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Augmented reality-based brain–computer interface (AR–BCI) has a low

signal-to-noise ratio (SNR) and high real-time requirements. Classical

machine learning algorithms that improve the recognition accuracy through

multiple averaging significantly affect the information transfer rate (ITR) of

the AR–SSVEP system. In this study, a fast recognition method based on

a separable convolutional neural network (SepCNN) was developed for an

AR-based P300 component (AR–P300). SepCNN achieved single extraction

of AR–P300 features and improved the recognition speed. A nine-target

AR–P300 single-stimulus paradigm was designed to be administered with

AR holographic glasses to verify the effectiveness of SepCNN. Compared

with four classical algorithms, SepCNN significantly improved the average

target recognition accuracy (81.1%) and information transmission rate (57.90

bits/min) of AR–P300 single extraction. SepCNN with single extraction also

attained better results than classical algorithms with multiple averaging.

KEYWORDS

convolutional neural network (CNN), augmented reality (AR), brain-computer
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Introduction

The study of the brain–computer interface (BCI) currently centers on brain–
computer interaction (Xu et al., 2021). Augmented reality (AR) can be used to enhance
brain–computer interaction, and in the future, the integration of AR wearable devices
and BCI will be possible. AR-based steady-state visual evoked potential (SSVEP) BCI
is receiving increased attention from researchers (Lenhardt and Ritter, 2010; Kerous
and Liarokapis, 2017; Si-Mohammed et al., 2018; Zhao et al., 2021). However, compared
with a computer screen (CS) (Lenhardt and Ritter, 2010) or a virtual reality (VR) device
(Rohani and Puthusserypady, 2015), the quality of AR stimuli superimposed on real
scenes is susceptible to environmental influences, making target recognition difficult.
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Algorithms such as linear discriminant analysis (LDA)
(Bostanov, 2004) and support vector machine (SVM) (Kaper
et al., 2004) are often used for the identification of AR–BCI.
Mohammed et al. designed an AR–SSVEP paradigm for
controlling robots. The accuracy rate of LDA was 82% under
a stimulus lasting 7 s (Si-Mohammed et al., 2018). However,
longer stimulation times reduce system classification speed.
In the following study (Zhao et al., 2021), the AR–SSVEP
stimulation time was shortened to 1 s using a deep learning
algorithm, which significantly improved the information
transfer rate (ITR) of the AR–SSVEP system, and the accuracy
was still reasonable at 80%. Compared with the SSVEP, the
P300-based BCI (P300–BCI) has a large command set (Jin et al.,
2012) and induces little visual fatigue (Farwell and Donchin,
1988; Sellers and Donchin, 2006; Nijboer et al., 2008). The
combination of AR and P300–BCI may have the potential to
significantly improve the degrees of freedom and practicability
of AR–BCI.

Kouji et al. designed a four-target AR–P300 single-stimulus
paradigm to control home appliances, and the recognition
accuracy of the LDA algorithm was 82.7% after 15 averages
(Kouji et al., 2011). Ahn et al. designed a seven-target P300
single-stimulus paradigm for drone control and conducted
experiments in VR and AR environments. The recognition
accuracy of the LDA algorithm after 20 averages reached
90.88% in the VR environment and 88.53% in the AR
environment (Kim et al., 2021). Although the LDA algorithms
developed in these two studies achieved good recognition
accuracies, the use of multiple averaging seriously reduced their
classification speed.

Deep learning algorithms are expected to improve the
performance of AR–P300 single extraction. Cecotti et al. used
a convolutional neural network (CNN) consisting of two
convolutional layers and a fully connected layer to recognize
the P300 oddball paradigm for the first time (Cecotti and
Graser, 2011). Manor and Geva proposed an architecture
including three convolutional layers and two fully connected
layers for classification in Rapid Serial Visual Presentation
(RSVP), and the area under the curve (AUC) in single
extraction was 0.77 (Manor and Geva, 2015). Inspired by
separable convolution (Chollet, 2017), Lawhern et al. proposed a
compact CNN architecture consisting of a standard convolution
layer, a separable convolution layer, and a fully connected
layer, achieving an AUC of 0.92 in single extraction in the
P300 oddball paradigm (Lawhern et al., 2018). Subsequent
studies gradually reduced the model complexity and proposed
a simpler single-layer CNN structure (Shan et al., 2018;
Alvarado-González et al., 2021). The deep learning algorithm
has achieved good performance in the classification of CS–
P300. Whether a neural network can be designed to effectively
extract AR–P300 features with a single extraction in order
to construct a fast AR–BCI system remains to be studied.
In this study, a fast recognition method for AR–P300 was

developed based on a separable convolutional neural network
(SepCNN).

The layout of the paper is as follows. In section
“Materials and methods,” the experiments, the methods
used for data preprocessing, and the structure of SepCNN
are described. In section “Comparison of single extraction
results obtained by SepCNN and classical algorithms,” the
recognition results of SepCNN and classical algorithms
for AR–P300 single extraction are presented to verify the
effectiveness of SepCNN. Section “Comparison results
of SepCNN in single extraction and classic algorithm
in multiple averaging” compares SepCNN with classical
algorithms to further verify the performance advantages
of SepCNN. Section “Discussion” discusses the influencing
factors of SepCNN and the performance difference from
standard CNN.

Materials and methods

Participants and experimental
environment

Fifteen healthy participants (two females, 13 males; aged
23 ± 2.6 years) with normal or corrected vision volunteered
to participate in the experiment. All participants read and
signed informed consent forms before the experiment. Each
participant had to perform the same experiment in both an AR
environment, via HoloLens glasses (see Figure 1A), and a CS
environment, via a CS display (see Figure 1B). The hardware
parameters of the CS and HoloLens glasses are provided in
Table 1. Electroencephalogram (EEG) signals were recorded in
a quiet, dark room to reduce interference from strong light.
EEGs were recorded at a 1,000-Hz sampling rate from 32
electrodes placed at the standard positions of the international
10–20 system. Figure 2 shows the locations of all electrodes,
with the ground wire in yellow and the reference electrode
in blue. A Neuracle amplifier was used for amplification and
analog-to-digital conversion of the EEG signals. Its details were
shown in Table 2. The impedance of all electrodes was less than
10 k�. The CS-P300 and AR-P300 were scheduled for the first
and second day respectively to avoid excessive fatigue of the
participants. Before the start of both experiments, participants
were asked to complete two or more pre-experiments to
understand the experimental process and adapt to the BCI.

Experimental setup

The AR–P300 stimulation interface was designed using the
HelmetSceneGraph (HSG) AR rendering engine independently
developed by our laboratory and presented on HoloLens
(resolution 1,280 × 720, refresh rate 60 Hz), with a transparent
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FIGURE 1

Experimental environment in panels (A) AR–P300 and (B) CS–P300.

background. The size of each stimulus image (a common object)
was 120 × 120 pixels, the interface was 1,280 × 720 pixels,
and the visual distance was 2 m, as shown in Figure 3A. The
CS–P300 visual stimuli were presented on a 27-inch monitor
(resolution 1,920 × 1,080, refresh rate 60 Hz), the visual
stimulation interface was achieved through the MATLAB +
Psychtoolbox with a black background, and the visual distance
was 1 m, as shown in Figure 3B.

The stimulation method was the same for AR–P300 and
CS–P300 (see Figure 4), and each participant had to perform
10 identical runs in each experimental environment. Each run
contained nine different blocks corresponding to nine different
stimuli. Each block contained five repeated trials. In a trial,
2 s was used for preparation and 1.5 s was used for target
lock. Next, nine stimuli flashed once in random order. Existing
studies have shown that a shorter inter-stimulus interval (ISI)
can produce higher classification accuracy and ITR (Sellers et al.,
2006). We referred to this study and setted an ISI of 175 ms to
ensure that the classification results and ITR of each algorithm
were close to optimal. As a result, for each flash, the duration
was 100 ms and the interval was 75 ms. In each run, the
participants were asked to follow the hints to focus on nine
target stimuli from top to bottom and left to right, and only one
stimulus was focused per block. Due to the different preparation

TABLE 1 Hardware parameters of HoloLens and
personal computer (PC).

Environment CPU GPU Memory
(RAM)

AR Intel Atom
x5–Z8100 @

1.04 GHz

– 2 GB

PC Intel Core
i5–7500 @ 3.40

GHz

Quadro K2200
(4 GB)

16 GB

times for the two experiments, the total durations of the AR–
P300 and CS–P300 experiments were about 40 and 30 min,
respectively. In the AR-BCI experiment, participants tended to
rest longer because of the Hololens squeeze on the forehead
and neck. In addition, most participants took longer to initiate
the experimental procedure because of the unskilled control of
the Hololens.

Preprocessing

Electroencephalograms of channels A1 and A2 were deleted,
and the reference electrode was REF near Cz (see Figure 2).
A bandpass filter with cut-off frequencies of 0.1 and 12 Hz
was applied to the EEGs. Each trial generated nine epochs for
analysis, as shown in Figure 5. The algorithms had to intercept
an epoch of 600 ms after each flash for analysis. Therefore,
when the last stimulus started flashing, the experiment ended in
600 ms instead of 175 m. Each participant generated target and
non-target stimulus data sets, which contained 450 and 3,600
data points, respectively, in one experimental environment.
The dimension of each data point is 600 × 30 (where the
dimensions are expressed as data length× number of channels)
and downsampled to 200 × 30 to input SepCNN and classical
machine learning algorithms.

Traditional recognition method

Traditional algorithms were implemented in MatLab.
We chose four classical methods as baselines. LDA projects
EEGs from a high-dimensional space to a low-dimensional
space and classifies samples by learning an optimal hyperplane
(Guger et al., 2009). Bayesian linear discriminant analysis
(BLDA) is an extension of LDA and prevents the overfitting
of high-dimensional EEG data through regularization
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FIGURE 2

Locations of all electrodes.

(Hoffmann et al., 2008). SVM transforms the EEG into a
high-dimensional space through nonlinear mapping and
maximizes the inter-class distance by constructing a hyperplane
to improve recognition accuracy (Vapnik, 1998). The linear
kernel was used for the SVM kernel function in this paper and
the hyper-parameter C was 1. Stepwise linear discriminant
analysis (SWLDA) reduces data dimensionality by optimizing
EEG local features and comprehensively tests the current and
previous EEG feature variables to retain the significant features
that can indicate the sample (Krusienski et al., 2006). In this
paper, the maximum p-value was 0.1 for predictors to add, the
minimum p-value was 0.15 for predictors to remove, and the
maximum number of steps to perform was 60.

Separable convolutional neural
network and standard convolutional
neural network

The neural network was implemented by Python and
PyTorch. Figure 6 shows the architecture of the SepCNN
model for P300 target recognition. Table 3 details the model
parameters for the participant-independent training (within-
participant). The standard CNN structure was used for
further comparison with SepCNN. In this manuscript, for
the within-participant training, the standard CNN consisted
of a normalization layer, a one-dimensional (1D) standard

TABLE 2 Details of electroencephalogram (EEG) amplifier.

Item Detail

Company Name Neuracle

Company Address Changzhou City, Jiangsu
Province, China

Product Name NeuSen W series wireless
EEG acquisition system

convolutional layer, a Tanh layer, a fully connected layer and a
sigmoid layer. In a standard convolution layer, each input was
convolved with all convolution kernels separately, which was
similar to the pointwise convolution (see Figure 6). For a fair
comparison, the hyperparameter settings of standard CNN were
almost the same as those of SepCNN. The hyperparameter of
a 1D standard convolutional layer included InChannels (30),
OutChannels (4), Size (10), Stride (6), and Padding (4).

Unlike standard convolution, separable convolution
processes the channel and time dimensions separately via
depthwise convolution and pointwise convolution. The number
of depthwise convolution kernels is equal to the number of
channels. Each kernel processes each channel independently
to learn channel features in different time dimensions. The
operation of pointwise convolution is similar to that of
standard convolution, but the kernel size has to be one.
Pointwise convolution effectively extracts the features of
different channels in the same time dimension through the
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FIGURE 3

Distribution of P300 stimuli in panels (A) AR–P300 and (B) CS–P300.

FIGURE 4

Stimulation method.

FIGURE 5

Electroencephalogram (EEG) division of AR–P300.
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FIGURE 6

Separable convolutional neural network (SepCNN) structure. H1 is the length of the input data, Nc is the number of channels, h is the size of the
depthwise convolution kernel, H2 is the input data length of the second layer, and n is the number of pointwise convolutions.

weighted combination of the input feature map in the channel
dimension. Therefore, pointwise convolution increases the
number of non-linear layers without significantly increasing
the parameters, thereby expanding the possibilities of the
model. In the AR-P300, due to the different adaptability of the
participants to the binocular AR environment, there were large
differences in their visual perception and EEG. Therefore, a
normalization layer was added before depthwise and pointwise
convolutional layer to concentrate the sample features, which
can reduce the adverse effects of abnormal samples. A tanh
activation function is used in front of the fully connected
layer to enhance the feature difference between target and
non-target stimuli. Finally, the sigmoid activation function is
used to predict the probability of a stimulus being the target
stimulus.

In addition, single-layer one-dimensional (1D) separable
convolution requires fewer parameters than standard 1D
convolution, and its computational cost is expressed as follows:

CSep = h × (H1−h+1) +n ×
(
H1−h+1

)
The computational cost of a single-layer standard 1D

convolution is expressed as follows:

C = n × h ×
(
H1−h+1

)
The parameter ratio of separable to standard convolution

computational costs can be expressed as:

CSep

C
=

1
n
+

1
h

Compared with the model of Lawhern et al. (2018), SepCNN
had a simpler structure. In addition, SepCNN used a single-
layer separable convolutional, which theoretically required less
computation than the single-layer standard CNN of Shan
et al. (2018). Compared with the CNN proposed by Alvarado-
González et al. (2021), SepCNN added more normalization
layers for better AR-P300 classification performance.

In this manuscript, SepCNN and standard CNN were used
to classify target and non-target stimulus data, which was a
binary classification. Next, target stimuli were localized in nine

TABLE 3 Separable convolutional neural network (SepCNN)
architecture for within-participant recognition.

Layer Kernel Size Options Output

Input 200× 30

BatchNorm1D 200× 30

DepthConv1D 30 10 Stride = 6, Padding = 4 34× 30

BatchNorm1D 34× 30

PointConv1D 4 1 Stride = 1, Padding = 0 34× 4

Activation Tanh 34× 4

Flatten 136

Activation Sigmoid 1

data points generated from one trial to identify the user-selected
target, which resulted in nine classification outcomes.

Results

Comparison of single extraction results
obtained by separable convolutional
neural network and classical
algorithms

The binary classification AUC of SepCNN in AR–
P300 single extraction was 0.971, which indicated a good
classification performance. In total, nine binary classification
results were required to predict one target. The performance
of SepCNN in practical applications could not be directly
represented by the AUC. The average recognition accuracies
of nine targets had to be calculated. Figure 7 shows the
within-participant recognition results of all algorithms after
five-fold cross-validation. In general, the area between
the upper and lower quartiles of SepCNN was higher
than that of other methods, indicating that SepCNN had
a better recognition performance in single extraction.
The overall average accuracy of SepCNN was 81.1%, and
participant 6 reached 100% accuracy in run10. The descending
order of the classification effects of the five methods was
SepCNN > LDA > SVM > BLDA > SWLDA.
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FIGURE 7

Recognition accuracies of AR–P300 for all participants with different algorithms. The boxes from top to bottom represent the upper quartile
(Q1), median (Q2), and lower quartile (Q3), respectively. The values for the upper and lower whiskers are Q1 + 1.5 × (Q1–Q3) and
Q3–1.5 × (Q1–Q3), respectively.

FIGURE 8

Recognition accuracies of two participants (A,B) (participants 4 and 14) with different algorithms.

Figure 8, which presents the recognition accuracies of
participants 4 and 14 with different algorithms, shows that
SepCNN outperformed other algorithms in most cases.

Table 4 displays the detailed recognition results of
SepCNN on AR–P300 offline data. The recognition accuracy
of run1 was the highest, and the accuracy decreased as
the number of runs increased. The above results were
consistent with the reported feelings of the participants.
Different degrees of discomfort were expressed by all 15
participants while wearing the Hololens throughout the 40-
min experiment. Participant 15 experienced double vision
due to their inability to distinguish the depth difference
between the stimulus and the background, which led to the
lowest recognition accuracy. Even so, the average recognition
accuracy of SepCNN in single extraction was 81.1%, which
indicated that SepCNN is effective for the single extraction of
AR–P300 features.

Comparison results of separable
convolutional neural network in single
extraction and classic algorithm in
multiple averaging

The single extraction was defined as classification using EEG
data of only once trial. Figure 9 compares the recognition (see
Figure 9A) and ITR (see Figure 9B) results of SepCNN with
single extraction and the four classical algorithms with single
extraction and multiple averaging. The results of the paired
t-test for the recognition accuracy showed that, with single
extraction, SepCNN had an extremely significant improvement
compared with all classical algorithms [LDA: 76.34% (p< 0.001,
t = 4.72), SVM: 68.58% (p < 0.001, t = 7.91), BLDA:
53.23% (p < 0.001, t = 14.55), SWLDA: 50.62% (p < 0.001,
t = 18.44)]. When the classical algorithms were averaged twice,
SepCNN still had an extremely significant improvement in
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TABLE 4 Results of AR–P300 recognition in SepCNN.

Participant Accuracy per run (%)

1 2 3 4 5 6 7 8 9 10 Mean

P1 91.11 84.44 97.78 97.78 95.56 93.33 86.66 95.55 75.55 86.66 90.44

P2 95.56 93.33 88.89 86.67 95.56 77.78 88.89 88.89 55.56 86.67 85.78

P3 88.89 88.89 95.56 77.78 66.67 97.78 86.67 88.89 93.33 88.89 87.34

P4 77.78 88.89 77.78 64.44 77.77 75.56 71.11 66.67 93.33 48.89 74.22

P5 82.22 84.44 80.00 86.67 88.89 91.11 86.67 82.22 97.78 82.22 86.22

P6 82.22 93.33 71.11 88.89 68.89 77.78 86.67 93.33 71.11 100.0 83.33

P7 82.22 95.56 93.33 91.11 86.67 97.78 95.56 97.78 84.44 97.78 93.33

P8 91.11 95.56 64.44 75.56 95.56 93.33 80.00 86.67 86.67 93.33 86.22

P9 82.22 75.56 71.11 73.33 84.44 88.89 62.22 95.56 86.67 88.89 80.89

P10 88.89 91.11 84.44 75.56 91.11 51.11 86.67 84.44 84.44 68.89 80.67

P11 91.11 75.56 91.11 95.56 80.00 71.11 82.22 82.22 73.33 66.67 80.89

P12 55.56 66.67 80.00 46.67 62.22 71.11 82.22 68.89 62.22 71.11 66.67

P13 80.00 62.22 60.00 77.78 73.33 75.56 75.56 77.78 93.33 60.00 73.56

P14 88.89 64.44 93.33 82.22 75.56 93.33 86.67 66.67 93.33 91.11 83.56

P15 66.67 60.00 55.56 64.44 84.44 60.00 55.56 48.89 66.67 71.11 63.33

Mean 82.97 81.37 80.29 78.97 81.79 81.04 80.91 81.64 81.18 80.15 81.10

accuracy (p < 0.001) compared with SVM [69.85% (t = 7.29)],
BLDA [56.22% (t = 12.74)], and SWLDA [50% (t = 17.32)],
but it did not have a significant improvement (p > 0.05)
compared with LDA [79.2% (t = 1.20)]. When the classical
algorithms were averaged three times, the recognition accuracy
of SepCNN was significantly low (p < 0.001) compared with
LDA [93.93% (t = −11.60)] and SVM [86.96% (t = −4.38)],
high compared with BLDA [75.04% (t = −3.14)], and
extremely significantly high compared with SWLDA [72.59%
(t = 5.00)].

Increasing the number of times of averaging did not improve
the ITR of the classical algorithms. The paired t-test results
showed that the ITR (57.90 bits/min) of SepCNN was extremely
significantly higher than other classical algorithms for different
numbers of averaging. When the average number of times was
one, the t-test results were as follows: LDA (p < 0.001, t = 4.38),
SVM (p < 0.001, t = 9.94), BLDA (p < 0.001, t = 18.80),
SWLDA (p < 0.001, t = 21.25). In the AR–P300 paradigm, the
system response time was divided into stimulation time, wireless
transmission delay, and data interception delay.

When the classical algorithms were averaged more than
twice, the advantage of SepCNN with single extraction
was no longer obvious. However, SepCNN required the
least recognition time. In summary, SepCNN has significant
advantages in the construction of a fast AR–P300 system.

Performance of separable
convolutional neural network in
different experimental environments

Figure 10A shows the comparison of the average
recognition accuracies of the single extraction of SepCNN

in CS–P300 and AR–P300. The results of the paired t-test
for the CS–P300 showed that, with single extraction, the
accuracy of SepCNN (82.24%) was significantly higher than
LDA [79.25% (p < 0.05, t = 2.30)], extremely significantly
higher than SVM [71.47% (p < 0.001, t = 7.32)], BLDA
[58.56 % (p < 0.001, t = 12.34)] and SWLDA [57.87%
(p < 0.001, t = 15.34)]. The overall accuracy of CS–
P300 was higher than that of AR–P300 because the
AR–P300 experiment had many interference factors. In
addition, the accuracy of the same algorithm in different
environments was further compared. The paired t-test
results showed that, SepCNN was not significantly different
(p > 0.05, t = 1.10), LDA (p < 0.05, t = 2.40) and SVM
(p < 0.05, t = 2.15) were significantly different, there was
an extremely significant difference in BLDA (p < 0.001,
t = 3.76) and SWLDA (p > 0.001, t = 7.10). The above
results show that, compared with the CS–P300 experiment,
SepCNN has a greater improving effect on the accuracy of
AR–P300.

A further waveform comparison of the two paradigms
indicated that there were differences in both amplitude and
delay. Figure 10B shows the waveforms at Oz in two
experimental environments, where solid and dashed lines
represent target and non-target stimuli, respectively. The
amplitude of AR–P300 was lower than that of CS–P300.
Table 5 shows the average latency of P300 for 15 participants
in both environments, AR–P300 is about 47 ms longer
than CS–P300.

In summary, the P300 amplitudes and latencies
of the two environments were significantly different
but the accuracy rates were not, indicating that the
recognition results of SepCNN may were less affected by
the experimental environment.
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FIGURE 9

(A) Recognition accuracy and (B) ITR of SepCNN with single extraction and four classical algorithms with single extraction and multiple
averaging. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 10

(A) Recognition accuracy and (B) average amplitude at Oz of all participants for CS– P300 and AR–P300. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 5 Average latency of P300 for all participants.

Participant PC (ms) AR (ms)

P1 427 478

P2 434 477

P3 437 486

P4 437 487

P5 438 483

P6 436 484

P7 435 482

P8 431 479

P9 431 481

P10 431 481

P11 433 481

P12 436 482

P13 438 485

P14 438 485

P15 436 486

Mean 434.53 482.47

Discussion

Performance influencing factors of
separable convolutional neural
network in single extraction

This study attempted to consider multiple participants at
a time (cross-participant) for training. Specifically, 80% of the
participants were used for training, and the rest were used for
testing. However, the AR–P300 average recognition result was
less than 50% after five-fold cross-validation. The reason may
be that SepCNN had poor performance in identifying AR–P300
signals with large individual differences.

Figure 11 shows the average recognition results of AR–P300
by SepCNN with different numbers of pointwise convolution
kernels. The recognition results for 1, 2, 4, 8, 16, and 32 kernels
were 74.82, 78, 81.10, 78.28, 77.97, and 78.43%, respectively.

Previous studies (Krusienski et al., 2006; Zhao et al., 2020)
showed that the recognition rate was lower for stimuli at the
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FIGURE 11

Recognition accuracies of AR–P300 for all participants with
different numbers of pointwise convolution kernels.

FIGURE 12

Recognition accuracies of AR–P300 for all participants with
different targets.

edges of AR lenses. Figure 12 shows the recognition accuracies
of AR–P300 for all participants with different targets. Target
2 had the highest recognition accuracy (82.8%), and target 7
had the lowest recognition accuracy (78.13%). This aligns with
the findings of the previous studies since target 7 was closer to
the edge of the lens than target 2. One-way ANOVA showed
that stimulus location had no significant effect on accuracy
(F(8,126) = 0.323, p > 0.05). In addition, according to paired
t-test, the recognition accuracy of target 7 was not significantly
different from the remaining eight targets (p > 0.05). This
shows that the recognition performance of SepCNN was not
significantly affected by the stimulus location in the AR–P300
paradigm.

TABLE 6 Recognition times of the two CNNs for 90 AR–P300 targets.

Environment Time for different models (ms)

CNN Sep–CNN Difference
AR 66.656 50.137 16.519

CS 11.832 10.774 1.058

Performance comparison of separable
convolutional neural network and
standard convolutional neural network
in single extraction

For AR–P300 single-experiment recognition accuracy,
SepCNN (81.1%) was higher than standard CNN (78%), but
there was no significant difference (p > 0.05, t = 1.89); standard
CNN was significantly higher than LDA algorithm [p < 0.05,
t = 2.39)], while SepCNN was extremely significantly higher
than LDA [p < 0.001, t = 4.72)]. The above results show that,
compared with the classical algorithm, the recognition accuracy
improvements of SepCNN for AR–P300 is greater than that
of standard CNN. Table 6 shows the recognition times of the
two CNNs for 90 AR–P300 targets under different computing
environments.

The recognition time gap between the two CNNs was
larger in the AR environment (16.519 ms) than in the
CS environment (1.058 ms). The reason may be that the
computing power of the AR device was inferior to that
of the CS, and the computational cost of SepCNN was
less. The above results show that both the recognition and
deployment performance of SepCNN was better than standard
CNN in single extraction in AR–P300. When the input data
or application scenarios are complex, such as the multi-
person collaboration of AR–P300, the impact of algorithm
classification delay will increase on the response speed of
the system. At this time, the advantages of SepCNN will
be more obvious.

Conclusion

This study evaluated the effectiveness of a lightweight
CNN based on separable convolutions for AR–P300 single
extraction. Compared with the classical machine learning
algorithms, SepCNN significantly improved the ITR and
recognition accuracy; compared with standard single-layer
CNN, SepCNN had low complexity and significantly improved
the computational efficiency deployed in an AR wearable
device. Although the recognition performance of SepCNN
in the simple AR–P300 was generally ideal, as the stimulus
environment becomes more complex, the non-target stimulus
and environment interfaces will increase. Moreover, the overall
performance of SepCNN will drop dramatically as the command
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set increases. In the future, we will study the performance
of deep learning algorithms in single extraction in complex
AR–P300 environments. In addition, we will try to design AR–
based P300 and SSVEP hybrid BCI to further improve the
practicability of AR–BCI.
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