
L–TL, PL

FRS,
L–TL, PL

70 95.9 [2.2] L–HC
[Nres]

5 TP 38

8 30, M HS; L MTLE,
L–HC

FRS,
L–HC, TL

70 94.4 [6.5] L–HC, PL
[Nres]

1 FP 33

9 35, M FCD-IIa; R–TL MTLE,
R–HC

FRS,
R–HC, TL

50 68.2 [21.7] R–HC
[Res]

1 TN 31

10 44, M MRI-negative
HS; L

MTLE,
L–H, Am

FRS,
L–HC, Am, TL

40 81.1 [12.3] L–HC, Am
[Res]

1 TN 30

11 32, F PNH; R–OL MTLE,
R–HC

FRS,
R–HC, TL

35 96.4 [2.6] R–HC, OL
[NRes]

1 FP 30

12 37, M MEC; R–TL ETLE,
R–PL

FRS,
R–PL, OL

35 68.5 [10.3] L–HC
[NRes]

5 TP 28

13 39, M Gliosis; R–TL, OL, PL
FCD-IIIa; R–TL

MTLE,
R–HC

FRS,
R–HC, TL

30 73.8 [13.5] R–HC
[Res]

1 TN 23

14 39, M MEC; L–TL LTLE,
R–TL

FRS,
R–HC, TL

30 81.0 [14.8] R–HC
[Res]

1 TN 18

15 32, M Gliosis; R–TL LTLE,
R–HC, TL

RT,
R–HC, TL

30 92.9 [3.0] R–HC, TL
[Res]

1 TN 20

16 69, F HS; L, CA; L–FL MTLE,
L–HC

RT,
L–HC, TL

55 95.4 [3.6] R–HC
[Res]

1 TN 19

17 19, F DA; L–MTL ETLE,
L–TL

RT,
L–HC, TL

95 91.9 [8.0] L–HC, PL
[NRes]

3 TP 18

18 27, M MRI-negative
Gliosis; R–TL

MTLE,
R–HC

FRS,
R–HC, TL

45 82.9 [6.9] L–HC, R–HC
[NRes]

1 FP 16

19 28, M MRI-negative
HS; L

MTLE,
L–HC

RT,
L–HC, TL

30 97.7 [1.1] L–HC
[Res]

1 TN 13

20 32, F FCD-II; R–FL ETLE,
R–FL, PL

RT,
R–FL, PL

40 88.1 [6.8] R–PL
[Res]

1 TN 13

Am, amygdala; CA, cavernous angiomas; DA, developmental abnormalities; ETLE, extratemporal lobe epilepsy; FCD, focal cortical dysplasia; FL, frontal lobe; FRS, focal resection surgery;
HC, hippocampus; HS, hippocampal sclerosis; ILAE, International League Against Epilepsy; LTLE, lateral temporal lobe epilepsy; L, left; MEC, meningoencephalocele; MTLE, mesial
temporal lobe epilepsy; OL, occipital lobe; PL, parietal lobe; PNH, periventricular nodular heterotopia; R, right; RA, resected area; Res, resected; NRes, non-resected; RT, radiofrequency
thermocoagulation; SD, standard deviation; SOZ, seizure onset zone; TL, temporal lobe.

(Supplementary Figure 3) and TP (Supplementary Figure 4)
patients. In our patient cohort, we had 11 TN, 6 TP, 3 FP,
and no FN. Thus, HFO rate predicted seizure outcome with
sensitivity and NPV of 100%, specificity of 79%, PPV of 67%,
and accuracy of 85% (Table 2). Further discussion on the FP
patients is provided in section “High accuracy of high-frequency
oscillations rates for outcome prediction.”

Evaluation of high-frequency
oscillations morphological features

Given the high accuracy of HFO analysis in this dataset,
we aim to further characterize the morphology of epileptogenic

HFO. We considered as relevant morphological features the
amplitude and frequency in both ripple and FR ranges
and the duration of HFO events (section “Extraction of
high-frequency oscillations morphological features”). Next, we
compared HFO morphological features in the epileptogenic and
non-epileptogenic tissues across all contacts and, separately,
in MTL and Neocortex. We considered TN patients, where
the resection of HFO area is predictive of seizure freedom
(section “Dataset of high-frequency oscillations morphological
features”). Epileptogenic HFO (Class-1) included 5,507 events,
4,809 events in MTL, and 698 events in the Neocortex;
physiological HFO (Class-2) included 1,929 events, 1,006 events
in MTL, and 923 events in the Neocortex. Table 3 describes
the comparison between Class-1 and Class-2 for each HFO
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FIGURE 1

The analysis of Patient-3 (good outcome – TN). (A) Pre-operative T1 MRI (left) and post-operative T1 MRI (right). (B) An example of HFO, defined
as the co-occurrence of ripple and FR, highlighted in red in their respective filtered range. (C) The distribution of HFO rates across channels
(events/minute). The channels with HFO rate exceeding the 95%-threshold (black horizontal line) formed the HFO area, highlighted in green.
The channels in the resected area are marked in red. The HFO area was included in the resection which led to good outcome (TN).

feature across all contacts, in MTL and Neocortex, while Table 4
describes the comparison between MTL and Neocortex within
Class-1 and Class-2.

For all contacts, MTL and Neocortex, we observed larger
amplitude of both FR and ripples for HFO events detected in
the epileptogenic tissue and, as a minor effect, larger duration for

HFO events across all contacts and MTL and higher frequency
of FR across MTL in the non-epileptogenic tissue.

For the epileptogenic tissue, we observed larger duration
for HFO events detected in MTL. Interestingly, no difference
was observed in amplitude across MTL and Neocortex in the
epileptogenic tissue. In non-epileptogenic tissue, we observed
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TABLE 2 HFO prediction of seizure outcome.

Definition HFO rate

Specificity [CI], % TN/(TN + FP) 79 [49 95]

Sensitivity [CI], % TP/(TP + FN) 100 [54 100]

Negative Predictive Value (NPV) [CI], % TN/(TN + FN) 100 [72 100]

Positive Predictive Value (PPV) [CI], % TP/(TP + FP) 67 [30 93]

Accuracy [CI], % (TN + TP)/N 85 [62 97]

CI, confidence interval; FN, false negative; FP, false positive; HFO rate, rates of the co-
occurrence of ripple and FR; N, number of patients; TN, true negative; TP, true positive.

larger amplitude of both FR and ripples, and duration for HFO
events detected in MTL. Figure 2 provides features distribution
of HFO events across all contacts, separately, in MTL and
Neocortex.

Cross-validation procedure
We evaluated the suitability of HFO morphological features

for the classification of HFO events as epileptogenic or not
across all contacts and, separately, in MTL and Neocortex
(section “Cross-validation procedure”). The CV performed on
the RF classifier led to a mean AUC of 83.8% (SD = 1.2%) for all
contacts, 79.6% (SD = 0.8%) for MTL, and 86.5% (SD = 0.4%)
for the Neocortex. Therefore, HFO morphological features differ
between epileptogenic and non-epileptogenic tissues. Figure 3
shows the feature importance provided by the RF classifiers
across all contacts, in MTL and Neocortex. For all RF classifiers,
the amplitude of FR showed the most discriminant power,
followed by the amplitude of ripples in Neocortex. Details
on feature importance are reported in the Supplementary
Material (Supplementary Table 2). The same analysis with
leave-one-patient-out CV led to qualitatively similar results (see
Supplementary Tables 4, 5).

Additionally, we evaluated the suitability of HFO
morphological features for the classification of HFO
events between MTL and Neocortex, separately, inside the
epileptogenic and non-epileptogenic tissues. The CV performed

on the RF classifier led to a mean AUC of 64.2% (SD = 1.0%)
for the epileptogenic tissue, 75.7% (SD = 2.3%) for the non-
epileptogenic tissue. Thus, epileptogenic HFO have similar
morphology in MTL and Neocortex. Figure 4 shows the feature
importance of the RF classifiers inside the epileptogenic and
non-epileptogenic tissues. While in the epileptogenic tissue all
HFO features showed approximately the same discriminant
power, in the non-epileptogenic tissue the amplitude of FR and
ripples were more prominent. Details on feature importance
are reported in the Supplementary Material (Supplementary
Table 3).

Discussion

In this study, we prospectively validated HFO rates (the
co-occurrence of ripples and FR) as a reliable biomarker for
epilepsy surgery outcome. Our analysis followed specific
recommendations for a standardized HFO detection
pipeline (Fedele et al., 2019) in a newly collected dataset.
Moreover, through a machine learning approach, we delineated
the distribution of HFO morphological features between
epileptogenic and non-epileptogenic tissues across all contacts
and, separately, in MTL and Neocortex.

High accuracy of high-frequency
oscillations rates for outcome
prediction

High-frequency oscillations rates predicted seizure outcome
in the newly collected dataset at the individual patient level with
high accuracy. This resulted from the combination of optimal
data selection and the usage of a validated HFO detector. Data
were selected from long intervals of NREM sleep and provided
a stable spatial profile of HFO rates, confirming NREM as an
appropriate choice for standardized HFO detection (Nevalainen
et al., 2020), even if REM sleep is not yet fully explored

TABLE 3 Results of Mood’s median test comparing HFO features between Class-1 and Class-2 across all contacts, in MTL and Neocortex.

All contacts MTL Neocortex

Class-1 Class-2 χ 2
(1,7436) Class-1 Class-2 χ 2

(1,5815) Class-1 Class-2 χ 2
(1,1621)

Mdn [IQR] Mdn [IQR] Mdn [IQR] Mdn [IQR] Mdn [IQR] Mdn [IQR]

Am-FR 15.2 [9.9] 8.5 [4.9] 1233.6* 15.3 [9.7] 9.6 [4.7] 575.3* 14.3 [11.6] 7.1 [4.7] 419.7*

Am-ripples 37.8 [22.9] 27.6 [25.1] 241.2* 37.8 [22.6] 33.8 [23.6] 26.3* 37.8 [25.4] 19.4 [20.0] 233.2*

Fr-FR 375.5 [20.6] 376.8 [18.6] 9.3 375.7 [20.5] 377.6 [17.3] 12.1* 373.7 [20.9] 375.7 [19.5] 3.7

Fr-ripples 167.6 [19.9] 168.1 [18.2] 1.2 167.6 [19.4 167.6 [18.0] 0 167.9 [22.7] 169.1 [19.0] 0.6

D-HFO 70.5 [39.6] 75.0 [50.1] 18.9* 71.3 [39.6] 80.1 [50.8] 39.6* 63.7 [38.9] 68.5 [46.9] 6.39

Am-FR, amplitude of FR; Am-ripples, amplitude of ripples; D-HFO, duration of the co-occurrence of ripple and FR; Fr-FR, frequency of FR; Fr-ripples, frequency of ripples; IQR,
interquartile range; Mdn, median; MTL, mesial temporal lobe.
*Difference significant at α = 0.002 Bonferroni corrected.
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TABLE 4 Results of Mood’s median test comparing HFO features
between MTL and Neocortex inside Class-1 and Class-2.

Class-1 Class-2

χ 2
(1,5507) P-value χ 2

(1,1929) P-value

Am-FR 7.1 0.008 200.3 < 0.001*

Am-ripples 0 1.0 177.8 < 0.001*

Fr-FR 4.8 0.03 6.4 0.01

Fr-ripples 0.1 0.70 2.6 0.11

D-HFO 20.3 < 0.001* 27.2 < 0.001*

Am-FR, amplitude of FR; Am-ripples, amplitude of ripples; D-HFO, duration of the co-
occurrence of ripple and FR; Fr-FR, frequency of FR; Fr-ripples, frequency of ripples.
*Difference significant at α = 0.002 Bonferroni corrected.

(Frauscher and Gotman, 2019). We used an HFO detector
adopted in previous studies (Fedele et al., 2017; Boran et al.,
2019a,b, 2021; Cserpan et al., 2021; Dimakopoulos et al., 2021),
and provided further validation of its usability in the clinical
settings with this dataset.

We observed high consistency of HFO analysis with surgical
planning in cases with good outcome, which led to high
specificity. We correctly predicted good outcomes in 11/14
patients (TN). We had three FP, Patients-8, 11, and 18 (Table 1).
In Patient-8 and 11, HFO detected in the precuneus and
occipital lobe, respectively, were not resected, while the surgery
provided seizure freedom (FP). Importantly, Frauscher et al.
(2018) showed during NREM sleep the presence of physiological
ripples and FR in the medial parietal lobe due to cognitive
processing (Khodagholy et al., 2017; Aleman-Zapata et al.,
2020) and, to a large extent, in the occipital lobe. Patient-11
was affected by a periventricular nodular heterotopia (PNH)
in the unresected HFO area. Previous studies on HFO in
PNH reported high ripple rates (Ferrari-Marinho et al., 2015)
not distinguishable from healthy tissue (Pizzo et al., 2017).
Therefore, HFO rates alone might not be sufficient for the
correct delineation of the epileptogenic tissue in PNH cases.
In Patient-18, HFO were detected in both hippocampi, but the
resection of the right hippocampus only led to seizure freedom
(FP). This is in line with previous studies, that reported the
presence of HFO in both hippocampi during the NREM sleep
(Staba et al., 2002) and no distinction between the epileptogenic
and non-epileptogenic tissues based on HFO rates (Pail et al.,
2020).

High PPV mirrors the accurate prediction of poor outcomes
in 6/6 patients (TP). Two of them (Patient-1 and 6) were MRI
negative with SOZ in the neocortical regions. In both cases,
the HFO area pointed to the left hippocampus. HFO in the
left hippocampus can reflect the link between epileptogenesis
and HFO appearance, which is not necessarily coincident with
seizures manifestation (Bragin et al., 2004; Jiruska and Bragin,
2011; Engel and Pitkänen, 2020). Patient-7 had SOZ proximal to
gliosis in the lateral temporal lobe (Table 1), while we identified

HFO areas in the left hippocampus. This emphasizes that the
resection of structural abnormalities does not necessarily lead
to good outcomes (Bonilha and Keller, 2015). For Patient-12,
the resection of the parietal lobe that did not cover MEC in
the temporal lobe caused seizure recurrence. Given that MEC
is strongly associated to seizure freedom (Panov et al., 2016),
the HFO area found in the MTL near MEC represented further
confirmation of epileptogenic tissue. Patient-2 and 17 had SOZ
overlapping with the HFO area but extended over eloquent
areas. The surgical plan aimed to improve the patient’s condition
keeping the eloquent cortex intact.

Interestingly, we did not observe clinical cases with poor
outcomes, which were not predicted by the HFO analysis (FN)
possibly because of the extensive coverage of the stereo-EEG
implantation in our study, which resulted in high sensitivity
and NPV. Taken together, the accuracy in outcome prediction
based on the HFO rates was 85% in this dataset, which
supports the consideration of HFO to improve the quality of
surgical planning.

High-frequency oscillations
morphological features

Given our prospective definition of HFO as the co-
occurrence of ripples and FR, we detected highly epileptogenic
HFO and studied the distribution of HFO morphological
features in both ranges separately. Our multivariate approach
highlighted that epileptogenic HFO are characterized by larger
amplitude in both ripple and FR ranges. Our findings are
consistent with previous studies reporting larger amplitude for
ripples (von Ellenrieder et al., 2016; Pail et al., 2017; Guragain
et al., 2018) and FR (von Ellenrieder et al., 2016; Pail et al., 2017)
events in SOZ. Additionally, given the regional specificity of
HFO morphology (Frauscher et al., 2018; Weiss et al., 2019), our
results showed the delineation between the epileptogenic and
non-epileptogenic tissues based on high amplitude ripples more
relevant in Neocortex than in MTL. Importantly, we considered
here HFO recorded from resected tissue in patients with good
outcome, which strengthens our belief that these HFO events
delineated the epileptogenic tissue.

Our data did not show prominent differences in the
variability of HFO morphology between MTL and Neocortex
inside the epileptogenic tissue. This homogeneity of HFO
morphological features across anatomical regions supports
the generalizability of HFO detection pipelines. Therefore,
ripple amplitudes are similar across MTL and Neocortex,
but at the same time, ripples are distinct in Neocortex
between the epileptogenic and non-epileptogenic tissues.
To the best of our knowledge, this is the first report on the
characterization of HFO morphology in the epileptogenic
tissue, separately, for both ripple and FR ranges. When
looking at physiological HFO detected outside of the
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FIGURE 2

Distributions of HFO morphological features. ∗Difference significant at α < 0.002 Bonferroni corrected. Am-FR, amplitude of FR; Am-ripples,
amplitude of ripples; D-HFO, duration of the co-occurrence of ripple and FR; Fr-FR, frequency of FR; Fr-ripples, frequency of ripples; MTL,
mesial temporal lobe.

resected areas, we observed a larger amplitude in both
ripple and FR ranges in MTL than Neocortex. This
corroborates previous findings (Guragain et al., 2018),
providing evidence for a common trend in both ripple and FR
ranges.

In a broader view, the implementation of machine learning
approaches in clinical neurophysiology is constantly increasing

(Cimbalnik et al., 2018, 2019; Weiss et al., 2019; Segato et al.,
2020). In this context, mapping HFO morphological features
might potentially contribute toward the usage of HFO in the
clinical settings (Jacobs and Zijlmans, 2020). In particular, the
application of machine learning in multicenter studies might
benefit the prognostic value of HFO in the development of
epilepsy (Reid et al., 2016), the reliability of HFO to predict the
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FIGURE 3

Feature importance across all contacts (A), in MTL (B), and Neocortex (C). Am-FR, amplitude of FR; Am-ripples, amplitude of ripples; D-HFO,
duration of the co-occurrence of ripple and FR; Fr-FR, frequency of FR; Fr-ripples, frequency of ripples; MTL, mesial temporal lobe.

FIGURE 4

Feature importance inside the epileptogenic (A), non-epileptogenic (B) tissues. Am-FR, amplitude of FR; Am-ripples, amplitude of ripples;
D-HFO, duration of the co-occurrence of ripple and FR; Fr-FR, frequency of FR; Fr-ripples, frequency of ripples; MTL, mesial temporal lobe.

occurrence of seizures (Malinowska et al., 2015), and to mirror
disease severity (Boran et al., 2019a).

Limitations

We acknowledge some limitations in our study. First,
the cohort included a limited number of patients, which
restricted the variety of the clinical cases in our study. This
is partially compensated for by the extensive anatomical
coverage provided by the stereo-EEG, which did not affect
the specificity of our approach. Importantly, a high number
of electrode contacts in the individual patient ensures a
more stable estimation of the HFO rate threshold needed to
delineate the HFO area. We believe that our pipeline needs
further validation in a larger cohort based on the promising
results obtained on this dense spatial sampling. Second, our

study design dichotomizes between cases with fully resected
and partially or unresected epileptogenic tissues as good and
poor outcomes. Therefore, we are not considering the post-
surgical improvement in ILAE = 2–4 poor outcomes, even
when HFO were partially resected. Third, while all HFO were
detected with the same criteria, we cannot assume that all
HFO outside the resection were epileptogenic, as this could
be unequivocally proved only by a second resection. Fourth,
while we established an association between the HFO area and
the epileptogenic tissue, the extension of the latter remains
unknown. However, the location of the HFO area remains
a reliable indicator of which contacts demonstrate interictal
epileptogenic activity. Fifth, HFO morphological features might
differ among anatomical regions inside MTL and Neocortex.
A larger dataset, possibly obtained by a multicenter study,
might permit a more detailed anatomical mapping of HFO
morphological features.
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Conclusion

In conclusion, we prospectively validated the predictive
value of HFO rates against seizure outcome. Following previous
recommendations on HFO analysis (Fedele et al., 2019), we
obtained an accuracy of 85% in a newly collected dataset. Next,
we showed that HFO morphological features in HFO events
predictive of good outcome are stable across brain regions, while
HFO amplitude tends to be larger in the epileptogenic tissue in
both MTL and Neocortex. We believe that a multicenter study
with uniform and standardized data processing might support
the generalization of our findings.
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