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Substance use disorders (SUDs) constitute a growing global health crisis,

yet many limitations and challenges exist in SUD treatment research,

including the lack of objective brain-based markers for tracking treatment

outcomes. Electroencephalography (EEG) is a neurophysiological technique

for measuring brain activity, and although much is known about EEG

activity in acute and chronic substance use, knowledge regarding EEG in

relation to abstinence and treatment outcomes is sparse. We performed

a scoping review of longitudinal and pre-post treatment EEG studies that

explored putative changes in brain function associated with abstinence and/or

treatment in individuals with SUD. Following PRISMA guidelines, we identified

studies published between January 2000 and March 2022 from online

databases. Search keywords included EEG, addictive substances (e.g., alcohol,

cocaine, methamphetamine), and treatment related terms (e.g., abstinence,

relapse). Selected studies used EEG at least at one time point as a predictor

of abstinence or other treatment-related outcomes; or examined pre-

vs. post-SUD intervention (brain stimulation, pharmacological, behavioral)

Abbreviations: AUD, Alcohol Use Disorder; CAN, Cannabis Use Disorder; CUD, Cocaine Use

Disorder; dlPFC, Dorsolateral prefrontal cortex; EEG, Electroencephalography; ERN, Error-related

negativity; ERP, Event-related potential; fMRI, Functional magnetic resonance imaging; Hz,

Hertz; iRISA, impaired Response Inhibition and Salience Attribution; iTBS, intermittent theta

burst stimulation; LPP, Late positive potential; mA, Milliampere; MDMA, 3,4-methylenedioxy-

methamphetamine; MEG, Magnetoencephalography; MIX, Mixed, subsamples with several different

SUDs; MMN, Mismatch Negativity; MUD, Methamphetamine Use Disorder; N2, Second negative peak

in the averaged ERP waveform; NIC, Tobacco/Nicotine Use Disorder; OUD, Opioid Use Disorder;

P3, Third positive component of an event-related potential; Pe, Error positivity; rTMS, repetitive

Transcranial Magnetic Stimulation; SUD, Substance use disorders; T1, Time 1, usually first assessment;

T2, Time 2, usually second assessment; tDCS, transcranial Direct Current Stimulation.
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EEG effects. Studies were also rated on the risk of bias and quality

using validated instruments. Forty-four studies met the inclusion criteria.

More consistent findings included lower oddball P3 and higher resting

beta at baseline predicting negative outcomes, and abstinence-mediated

longitudinal decrease in cue-elicited P3 amplitude and resting beta power.

Other findings included abstinence or treatment-related changes in late

positive potential (LPP) and N2 amplitudes, as well as in delta and theta

power. Existing studies were heterogeneous and limited in terms of specific

substances of interest, brief times for follow-ups, and inconsistent or sparse

results. Encouragingly, in this limited but maturing literature, many studies

demonstrated partial associations of EEG markers with abstinence, treatment

outcomes, or pre-post treatment-effects. Studies were generally of good

quality in terms of risk of bias. More EEG studies are warranted to better

understand abstinence- or treatment-mediated neural changes or to predict

SUD treatment outcomes. Future research can benefit from prospective

large-sample cohorts and the use of standardized methods such as task

batteries. EEG markers elucidating the temporal dynamics of changes in brain

function related to abstinence and/or treatment may enable evidence-based

planning for more effective and targeted treatments, potentially pre-empting

relapse or minimizing negative lifespan effects of SUD.

KEYWORDS

EEG, substance use disorder, event-related potentials (ERP), addiction, treatment,
longitudinal, brain stimulation, recovery

Introduction

Substance use disorders (SUDs) constitute a growing
yet preventable global epidemic with staggering costs for
individuals and societies (Degenhardt et al., 2018; Rehm and
Shield, 2019; Peterson et al., 2021) and involve high propensity
for relapse (Sliedrecht et al., 2019), psychiatric comorbidities
(Bahji et al., 2019; Castillo-Carniglia et al., 2019; Hunt et al.,
2020), poor health outcomes (Degenhardt et al., 2018) and
premature mortality (Martinez et al., 2020). As with other
psychiatric disorders, SUDs are complex, arising over time from
multiple cognitive, brain, genetic, and environmental factors
whose interactions are not yet well understood (Gelernter and
Polimanti, 2021; Heilig et al., 2021; Rawls et al., 2021; Ray
and Grodin, 2021). Current models of SUD, mainly based
on functional magnetic resonance imaging (fMRI; Devoto
et al., 2020; Lin et al., 2020; Hill-Bowen et al., 2021; Klugah-
Brown et al., 2021; Le et al., 2021; Sehl et al., 2021; Tolomeo
and Yu, 2022) suggest chronic alterations in brain systems
associated with reward processing (Luijten et al., 2017), salience
attribution (Zilverstand and Goldstein, 2020), inhibitory control
(Luijten et al., 2014; Le et al., 2021) and executive function
(Quaglieri et al., 2020), which underpin disease-specific
behaviors such as craving, compulsive drug-taking, and relapse
(Zilverstand and Goldstein, 2020; Ceceli et al., 2022). However,

to date there are no established brain-based biomarkers
for precision SUD treatment monitoring and outcome
evaluation, partly because these brain systems also show
dysregulation in a range of other psychiatric disorders, making
SUD-specific biomarker development and validation difficult
(García-Gutiérrez et al., 2020; Niculescu and Le-Niculescu,
2022).

Approaches that are used for SUD treatment include
pharmacological therapeutics (Klemperer et al., 2018; Volkow,
2020) and a range of non-pharmacological interventions:
psychosocial (Dutra et al., 2008), contingency management
(Prendergast et al., 2006; De Crescenzo et al., 2018; Bolívar
et al., 2021), cognitive-behavioral therapy (Magill et al., 2019),
cognitive bias modification (Boffo et al., 2019), group therapy
(Coco et al., 2019), significant-other involvement (Ariss
and Fairbairn, 2020; Schmit et al., 2022), and mindfulness
(Cavicchioli et al., 2018; Korecki et al., 2020). More recently,
non-traditional interventions such as neuromodulation
(i.e., brain stimulation, Hauer et al., 2019; Zhang et al., 2019;
Habelt et al., 2020; Bollen et al., 2022) and psychedelics (Tofoli
and de Araujo, 2016; Romeo et al., 2021) have also received
considerable attention as potential SUD treatments. Although
the evidence of effective treatments for some SUDs is emerging,
there are relatively few established or FDA-approved SUD
treatments, which are mainly pharmacological (Volkow, 2020),
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along with problematic drug development pipelines (Negus
and Banks, 2021), lack of new treatments for alcohol (Heilig
et al., 2019) and cocaine (Brandt et al., 2021) use disorders,
and no treatments for some SUDs (e.g., methamphetamine
use disorder). Indeed, there are several challenges to effective
and widespread SUD treatment, including high rates of
dropout (Dutra et al., 2008) and relapse (Sliedrecht et al.,
2019), as well as the lack of objective assessments of treatment
efficacy and outcomes (Yücel et al., 2019). There are also
large systemic gaps in the deployment of SUD treatment
(Creedon and Cook, 2016; Rhee and Rosenheck, 2019; Mekonen
et al., 2021; Saini et al., 2022) and the implementation of
evidence-based treatments (Garner, 2009; Connery et al.,
2020; Louie et al., 2021) that limit current knowledge in
SUD research.

EEG metrics provide access to brain
dynamics

Electroencephalography (EEG) is a neurophysiological
technique for measuring brain activity, and although much
is known about EEG activity in acute (Fairbairn et al.,
2021) and chronic (Hamidovic and Wang, 2019; Liu et al.,
2022) substance use, knowledge regarding EEG activity in
relation to longitudinal abstinence and treatment outcomes
is sparse (Houston and Schlienz, 2018; Stewart et al., 2019b;
Jurado-Barba et al., 2020). However, building on over half
a century of concentrated EEG research, there is a growing
interest in applying EEG approaches for SUD treatment
research. Metrics derived from EEG have good test-retest
reliability (Tenke et al., 2017; Ip et al., 2018; Malcolm et al.,
2019; Roach et al., 2019; Vázquez-Marrufo et al., 2020;
Cofresí et al., 2022), are highly heritable (Van Beijsterveldt
and Van Baal, 2002; de Geus, 2010; Gilmore et al., 2010)
and widely used in SUD (Parvaz et al., 2011; Almeida-
Antunes et al., 2021; Zhang et al., 2021b; Liu et al., 2022),
depression (de Aguiar Neto and Rosa, 2019), schizophrenia
(Perrottelli et al., 2021), psychosis (Wang et al., 2022),
neurodegeneration (Horvath et al., 2018), and pain (Ploner
and May, 2018) research. High-quality EEG provides direct
and millisecond-level access to regional and global neural
activity (Sadaghiani et al., 2022), and indexes oscillatory
communication (i.e., connectivity) within and between networks
(Sadaghiani et al., 2022). In addition to self-report, behavioral
performance, and clinical variables, EEG metrics can aid
in detecting subtle risks or deficits (Houston and Schlienz,
2018; Jurado-Barba et al., 2020; Zhang et al., 2021b).
Moreover, EEG methods are cost-effective and deployable
outside of laboratories. With ongoing advances in technology
and hardware development, EEG is an excellent choice for more
effective and widespread integration of electrophysiological
brain imaging in clinical, at-home and epidemiological (e.g.,

prospective cohort) assessments of SUD and treatment-related
changes and outcomes.

Data extracted from EEG are usually analyzed in terms
of event-related potential (ERP), spectral or time-frequency
(oscillations/spectra; i.e., delta, theta, alpha, beta, gamma
bands), and connectivity (e.g., coherence, phase-locking, graph-
theory/networks) methods, either at the sensor (or groups of
sensors) level or in terms of estimated neural sources. Here, we
briefly overview ERP/EEG metrics to serve as a context for this
review.

ERPs

A range of well-established ERP components exist that index
specific neurocognitive processes, as reviewed in Woodman
(2010), Luck and Kappenman (2011), Hajcak et al. (2019),
Helfrich and Knight (2019), and Donoghue and Voytek
(2022). ERPs are usually elicited by visual, auditory, or other
sensory stimuli, with N and P in the ERP component’s name
denoting negative and positive deflections, respectively, and
the number reflecting their typical onset time in milliseconds
relative to the onset of a stimulus, for example, N100
(or N1), P100 (or P1), N170, N200 (or N2), P300 (or
P3), and N400. Other ERP components are named based
on the process they are known to index, for example,
mismatch negativity (MMN), error-related negativity (ERN),
error positivity (Pe), or based on their temporal onset, e.g.,
late positive potential (LPP). In general, earlier ERPs, typically
peaking before 300 ms, index earlier perceptual processing,
whereas later ERPs are considered to reflect later cognitive
and action-oriented processing (Luck and Kappenman, 2011).
However, there is considerable heterogeneity and overlap
in nomenclature for some (later) components, with some
studies referring to a positive deflection in the P300 time
windows as LPP Hajcak and Foti (2020), and others dividing
long-duration components into subcomponents (Hajcak and
Foti, 2020).

Oscillations/spectra and connectivity

Spectra [oscillations at delta (1–4 Hz), theta (4–7 Hz), alpha
(8–12 Hz), beta (14–30 Hz), gamma (>30 Hz) frequencies] are
usually analyzed in terms of resting (spontaneous) EEG or event-
related changes in response to stimuli, as reviewed in Başar
and Güntekin (2013), Herrmann et al. (2016), Karakaş and
Barry (2017), Keil and Senkowski (2018), Karakaş (2020), Başar
(2022), Cao et al. (2022), and Pavlov and Kotchoubey (2022).
Brain oscillations are critical multiplex mechanisms considered
to enact communication through coherence across distributed
brain regions (Buzsáki et al., 2013; Fries, 2015; Schneider et al.,
2021). Most frequency bands have clear spatial dominance and
neural generators. These include occipital-parietal alpha (Quinn
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et al., 2021), medio-frontal and hippocampal theta (Cavanagh
and Frank, 2014; Soltani Zangbar et al., 2020), and sensorimotor
and basal ganglia beta (Khanna and Carmena, 2015; Asadi
et al., 2022). Lower frequency bands (e.g., theta, alpha) are
generally considered to serve as integrative large-scale rhythms
(Fries, 2015), whereas work with event-related paradigms links
vision with alpha (Sadaghiani and Kleinschmidt, 2016; Clayton
et al., 2018), working memory with theta and alpha (Riddle
et al., 2020; Pavlov and Kotchoubey, 2022) and reward with
theta (Paul et al., 2020). Higher frequency bands such as
beta (Khanna and Carmena, 2015) and gamma (Buzsáki and
Wang, 2012; Başar, 2013) are usually linked to more local
(regionally specific) and temporally brief activity, as well as,
respectively, sensorimotor cognition (Engel and Fries, 2010;
Spitzer and Haegens, 2017) and percept binding (Shin and
Moore, 2019). See also van Ede et al. (2018), Schmidt et al.
(2019), Ghiani et al. (2021), and Buergers and Noppeney (2022)
for relevant reviews.

Connectivity metrics are considered critical for a better
understanding of communication between brain regions, and are
used widely across brain imaging modalities (EEG/MEG/fMRI).
With EEG, resting and event-related (i.e., time-frequency)
oscillations, as well as ERPs (Li et al., 2020), are used to study
connectivity [e.g., via coherence, phase-locking, and graph-
theory (Cao et al., 2022) between sensors, regions, or networks
(Mahjoory et al., 2017; Sion et al., 2020; Sadaghiani et al., 2022)]
to assess functional segregation and integration of brain activity.

Previous SUD-EEG reviews

The following abbreviations are used throughout this review
to specify various SUDs considered in the reviewed studies:
(AUD, Alcohol Use Disorder; CUD, Cocaine Use Disorder;
CAN, Cannabis Use Disorder; MUD, Methamphetamine Use
Disorder; NIC, Tobacco/Nicotine Use Disorder; OUD, Opioid
Use Disorder; MIX, Mixed, subsamples covering several
different SUDs). See “Abbreviations” section for details.

Reviews of SUD-EEG research published since the year
2000 have summarized findings across various SUDs (Bauer,
2001a; Kouri and Lukas, 2001; Ceballos et al., 2009; Campanella
et al., 2014; Houston and Schlienz, 2018; Stewart et al.,
2019b; Zhang et al., 2021b; Liu et al., 2022), for specific
SUDs, e.g., AUD (Hamidovic and Wang, 2019; Jurado-
Barba et al., 2020; Agarwal et al., 2021), OUD (Wang
et al., 2015; Motlagh et al., 2016; Ieong and Yuan, 2017;
Stewart et al., 2019a), for specific ERPs (Campanella et al.,
2014; Hamidovic and Wang, 2019; Fairbairn et al., 2021;
Zhang et al., 2021b), for resting EEG (Liu et al., 2022),
with an emphasis on longitudinal abstinence or treatment-
related effects (Houston and Schlienz, 2018; Stewart et al.,
2019b), and more recently, in regards to brain stimulation
(Zhang et al., 2019; Habelt et al., 2020). Although most

past EEG studies have been cross-sectional and focused on
differences between SUD vs. non-substance-using controls,
there is an emerging and much-needed set of SUD-EEG work
emphasizing longitudinal treatment- and/or abstinence-related
changes (Houston and Schlienz, 2018; Stewart et al., 2019b),
paralleled by ongoing developments in SUD-MRI research
(Moeller and Paulus, 2018; Hammond et al., 2019; Stewart
et al., 2019b; Parvaz et al., 2022). Here, we provide a brief
overview of past reviews to set a general context regarding
current knowledge.

Reviews of work prior to 2001 pointed out that existing
studies had focused mainly on AUD and indicated decreased
oddball P3 in individuals with AUD compared to non-alcohol
using controls (Bauer, 2001a; Kouri and Lukas, 2001). However,
those studies were scarce, heterogeneous, and mainly cross-
sectional (i.e., examining group differences between SUD
samples and non-substance using controls), and lacked
longitudinal within-subject assessments. Although many
procedural and methodological issues remain in the field
of SUD-EEG, meta-analyses confirm reduced and delayed
oddball P3 in AUD (Hamidovic and Wang, 2019; Fairbairn
et al., 2021) and in other SUD relative to non-using control
groups, highlighting oddball P3 as a possible endophenotype
or diagnostic biomarker for SUD. A 2021 meta-analysis
reported that, compared to non-substance using controls,
SUD samples showed higher P3 elicited by drug-related cues
(i.e., drug paraphernalia, pictures of people using the drug)
and lower N2 elicited during inhibitory control, i.e., No-Go
trials of a Go/No-Go task (Zhang et al., 2021b). The review
also noted that findings depended on SUD type, gender,
and age as well as and preliminary evidence for recovery-
related decreases in drug-cue P3 with abstinence or treatment
(Zhang et al., 2021b). A 2014 review indicated, in AUD,
decreased and delayed MMN and No-Go/oddball P3s, as
well as decreased evoked potential (P50), and for AUD
and CAN samples, decreased and delayed N400 elicited
by incongruent sentences (Campanella et al., 2014). The
authors also noted evidence for EEG-derived indicators of
normalization (No-Go and oddball P3 in AUD, CUD, and
OUD), abstinence (P50 in CUD), and recent substance use
(MMN in AUD; Campanella et al., 2014). A 2018 review
focused on several longitudinal studies and reported links to
treatment outcomes including abstinence (decreased P3 to
alcohol images in AUD), relapse (increased No-Go N170 to
alcohol images in AUD, delayed oddball N2, decreased Eriksen
flanker ERN), and treatment non-completion (decreased
P3 using oddball and cue-reactivity tasks, in AUD, CUD,
and NIC; Houston and Schlienz, 2018). A 2020 AUD-EEG
review noted incomplete evidence for reduced Go/No-
Go and oddball P3, reward (or loss) event-related theta,
face-sensitive P1/N1/N170, and cue-reactivity LPP. The
authors highlighted the paucity of evidence, except with
oddball P3, for associations between most EEG metrics and
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SUD vulnerability, severity, outcomes, and course (Jurado-
Barba et al., 2020). Similarly, another review emphasized
existing longitudinal EEG studies only provide good
evidence for P3 recovery with abstinence or treatment
(Stewart et al., 2019b).

Early reviews of resting EEG studies (Bauer, 2001a)
emphasized the nascent evidence for higher power in resting
upper beta (∼20–28 Hz) as a potential SUD marker based
on a few existing AUD and CUD studies, along with the
possibility of beta as a premorbid and heritable trait (Meyers
et al., 2017). A recent major overview (Liu et al., 2022) of
resting EEG studies noted that SUD groups, relative to non-
substance-using controls, generally showed greater power at
higher frequency bands (i.e., beta and gamma), whereas, with
abstinence, there was greater power at lower frequency bands,
i.e., delta and theta (Liu et al., 2022). Decreases in beta
(or normalization to control group levels) were consistently
associated with abstinence-related recovery in AUD, however,
the existing evidence for recovery patterns was unclear or
mixed for other frequency bands (theta, alpha) and SUDs
(Liu et al., 2022).

The current review

In this review, we focused on research articles published
in the English language with adult SUD samples that included
at least one earlier EEG assessment time-point (i.e., T1) and
at least one later assessment (i.e., T2), with or without EEG.
We excluded studies that were cross-sectional (e.g., SUD vs.
non-substance using controls at one time point), or examined
acute, withdrawal, or detoxification effects. Almost all studies
involved some type of SUD treatment (e.g., being peri or
post SUD rehabilitation, pharmacological, behavioral, or brain
stimulation treatment), however, the time between the T1 and
T2 varied considerably.

This review has both unique and overlapping features
relative to past reviews. In particular, it has overlapped with
past reviews of ERP abstinence and treatment predictors
(Houston and Schlienz, 2018; Stewart et al., 2019b), abstinence-
related resting EEG (Liu et al., 2022), and brain stimulation
(Stewart et al., 2019b; Habelt et al., 2020). However, unlike
previous reviews (Houston and Schlienz, 2018; Hamidovic
and Wang, 2019; Stewart et al., 2019b; Habelt et al., 2020;
Jurado-Barba et al., 2020; Liu et al., 2022), we emphasize
both ERP and EEG/spectra, include any SUD type, and
include studies from the last few years. Importantly, we
differ from most past reviews in not including any cross-
sectional studies, focusing only on prospective/longitudinal
and pre/post treatment studies, and including both EEG/ERP
and brain stimulation studies. Lastly, unlike most previous
reviews, we also include the risk of bias quality ratings for the
selected studies.

Methods

Study identification and selection

The present scoping review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Moher et al., 2015) for study selection (Figure 1).
Five databases (PubMed, Ebsco, Embase, Medline, and
Cochrane Central) were searched by one reviewer (AAK)
between March 14th and March 16th, 2022. Databases were
searched for articles with terms that included [(EEG) AND
(alcohol OR cocaine OR crack OR methamphetamine OR
amphetamine OR opioids OR heroin OR hallucinogens OR
MDMA OR ecstasy OR psilocybin OR ketamine OR sedative
OR tobacco OR nicotine OR cannabis OR marijuana) AND
(substance use disorder OR addiction OR dependence OR drug
abuse OR abstinence OR cessation OR treatment OR recovery
OR relapse)].

The inclusion criteria consisted of: (a) articles in English;
(b) published on or after the year 2000; (c) conducted on
adult (>18 years old) participants during an awake state;
(d) included empirical data; (e) used ERP, spectral (resting-
state) and associated techniques; (f) included a SUD sample;
and (g) included at least one earlier EEG time-point and at
least two time-points overall. We excluded: (a) studies that
focused on the acute, withdrawal, or detoxification effect of
substance use on EEG; (b) in which multiple influences could
not be separated (e.g., main emphasis on depression, or use
of a substance in the study, e.g., alcohol or cigarettes; (c)
case studies; (d) reviews; (e) conference or supplementary
reports, and (f) studies that focused on behavioral addictions
(e.g., gambling/internet addiction), pain, genetic/environmental
factors, and sleep. Although reflecting a promising possible
future SUD treatment approach, bio/neurofeedback studies
(N = 6) were excluded due to not using EEG as a Time 1 or
Time 2 dependent variable (but only for the treatment), and
standing issues in the neurofeedback research field regarding
terms of evidence sparsity, methods, and clinical validity. See
Dousset et al. (2020), Trambaiolli et al. (2021), Fernández-
Álvarez et al. (2022), and Lima et al. (2022) for recent
neurofeedback reviews.

The database search provided an initial set of 4,602 articles.
We added 16 more articles that were obtained from experts
in the field and from studies cited in previously published
review articles. After duplicates were removed manually,
3,750 articles remained that were then screened for eligibility.
Title, abstract, and full-text screening were performed by
AAK and TSB independently. Consensus on any discrepancies
was reached through subsequent group discussion, with all
authors reaching a consensus on which articles should be
included. The first screening was done by reviewing article
titles, resulting in 3,430 articles removed because of irrelevance,
and 320 articles retained. A second screening of full abstracts
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FIGURE 1

PRISMA flowchart.

led to 154 articles removed, and 166 retained. A third
screening was then conducted based on the full text of these
166 studies, and 122 articles were removed mainly because
they either did not have two time-points (starting with at
least one EEG at T1 and either EEG or any other variable
at T2) or they were cross-sectional studies between SUD
vs. non-substance using controls and/or SUD sub-classes.
Finally, the remaining 44 articles were included in the present
review.

Data extraction

Two reviewers (AAK, TSB) performed the extraction of data
from the studies. Table 1 summarizes the main details collected
per study, including author, year, SUD sample type, sample

size per group at T1 and T2, type and details (dose/session)
of treatment, EEG methods (type of EEG metric (ERP or Rest,
ERP metrics, task(s), number of channels). The main findings
were extracted by TSB and RBS. Additional information per
study is summarized in Supplementary Table 1, including
age, sex, education, ethnicity, time and abstinence details, main
criteria/interview for SUD determination, duration of use, and
usage rates.

Quality and bias assessment

Two reviewers (AAK, RBS) assessed the quality and potential
for bias of each study. Depending on the type of study being
reviewed, the most generally appropriate rating tools were
selected from the National Heart, Lung, and Blood Institute
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TABLE 1 Main summary of study characteristics.

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

STUDIES OF ABSTINENCE and TREATMENT-AS-USUAL OUTCOMES
Event-related potentials (ERPs)
Batschelet et al. (2021) AUD

LONG
T1:
AUD: 59
Controls: 20
T2:
AUD: 51
Relapse:25
Abstinent: 26
Controls: 20

Hospital inpatient
(8–12 weeks)

** 3 months ERP: N2, P3
GNG, drug cues
Channels: 64

T1: No main ERP effects distinguishing Relapse vs.
Abstinent groups at T2
T1: Trend: ↑ P3 (alcohol vs. neutral) in Relapse group
only

Other: T1: ↑ craving linked to ↑ frontal N2 (No-Go
Alcohol vs. Neutral) with anterior cingulate,
medio-frontal, inferior parietal, and temporal gyrus
sources

Campanella et al.
(2020)

AUD
LONG

T1: 40
T2: 40
T3:
Relapsed: 25
Abstinent: 15

Hospital inpatient Diazepam + craving
medication + group
therapy (4 weeks)

T3:
3 months

ERP: P3
visual oddball,
GNG, drug cues
Channels: 32

T1 to T2: Trends: ↑ P3d (No-Go, alcohol contexts) in
Abstinent group only;

Other: Trends: T1 to T2: ↓ P3d (cue-reactivity,
non-alcohol context) for Abstinent group only; ↓ P3d
(cue-reactivity, overall) for Relapse group only.

Matheus-Roth et al.
(2016)

AUD
LONG

T1:
AUD: 30
Controls: 31
T2:
Relapse: 12
No-Relapse: 11

Hospital
inpatient (at end of
treatment)

** 3 months ERP: N170, P100
GNG, drug cues
Channels: 32

T1: ↑ N170 (No-Go, alcohol cue) linked to Relapse
vs. No-Relapse: at T2

Other: ↑ P100 latency at T1 linked to ↑ depressive
symptoms at T2; ↑ Abstinence linked to ↓ depression

Petit et al. (2014) AUD
LONG

T1:
AUD: 27, Controls: 27
T2:
Relapse: 13
No-Relapse: 14

Hospital
inpatient
detox program

** 3 months ERP: N2, P3
GNG
Channels: 32

T1: ↑ P3d (No-Go vs. Go) linked to No-Relapse vs.
Relapse at T2 (also faster relapse)

Other: T1: P3d predicted Relapse above and beyond
age, family history, craving;
P3d and impulsivity together predicted Relapse;
Clinical variables did not distinguish Abstinence vs.
Relapse

Petit et al. (2015) AUD
LONG

T1:
AUD: 39
Controls: 29
T2:
Relapse: 19
No-Relapse: 20

Hospital
inpatient
Benzodiazepines

** 3 months ERP:P3
oddball, drug cues
Channels: 32

T1: No main group effect (Relapse vs. No-Relapse)

Other: Trend: T1 ↓ P3 (alcohol vs. non-alcohol cues)
in No-Relapse group only, with inferior medial and
temporal gyrus sources;
EEG best predictor of Relapse relative to craving and
depression

Marhe et al. (2013) CUD
LONG

T1:
CUD: 49
Controls: 23
T2:
Relapse: 31
No-Relapse: 18

Residential ** 3 months ERP: ERN
Eriksen flanker
Channels: 32

T1: ↓ ERN linked to ↑ use in last 30 days at T2

Other: ERN strongest predictor of cocaine use relative
to clinical variables, and ERN linked to severity and
craving

Parvaz et al. (2017) CUD
LONG

T1:
CUD: 19 Controls: 18
T2: same

Community sample ** 6 months ERP: LPP
affective/drug cues
Channels: 64

T1 to T2: ↑ LPP (Pleasant vs. Drug)

Other: T1 to T2 ↑ LPP (Pleasant vs. Drug) effect
predicted ↓ craving (from T1 to T2)
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TABLE 1 (Continued)

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

Lespine et al. (2022) NIC
LONG

T1: 120
T2:
Group 1: 44
Group 2: 41
Group 3: 35

Community sample
Cessation
interventions:
App, contingency,
health service

** 12 months ERP: N2, P3
SST, MID
Channels: 64

T1: Correct stop: ↑ left central/frontal N2 latency, ↑
fronto-lateral P3, ↓ left central and right frontal P3
Failed Stop: ↓ right central ↑ right posterior and
fronto-lateral; Linked to longer Time to Relapse
T1 to T3: Correct stop: ↓ frontopolar and left posterior
late ERP; Failed Stop: ↑ right-central P3;
Linked to longer Time to Relapse

Other: The most predictive variables of time to relapse
were psychological and emotion state variables.

Luijten et al. (2016) NIC
LONG

T1: 72
T2:
Relapse: 37
No-Relapse: 25

Community sample
Varenicline
Bupropion, Patch,
Counselling

** 12 weeks ERP: P3, LPP, N2,
ERN, Pe
cue-reactivity,
GNG, Eriksen
flanker
Channels: 34

T1: ↓ P3 ↑ N2 (GNG) linked to Relapse vs. No-Relapse
at T2

Other: Trends: P3 to smoking behavior, Pe to Relapse,
ERN to behavior;
Relapse prediction (with ERPs included) effects
stronger in female participants

Versace et al. (2012) NIC
LONG

T1/T2/T3/
T4/T5/T6:
Cluster 1: 99/70/50/
55/53/40
Cluster 2:
81/45/32/
30/28/20

Community sample
Behavioral counseling
(Bupropion or
Varenicline or placebo)

10 week
Drug trial

24 weeks ERP: LPP
affective/drug cues
Channels: 128

T1: Pattern of ↓ LPP (Pleasant cues) vs. ↑ LPP
(Pleasant cues) linked to Relapse vs. Abstinence (at
10 and 24 week only)

Other: Cluster 1: ↑ LPP (Pleasant cues); Cluster 2: ↓
LPP (Pleasant cues)

Haifeng et al. (2015) MUD
LONG

T1:
MUD: 26
Controls: 29
T2:
MUD: 24
Controls: 25
T3:
MUD: 24
Controls: 23

Compulsory
residential

Relapse prevention
education, exercise,
physical labor

T2:
3 months
T3:
6 months

ERP: P3
Stroop using
drug/neutral
words
Channels: 60

T1 to T2: ↓ left anterior P3 (drug words)
T1 to T3: ↓ left anterior P3 (drug words)

Other: ↓ P3 linked to ↓ craving at T2

Lubman et al. (2009) OUD
LONG

T1:
OUD: 33
Controls: 19
T2:
Relapse: 12
No-Relapse: 19

Methadone
Buprenorphine

Methadone:
No-Relapse: 55.2 (43.7)
Relapse: 46.7 (20.8)
mg/day
Buprenorphine:
No-Relapse: 7.3 (5.8)
Relapse: 12.5 (12.3)
mg/day

6 months (3.9–8) ERP: P3
affective/drug cues
Channels: 3

T1: ↓ startle-elicited P3 attenuation (pleasant vs. drug)
linked to ↑ recent heroin use at T2*

Other: EEG weak predictor of T2 use relative to
self-reported valence ratings of pleasant images

Anderson et al. (2011) MIX (AUD,
CUD, OUD)
LONG

T1: 35
T2:
Completers:
22
Discontinuers: 13

Residential 3 months ≥80 days* ERP: P3a
auditory
perseveration
Channels: 64

T1: ↓midline P3a linked to treatment discontinuation
at T2 [check what time in narrative]

Other: central P3a only predictor of treatment outcome
relative to other variables (age, education, severity, IQ)
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TABLE 1 (Continued)

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

Fink et al. (2016) MIX (CUD,
MUD, OUD)
LONG

T1: 123
T2:
Completers:
98
Discontinuers:
25

Incarcerated
sample
Counseling, Relapse
Prevention, Substance
Expectation Therapy

≤12 sessions ≤12 weeks* ERP: P3a, N2
GNG, visual
distractor, visual
oddball
Channels: 64

T1: ↓ P3a (oddballs) and ↑ N2 (distractors) linked to
treatment discontinuation at T2

Steele et al. (2014) MIX (CUD,
MUD, OUD)
LONG

T1: 89
T2:
Completers:
68
Discontinuers:
21

Incarcerated sample
Counseling, Relapse
Prevention, Substance
Expectation Therapy

≤12 sessions ≤12 weeks* ERP: P2, ERN/Ne,
P2, Pe
GNG
Channels: 64

T1: ↓ P2, ↓ ERN/Ne, and ↑ Pe linked to treatment
discontinuation at T2

Other: P2 and Pe strongest predictors of treatment
discontinuation relative to all clinical variables;
Principal component EEG metrics better in predicting
treatment discontinuation relative to ERPs

Wan et al. (2010) MIX (AUD,
CUD, MUD,
OUD, CAN)
LONG

T1: 44
T2:
Completers: 26
Discontinuers: 15

Residential ** ≤6 months ERP: P3
visual oddball
Channels: 64

T1: ↓ parietal P3 linked to treatment discontinuation at
T2
ERP better predictor of treatment discontinuation than
clinical variables.

Spectral studies
Januszko et al. (2021) AUD

LONG
T1: 73
T2:
Abstinent: 18
Not-Abstinent: 16

Residential ** 12 months
median
(9–14)

Rest:
EC, 300s
Channels: 64

T1: ↑ δ left dorsolateral prefrontal connectivity with left
inferior parietal lobe; right inferior frontal junction
connectivity with right anterior insula; linked to
Abstinence at T2

Other: δ inferior frontal junction connectivity with
anterior insula correlated with personality and age of
smoking onset

Saletu-Zyhlarz et al.
(2004)

AUD
LONG

T1:
AUD: 22
Controls: 22
T2:
Abstinent: 11
Relapse: 11
Controls: 22

Relapse prevention
therapy + flupentixol

10 mg injection or
placebo every 2 weeks

6 months Rest: EC, 240s
Channels: 19

T1: Absolute power: ↑ δ right frontal,
↓ α2 frontal, central, temporal, right parietal, ↓
β1 central, parietal, left frontal-temporal, ↓ β2 left
frontal-parietal. Relative power: global ↑ δ / θ;
Linked to Abstinence at T2
T2: Absolute power: ↓ frontal δ /θ ; ↑ β3 right frontal,
left temporal ; ↑ β4 right frontal, left
occipital-temporal, ↑ β5 frontal, right occipital, left
parietal; Relative power: ↓ α1 frontal-right occipital, ↑ β

global; linked to Relapse at T2

Levin et al. (2007) CUD
LONG

T1:
CUD: 20
Controls: 20*
T2: CUD: 8
T3: CUD: 6

Clinical research ward ** 34.7 (24.4; 8–77)
days

Rest: EC, 180s
Channels: 8, 16

T1 to T3: ↑ left temporal β1; ↑ right temporal δ; Trend
↑ β2

Other: Trends: ↓ left frontal delta to beta2, ↑ right
central and occipital delta with 2 weeks abstinence

Prichep et al. (2002) CUD
LONG

Cluster 1/Cluster
2/Cluster 3:
T1: 9/25/23
T2: >25 weeks:
2/20/8
T2:≤25 weeks: 7/5/15

Residential ** 25 weeks
Median

Rest: EC, 1200s
Channels: 19

T1: 3 EEG Clusters; Cluster 1: ↑ relative θ, max
posterior; ↑ relative β; Cluster 2: ↑ Absolute and
relative α; Cluster 3: ↑ Absolute α and relative β; also
occipital α and β coherence (max for Cluster 1), and
frontal α coherence (Cluster 2)

(Continued)

Fro
n

tie
rs

in
H

u
m

an
N

e
u

ro
scie

n
ce

0
9

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnhum.2022.995534
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#articles
https://www.frontiersin.org


B
e

l-B
ah

ar
e

t
al.

10
.3

3
8

9
/fn

h
u

m
.2

0
2

2
.9

9
5

5
3

4

TABLE 1 (Continued)

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

Venneman et al. (2006) CUD
LONG

T1: 25
T2:
Completers: 14
Non-Completers: 5

Hospital
inpatient and
outpatient

Selegiline
10 mg/day or placebo
for 8 weeks
Individual and Group
therapy*

8 weeks Rest: EC, 20–32 s
Channels: 19
Cordance metric

T1: Treatment completion: Cordant 85%, Discordant:
15% completion, 25% of dropouts, 50% of removed
patients

Other: Cordant Week 2, 92%, final attrition 15%,
Discordant Week 2, 83% and final attrition 100%. EEG
better predictor of treatment completion than clinical
and toxicology-screen variables

Allsop and Copeland
(2016)

CAN
LONG

T1: 10
T2: same

Community based
non-treatment seeking

Contingency program 2 weeks Rest: EC, 120
Channels: 14

T1 to T2: No effect

Other: ↑ frontal β from T1 to T2 linked to ↑ age of first
CAN use and age
β independent predictor of Abstinence relative to other
study variables

Herning et al. (2003) CAN
LONG

T1:
CAN: 29
Controls: 21
T2:
CAN: 29

Clinical research ward ** 25–27 days Rest: EC, 180
Channels: 16

T1 and T2: ↓ θ and α1

Other: Trends:↓ β1 and β2

Herning et al. (2008) CAN
LONG

T1:
CAN-short: 56
CAN-long: 19
Controls: 33
T2:
CAN-short: 42
CAN-long: 17
Controls: 33

Clinical research ward ** 1 month Rest: EC, 180s
Channels: 16

T1 and T2: ↓ posterior α2 and β2; ↓ occipital α peak,
in CAN-long group only

Other: EEG strongest predictor relative to age and
clinical variables

Bauer (2001b) MIX (AUD,
CUD, OUD,
benzodiazepines)
LONG

T1:
SUD: 107
Controls: 22
T2:
Relapse: 48
No-Relapse: 59
Controls: 22

Residential ** 6 months Rest: EC, 300s
Channels: 15

T1: ↑ relative frontal β2 linked to Relapse vs.
No-Relapse

Other: EEG strongest predictor (relative to family
history, severity); ↑ β2 in CUD/AUD relative to the
OUD/polydrug participants

TREATMENT STUDIES
Brain stimulation
da Silva et al. (2013) AUD

Pre-Post STIM
T1:
Sham: 7
Active: 6
T2:
Relapse:
Sham: 1
Active: 4
No-Relapse:
Sham: 6
Active: 2

tDCS 2 mA, 20 min
1 session per week

T2:
5 weeks
T3:
4 weeks

ERP: LPP
alcohol/neutral
cues
Channels: 32

Pre/Post: ↓ LPP (alcohol and neutral cues)

Other: ↓ Depression ↓ craving
↑frontal and orbitofrontal activity (neutral cues)
↑ frontal, orbitofrontal and dorsolateral prefrontal
cortex, and ↓ anterior cingulate activity (alcohol cues)
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TABLE 1 (Continued)

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

Del Felice et al. (2016) AUD
Pre-Post STIM

T1:
Sham: 9
Active: 8
T2: same

Hf-rTMS 10 Hz
10 min*
2 sessions per week

2 weeks Rest: EC, 300 s
Channels: 32

Pre/Post: ↓ γ

T1: β greater than δ

T2: δ greater than γ

Other: ↑ stroop and Go-No-Go scores
↓ depression/somatization/sleep symptoms
no EEG link with craving or use
positive correlation of central α and θ with
depression/somatization

Nakamura-Palacios
et al. (2012)

AUD
Pre-Post STIM

T1:
Lesch I: 16
Lesch II: 7
Lesch III: 4
Lesch IV: 12
T2: same

STIM
tDCS

1 mA
10 min
2 sessions
(1 active, 1 sham)

1 week ERP: P3
auditory
cue-reactivity
Channels: 32

Pre/Post: Lesch IV group: ↑ frontal P3 , alcohol cues; ↓
centroparietal P3, alcohol cues; opposite P3 patterns for
Lesch II

Other: ↑ frontal assessment scores for Lesch IV

Naim-Feil et al. (2022) AUD
Pre-Post
STIM

AUD: 11
Controls: 16

rTMS inhibitory paired-pulse
TMS∼30 min
1 session

1 session Stimulation-
evoked EEG
inhibition
Channels: 24

Pre/Post: Left frontal STIM target: ↑ clustering
coefficient and ↓ global/local efficiency

Other: Links between ↓mean degree and clustering in
relation to ↑ severity of past use

Conti et al. (2014) CUD (crack)
Pre-Post STIM

T1:
Sham: 6
Active: 7
T2:
Sham: 3
Active: 6
T3:
Sham: 1
Active: 5

tDCS 2 mA
20 min
5 sessions

T1:
1 session
T3:
10 days

ERP: P3
GNG, drug/
neutral cues
Channels: 32

Pre/Post T1: ↑ left P3 (neutral) ; ↓ left P3 (drug cues);
↑ right P3 (drug cues); dorsolateral prefrontal sources
Pre/Post: T1 vs. Session 5: ↓ frontal, orbitofrontal,
anterior cingulate activity (neutral cues);
↑ frontal, orbitofrontal, dorsolateral prefrontal, anterior
cingulate activity (drug cues)

Conti and
Nakamura-Palacios
(2014)

CUD (crack)
Pre-Post STIM

T1:
Sham: 6
Active: 7
T2: same

tDCS 2 mA
20 min
1 session

1 session ERP: P3
GNG, drug/
neutral cues
Channels: 32

Pre/Post: ↓ N2 (drug cues); anterior cingulate sources

Pripfl et al. (2014) NIC
Pre-Post STIM

T1 : 11
T2: same

Hf-rTMS 10 Hz
12 min
2 sessions
(1 active, 1 sham)

1 week Rest: EC, 180 s
Channels: 9

Pre/Post: ↓ δ and α; ↑ γ

Other: ↓ craving

Chen et al. (2021) MUD
Pre-Post STIM

T1:
Sham: 22 Active: 35
T2:
Sham: 19
Active: 30

rTMS 3-pulse 50-Hz bursts
( 200 s)
5 min
20 sessions
5 sessions a week

4 weeks ERP: N100
addiction stroop
Channels: 64

Pre/Post: ↓ fronto-central β

Other: Trends: ↑ N1 amplitude (methamphetamine vs.
neutral cues); N1 change* positively correlated with T2
cue-induced craving
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TABLE 1 (Continued)

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

Khajehpour et al.
(2022)

MUD
Pre-Post STIM

T1:
Sham: 20
Active: 22
T2: same

tDCS 2 mA
20 min
1 session

1 session ERP: P3, LPP
cue-reactivity
Rest: EO, 120 s
Channels: 62

Pre/Post: ↓ P3 (drug vs. neutral cues), only in
post-STIM group vs. sham

Other: STIM P3 effect linked to pre-STIM ↓
resting-state network efficiency at right superior frontal
gyrus, supplementary motor area, Heschel’s gyrus and
left medial frontal, inferior frontal, inferior occipital,
superior parietal, angular gyrus regions

Zhang et al. (2021a) MUD
Pre-Post
STIM

T1:
Sham: 20
Active: 20
T2:
Sham: 16
Active: 18

iTBS 3 50 Hz
pulse trains
4 min*
20 sessions
2 sessions a day

15 days* Rest: EC, 600 s
Channels: 128

Pre/Post: ↓ central and left central-parietal δ

Other: ↓ δ linked to treatment-related ↑ in 3-back
working memory performance
↑ working memory performance

Mostafavi et al. (2022) OUD
Pre-Post STIM

T1: 30
T2:
Group A: 10
Group B: 10
Sham: 10

tDCS 2 mA
20 min
10 sessions

10 days Rest: EC, 180 s
Channels: 19

Pre/Post: Left anode: ↓ bilateral frontal and central δ,
bilateral frontal and right-lateralized occipital-parietal
β2; Connectivity: ↑ right fronto-central and left
fronto-temporal δ, fronto-central and right
fronto-temporal β, parieto-temporal α

Pre/Post: Right anode: ↓ left occipital alpha and β/β1;
Connectivity: ↑ left frontal-parietal θ and α, ↓ right
centro-frontal δ

Nakamura-Palacios
et al. (2016)

MIX (AUD,
CUD)
Pre-Post STIM

T1:
AUD: 22
Sham: 14 Active: 8
CUD: 9
Sham: 3
Active: 6
T2: same

tDCS 2 mA
20 min
5 sessions

5–10 days* ERP: P3
Channels: 32

Pre/Post: ↑ P3 with ventromedial prefrontal sources
linked to Abstinence vs. Relapse (during and after
treatment)*

Pharmacological and behavioral treatments
Brown et al. (2020) AUD

Pre-Post BEH+
STIM

MBRP+Active: 36
MBRP+Sham: 32

STIM tDCS
MBRP

≥ 8 sessions 2–3 months ERP: LPP
drug cues
Channels: 128

Pre/Post: ↓ LPP (alcohol cues but not neutral cues)
linked to MBRP; ↑ LPP linked to STIM

Other: More MBRP sessions led to ↓ craving

Martinez-Maldonado
et al. (2020)

AUD
Pre-Post BEH

T1:
A-CBM: 10
N-CBM: 12
No-Intervention: 11
T2: same

A-CBM 8 sessions of A-CBM
and N-CBM
4 sessions of
No-Intervention

1 week Rest: EC, 180 s
Channels: 64

Pre/Post: A-CBM: ↑ α connectivity, and avoidance to
alcohol-related cues;
T1 to T2: Trend: ↑ anterior-central beta connectivity

Other: ↑ posterior α , all conditions and groups;
anterior/posterior β effects; β inversely correlated with
baseline avoidance of alcohol-related cues
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TABLE 1 (Continued)

First author
and year

SUD and
study type

Sample size at
T1 and T2

Treatment
details

Dose/Sessions
details

Time
window

EEG
Type
Task
Channels

Main findings

Cinciripini et al. (2017) NIC
Pre-Post Drug

T1: 180
T2:
Varenicline: 58
Bupropion: 59
Placebo: 63

Varenicline
Bupropion
Smoking cessation
counseling
(12 weeks)

6 in-person sessions
4 phone sessions
Varenicline:
0.5 mg/day for
1–3 days, 0.5 mg 2× a
day for 4–7 days, and
1 mg 2× a day
thereafter; Bupropion:
150 mg/day for
1–3 days, 150 mg 2× a
day thereafter)

6 months ERP: LPP
Affective/drug
cues
Channels: 128

T1: Pattern of LPP Pleasant>cigarette (vs.
cigarette>Pleasant) linked to Abstinence at T2

Other: Change off benefit at end of treatment and
3-month follow-up: 99%/99% with varenicline;
67%/43% with bupropion

Li et al. (2017) NIC
Pre-Post BEH

T1: 42
T2: same

Hypnosis 1 session 1 hour Rest: EC, 480 s
Channels: 64

Pre/Post: ↑ δ; ↓ α and β;

Other: ↑ δ posterior bilateral coherence linked to ↓
craving; trend: ↑ θ;

Macatee et al. (2022) CAN
Pre-Post BEH

T1:
DTI: 30
HVC: 30
T2:
DTI: 30
HVC: 27

DTI or HVC 2 (1 h) sessions over
1 week

4 months ERP: LPP,
affective/drug cues
Channels: 64

Pre/Post: No main effect on LPP

Other: ↑ LPP (post-stressor, drug cue) linked to ↑
severe CUD and ↑ chronicity at 4 months
↑ LPP for drug and threat vs. neutral cues

Motlagh et al. (2018) OUD
Pre-Post Drug

T0:
OUD: 35
Controls: 19
T1:
OUD: 31
T2:
OUD: 17

Methadone
Maintenance Therapy

Methadone:
Initial 30 mg/day
titrated to
∼70–85 mg/day

10 weeks ERP: MMN, P3
Rest: EC, 300 s
Channels: 19

Pre/Post: Delayed P3. No effect on amplitudes.
Trends: ↓ frontal β, ↑ temporal δ and α, ↑ global θ

Other: ↑ θ correlated with ↑ withdrawal (T3*);
↓ withdrawal with treatment

Robinson et al. (2022) MIX (NIC,
AUD)
Pre-Post Drug

T1: 101
T2:
Topiramate- low: 29
Topiramate- high: 36
Placebo: 36

(Topiramate: high/low
dose, 5 weeks)
Brief behavioral
compliance
enhancement
treatment (18 weeks)

Topiramate: Low dose:
≤125 mg/day
High dose:
≤250 mg/day (Titrated
first 5 weeks,
maintained 6th to 18th
week)

8 months ERP: LPP
affective/drug cues
Channels: 128

T1 to T2: ↓ LPP amplitudes (affective and drug cues,
but not neutral cues) for high-dose vs. low-dose
Topiramate

Other: LPPs did not mediate medication effects on
post-quit use, reinforcement, craving, or withdrawal

The main findings column summarizes selected study details, focusing mainly on EEG-related significant effects and/or trends. All ERP effects are in terms of amplitude and all spectral effects are in terms of absolute power unless otherwise
noted. Up or down arrows refer to increases/greater/higher and decreases/less/lower in the specified metric. For negative-going ERPs (e.g., N2) up means more negative and down means less negative. Numeric details are usually provided
as counts or as percentages. Means (averages) are followed by standard deviation and range when possible with the following formatting: (e.g., for age, 49 (16; 30–60), the mean is 49, the standard deviation is 16 and the range is 30–60. In the
Main Findings column, effects related to EEG assessment at a specific time point are denoted by, e.g., “T1:” or “T2:”, and effects related to changes over time are denoted as “T1 to T2:”, or in a few cases “T1 and T2” or “T1 to T3”. Effects
related to Pre vs Post treatment study effects, with usually at least T1 and T2 EEG, are denoted with “Pre/Post:”. In the Time Window column, the information provided is the last assessment time point of a study based on available study
means or medians. Information that was unclear and/or not directly reported, and thus inferred, is denoted with *. Cells where information could not be determined froman article are denoted with **. List of Symbols and Acronyms: δ,
delta (1–4 Hz); θ, theta (4–7 Hz); α, alpha (8–12 Hz); β, beta ( 13–30 or 13–40 Hz); γ, gamma (> 30 or 40 Hz); Active, Active group in a stimulation study; AUD, Alcohol Use Disorder; A-CBM, Alcohol-related memory activation-Cognitive
Bias Modification; BEH, Behavioral; CAN, Cannabis Use Disorder; CAN-long, Cannabis use for 8 or more years; CAN-short, Cannabis use for less than 8 years; CBM, Cognitive Bias Modification; CUD, Cocaine Use Disorder; DTI,
Distress Tolerance Intervention; EC, Eyes Closed; EO, Eyes Open; ERN, Error Related Negativity; ERP, Event Related Potential; GNG, Go/No-Go Task; Hf-rTMS, High Frequency Repetitive Transcranial Magnetic Stimulation; HVC, Health
Video Control; iTBS, intermittent Theta Burst Stimulation; LONG, Longitudinal; LPP, Late Positive Potential; MBRP, Mindfulness-based relapse prevention; MID, Monetary Incentive Delay; MIX, Mixed Substance Use Disorders; MMN,
Mismatch Negativity; MUD, Methamphetamine Use Disorder; Ne, Error Related Negativity (same as ERN); NIC, Tobacco Use Disorder; N-CBM, Neutral memory activation-Cognitive Bias Modification; OUD, Opioid Use Disorder;
Pe, Error Related Positivity; rTMS, Repetitive Transcranial Magnetic Stimulation; s, seconds; Sham, Sham group or condition in a brain stimulation study; SST, Stop Signal Task; STIM, Stimulation; tDCS, Transcranial Direct Current
Stimulation; T1, Earlier assessment time-point with EEG; T2, Later assessment time-point with or without EEG; T3 through T6, Other subsequent assessment time points.
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online resource. The selected Tool 1 was the Quality Assessment
Tool for Before-After (Pre-Post) Studies with No Control Group
(NIH, 2022b) with 11 questions for 29 studies. The selected
Tool 2 was the Quality Assessment of Controlled Intervention
Studies (NIH, 2022a) with 14 questions for 15 studies. Studies
rated with Tool 1 consisted of longitudinal studies with at
least two time points, and four pre-post studies. Studies rated
with Tool 2 consisted of only pre-post studies reported as
part of clinical trials. The questions for Tool 1 and 2 are
listed in Supplementary Table 2 and Supplementary Table 3.
Responses for each question were Yes (Y), No (N), Not Reported
(NR), Not Applicable (NA), or could not be determined
(CD). Based on responses and reviewer judgment, the process
resulted in a rating of Good (G), Fair (F), or Poor (P) per
study, and a percentage estimate of Yes responses for each
study and question. Any disagreements were discussed and
resolved by the two reviewers. However, in general, few studies
provided detailed information required to fully respond to
some of the Tool questions, and the best guess was used by
reviewers when necessary. These quality ratings are included
in Supplementary Table 4 and Supplementary Table 5. For
question 7 (Were the outcome measures prespecified, clearly
defined, valid, reliable, and assessed consistently across all study
participants?) on Tool 1 outcomes were considered to be
either EEG or outcome variables (i.e., abstinence) at T2.
For question 10 (Did the statistical methods examine changes
in outcome measures from before to after the intervention?
Were statistical tests done that provided p values for the
pre-to-post changes?) on Tool 1, the response was Yes only
for longitudinal or pre-post treatment studies with EEG at
T1 and T2. Questions 4 (Were all eligible participants that
met the prespecified entry criteria enrolled?) and 11 (Were
outcome measures of interest taken multiple times before the
intervention and multiple times after the intervention (i.e., did
they use an interrupted time-series design)?) on Tool 1 were
generally deemed No or Not Reported across most studies rated
with Tool 1.

In this review, T1 usually means the first (EEG) assessment,
and T2 usually means the second assessment (of EEG and/or
treatment-related outcomes), although a few studies had more
than two time points. Our review of findings is selective, focusing
mainly on the EEG findings at T1 that are associated with
outcomes at T2 (and/or the longest follow-up). In the following
section reviewing patterns reported across studies, ERP effects
that are mentioned refer to amplitude effects unless otherwise
specified (i.e., latency/delay). For negative-going components
(e.g., ERN, N200), “increase” and “higher” refer to changes
in the component. For example, increased ERN or higher
ERN refers to increased negative amplitude in the ERN). For
spectral effects, most were in terms of absolute power unless
otherwise specified (i.e., relative or other). Effects relative to
non-substance using controls are not mentioned in the narrative
or tables.

Results

Characteristics of studies selected for
review

Selected studies were heterogeneous, varying considerably
in terms of the type of tasks used, sample characteristics and
their reporting, length of abstinence at each assessed time point,
and in specific EEG and analysis methods used. Types of SUDs
covered across the studies included: 13 with AUD, seven with
CUD, seven with MIX, six with NIC, four with CAN, four with
MUD, and three with OUD.

See Figure 2 for a summary of frequency counts (Figure 2A),
year of publication per SUD type (Figure 2B), and year of
publication, sample size, participant age, and time from T1 to T2
(Figure 2C). Among the included studies, 25 were longitudinal
(i.e., T2 is usually greater than 1 week after T1). In terms of SUD
type, the 25 longitudinal studies consisted of seven with AUD,
five with CUD, three with NIC, five with MIX, three with CAN,
one with OUD, and one with MUD. The other 19 studies were
on pre- and post- brain stimulation (n = 12), pharmacological
(n = 3) or behavioral (n = 3) treatments. A single study (n = 1)
used both behavioral and stimulation treatments. In terms of
SUD sample type, this set of 19 pre- and post- treatment articles
consisted of six with AUD, two with CUD, three with NIC, three
with MUD, two with OUD, two with MIX and one with CAN.
Pre-post T2 follow-up assessments usually occurred the same
session day or after multiple weeks at the end of treatment.

The mean sample size across all studies was 57.16 (SD: 38.33;
median = 49.50; range: 10–180). The mean age across all studies
was 37.75 years (SD: 8.02; median = 36.65; range: 20–54).The
mean or median number of reported days between T1 and the
last time-point (usually T2) across all studies was 76.26 days (SD:
76.48; median = 62.50; range: 1–365). The mean percentage of
males across studies was 71.02% (SD: 19.22; median = 71; range:
31–100).

Other study details mainly associated with quality and
reproducibility included the following. Bio-verification of
abstinence (i.e., toxicology screens) was reported in 21% of
studies at T1 only and 37% of studies at T1 and T2. A non-SUD
control group was used in 40% of studies (usually at T1).
Education details were reported in 57% of studies. Ethnicity
details were reported in 32% of studies. Some limitations across
studies were sparsity in terms of the number of studies per type
of task and per SUD, relatively small sample sizes, most T1 to
T2 periods being brief and less than 6 months, and lack of
control for various confounding factors such as polysubstance
use. Further, multiple studies had issues with unbalanced sex
ratios, drop-out or attrition, or incomplete reporting of EEG
processing details.

Studies were published from the following countries, based
on first author’s affiliation: United States (n = 16), China (n = 5),
Brazil (n = 4), Belgium (n = 3), Austria (n = 2), Iran (n = 2),
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FIGURE 2

Summary of article features. Frequency count for each SUD type (A), SUD type by year (B), and, distribution and boxplot (C) of sample size, year,
Time 1 to Time 2 in days, year of publication and age. For Time 2 assessments done the same day or session, the Time to Time 2 value for those
studies was set to 1 day.

Netherlands (n = 2), Spain (n = 2), Australia (n = 1), Germany
(n = 1), Ireland (n = 1), Israel (n = 1), Italy (n = 1), Malaysia
(n = 1), Poland (n = 1), and Switzerland (n = 1).

Tasks used in ERP studies varied in methodological details
(recording length, number of trials, type of stimuli) but primarily
used established protocols or their variants that target particular
neurocognitive processes, including P3-generating visual
oddball tasks (indexing attention/executive function, working
memory updating), P3/ERN/N2-generating Go/No-Go tasks
(indexing response inhibition, performance monitoring), and
P3/LPP-generating affective/drug image viewing, also known
as cue-reactivity tasks (indexing motivational salience). Most
studies examining EEG spectra and resting-state (spontaneous)
oscillations (e.g., beta) used eyes-closed recordings, and two used
eyes-open recordings. The mean duration of recording times
in spectra studies was 298.35 s (SD: 261.10 s median = 180;
range 32–1,200 s). The mean number of EEG channels
across studies was 48.27 (SD: 34.40; median = 32; range:
3–128) with most analyses focused on a small subset of
channels (<10) specific to the ERP analyses of interest, or
a small number of regional averages (e.g., frontal, central,
and posterior channels). Source estimation was reported in
22% of studies. Some form of EEG-derived classification
accuracy was reported in 25% of studies, mainly in those

that examined abstinence as a binary outcome at a follow-
up.

Studies of abstinence and
treatment-as-usual outcomes

Event-related potentials (ERPs)

Among 16 ERP studies, five were in AUD, two in CUD,
three in NIC, one in OUD, one in MUD and four in
MIX. ERP predictors of abstinence status and other treatment
outcomes from these studies are reported here. Most studies
used abstinence vs. relapse as a binary outcome variable and
thus we report “abstinence” to mean abstinence/relapse as one
binary factor unless otherwise specified. Longitudinal periods
are estimated from means or medians reported in each study,
with details listed in Table 1 and Supplementary Table 1.

AUD

One report showed that lower visual-oddball P3 at
T1 predicted continued abstinence at 3 months follow-up (T2;
Petit et al., 2015). The study further showed that the P3, from
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inferior-medial temporal sources and elicited by alcohol (relative
to non-alcohol) cues, added utility in predicting relapse above
and beyond the family history of alcoholism, craving, and
depression (Petit et al., 2015). Another study reported higher
alcohol No-Go vs. Go P3 at T1 significantly predicted, along
with impulsivity and the likelihood of abstinence at 3 months
and even after accounting for the effects of age, craving, and
family history of alcohol use (Petit et al., 2014). However,
another study reported that P3 elicited by a Go/No-Go task did
not significantly differentiate between abstainers and relapsers
(Batschelet et al., 2021), although a trend of higher alcohol vs.
neutral No-Go P3 was observed at T1 in only the individuals
who relapsed at 3 months follow-up (T2; Batschelet et al., 2021).
The same study also reported higher alcohol vs. neutral No-Go
frontal N2, with anterior cingulate, medial-frontal, inferior
parietal, and temporal sources, was associated with higher
craving at T2 (Batschelet et al., 2021). Another study using
a Go/No-Go task with alcohol and non-alcohol neutral cues
reported that higher alcohol No-Go N170 at T1 discriminated
between abstainers and relapsers at 3 months follow-up (T2;
Matheus-Roth et al., 2016). In addition, the study indicated
faster P100 latency at T1 was associated with higher depressive
symptoms at T2 (Matheus-Roth et al., 2016). Lastly, a study
showed that a longitudinal increase in alcohol No-Go vs. Go
P3 from T1 to T2 (∼17 days post-detox) predicted abstinence
at 3 months (Campanella et al., 2020). The study also reported
no longitudinal change in P3 elicited by a visual oddball alcohol
task from T1 and T2 (Campanella et al., 2020).

CUD

In one study, lower Eriksen flanker ERN at T1 predicted
greater last month cocaine use, craving, and cocaine use severity
at 3 months (T2; Marhe et al., 2013). The ERN added utility in
predicting recent cocaine use above and beyond clinical variables
(cocaine craving and use severity; Marhe et al., 2013). A study
in treatment-seeking CUD showed a longitudinal increase in
LPP elicited by pleasant relative to drug cues from T1 to T2
(over ∼6 months of abstinence or reduced cocaine use), and
this relative LPP increase was associated with lower craving at
T2 (Parvaz et al., 2017).

NIC

One study showed that higher LPP elicited by pleasant cues
at T1 predicted abstinence at T2 (10 and 24-week follow-ups;
Versace et al., 2012). Another study showed lower Go/No-Go
P3 and higher N2 at T1 predicted relapse (Luijten et al., 2016).
The same study also showed trends for associations of smaller
Pe with relapse as well as lower ERN with smoking behavior. A
third report, using a stop-signal task, indicated faster left fronto-
central N2 latency, higher fronto-lateral P3, and lower left central
and right frontal P3 elicited by correct stop trials at T1 (pre-quit
baseline) predicted longer time to relapse over a year (Lespine

et al., 2022). The same study also noted increased right central
P3 (failed stop trials) and decreased frontal and left posterior late
P3 (correct stop trials) from T1 to T3 (4 weeks) that predicted
longer time to relapse (Lespine et al., 2022). However, the study
reported that the EEG metrics were weak predictors of time
to relapse relative to psychological and affective state variables
(Lespine et al., 2022).

MUD

An ERP study reported abstinence-related decreases in left
anterior P3 to methamphetamine words at 3 and 6 months, along
with correlations of decreases in P3 with decreases in craving
over abstinence (Haifeng et al., 2015).

OUD

An ERP study showed that less attenuation of the startle-
elicited pleasant vs. drug cue P3 at T1 predicted recent weekly
heroin use at 6 months (T2), though this ERP metric was a
weak predictor of recent heroin use relative to subjective picture
ratings (Lubman et al., 2009).

MIX

Lower auditory-oddball midline P3a at T1 was found in
treatment non-completers at ∼2 months (T2; Anderson et al.,
2011). Using stepwise regression analysis, the study also reported
that P3a was the only predictor of treatment outcome relative
to age, education, severity, and IQ (Anderson et al., 2011). In
another study, lower visual oddball P3 at T1 predicted treatment
non-completion at 6 months, and midline parietal target
P3 outperformed non-EEG variables in predicting treatment
completion (Wan et al., 2010). In two studies on similar samples,
the first report indicated lower Go/No-Go P2 and ERN, and
higher Pe at T1. Steele et al. (2014) predicted treatment non-
completion, with P2 and Pe being the stronger predictors relative
to non-EEG variables. The second report indicated lower visual
oddball P3a at T1 and higher visual distractor N2 predicted
treatment non-completion at T2 (Fink et al., 2016).

Interim summary: ERP

The evidence for ERPs in association with abstinence and
treatment outcomes is most developed in AUD. Although
heterogeneous, the evidence base from other SUD studies is
broadly consistent with findings from AUD, in that ERPs
have strong potential as prognostic and prospective biomarkers
of treatment-related outcomes. Overall, higher cognitive (e.g.,
visual oddball) P3, lower affective (cue-elicited) P3 (or LPP), and
higher (i.e., more negative) N2 and ERN at T1 were predictors of
abstinence and positive treatment outcomes at T2. In terms of
longitudinal changes from T1 to T2, an increase in cognitive P3,
a decrease in affective P3 (or LPP), and an increase in response
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to drug-unrelated positive stimuli were associated with longer
abstinence or positive outcomes.

Importantly, many of these studies used SUD-specific stimuli
(i.e., drug-related cues to assess cue-reactivity or to create a
drug-related context), and cognitive control (mainly Go/No-
Go) tasks, which are critical in examining dysregulation of
motivational and inhibitory control processes, respectively, in
experimental SUD research. In some studies, the oddball and
Go/No-Go effects were elicited without SUD-specific stimuli,
and thus reflect the engagement of more general cognitive
factors (e.g., working memory updating, inhibitory control).
There is also a small but consistent evidence base for greater LPP
(or P3) in response to pleasant (relative to drug) stimuli at T1, or
its increase from T1 to T2, being associated with better outcomes
(i.e., longer abstinence and lower craving). However, we also
note that some studies reported no relapse-related P3 effects
(Petit et al., 2015; Batschelet et al., 2021) or no longitudinal
abstinence-mediated changes in LPP from T1 to T2 (Parvaz
et al., 2017; Campanella et al., 2020).

Spectral studies of abstinence

Among nine studies that examined EEG oscillations in SUD
samples, two were in AUD, three in CUD, three in CAN, and one
in MIX.

AUD

One study reported that lower frontal-parietal beta, higher
frontal delta, and higher global relative delta and theta power at
T1 predicted abstinence at 6 months (T2; Saletu-Zyhlarz et al.,
2004). In contrast, the same study reported higher frontal beta2
(20–25 Hz) and global relative beta, along with lower frontal
delta, theta, and frontal-occipital alpha at T1 predicted relapse at
T2 (Saletu-Zyhlarz et al., 2004). Another study found that higher
delta connectivity between dorsolateral prefrontal and inferior
parietal regions, and between anterior insula and inferior frontal
junction regions, at T1 predicted abstinence at 12 months (T2;
Januszko et al., 2021).

CUD

One study examined EEG subtypes and reported that
higher centro-parietal beta (12.5–25 Hz) and higher alpha at
T1 predicted abstinence at 25 weeks (T2; Prichep et al., 2002).
Another study found higher left temporal beta1 (14–25 Hz)
and right temporal delta, as well as higher beta2 (25–40 Hz),
at T1 predicted abstinence at 1 month (T2; Levin et al., 2007).
The same study also indicated trends due to abstinence including
increased right central and occipital delta, and decreased left
frontal spectra from delta to beta (Levin et al., 2007). Another
study reported that higher cordance, a measure of agreement
between absolute and relative power, at T1 predicted treatment
completion at 2 months (T2; Venneman et al., 2006). The study

also noted that EEG metrics were better predictors of treatment
outcomes than clinical variables such as depression and craving
(Venneman et al., 2006).

CAN

One study found no EEG changes with abstinence from
T1 to T2 (2 weeks) but noted trends for associations between
older age and later onset of first use with beta T1 to T2 increases
(Allsop and Copeland, 2016). Another study reported lower
theta and alpha at both T1 and 1 month (T2; Herning et al.,
2003). Another study also found no EEG abstinence effects
in individuals with longer (>8 years) vs. shorter histories of
cannabis, though long-term users evinced lower occipital alpha
peak frequency as well as lower posterior high alpha and beta2
(25–40 Hz) at both T1 and 1 month (T2; Herning et al., 2008).

MIX

One study showed that higher frontal beta2 (20–40 Hz) at
T1 predicted relapse at 6 months (T2) more accurately than did
other variables such as substance use, family history, anxiety, and
conduct disorder (Bauer, 2001b).

Interim summary: spectra

Overall, although the current evidence is heterogeneous and
sparse across most SUDs, there is a consistent evidence for lower
beta as a SUD-general (mostly AUD) resting EEG biomarker of
abstinence (Allsop and Copeland, 2016) and positive treatment
outcomes. In addition to lower beta power, the reviewed patterns
also suggest higher power in low frequency bands (delta and
theta) predict abstinence in AUD and MIX but predict relapse in
CUD. Some studies also note changes in theta and alpha bands
in relation to abstinence and relapse but these effects and their
association with clinical outcomes need further replication.

Treatment studies

Brain stimulation

There were 12 EEG/ERP studies with brain stimulation
treatment: four in AUD, two in CUD, three in MUD, one
in NIC, one in OUD and one in MIX. Of these, six studies
examined ERP metrics (two in AUD, two in CUD, one in
MUD and one in MIX), four studies examined spectral EEG
metrics (one in AUD, one in MUD, one in OUD, and one in
NIC). Further, one study in MUD examined both ERP and
spectral EEG metrics, and one study in AUD examined graph-
theoretical metrics using stimulation-evoked cortical inhibition.
Of these, nine studies used the left dorsolateral prefrontal cortex
(dlPFC) as the stimulation target, two studies used bilateral
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dlPFC targets, and one study used a right inferior frontal target.
In terms of stimulation methods, eight studies used transcranial
Direct Current Stimulation (tDCS), three studies used repetitive
Transcranial Magnetic Stimulation (rTMS), and one study used
intermittent theta burst stimulation (iTBS). All effects reported
below are in relation to pre- and post-stimulation treatment vs.
sham, unless otherwise noted.

AUD

One study examined the effects of 5 weekly sessions with
20-min tDCS (2 mA, left dlPFC) and found decreased alcohol
and neutral cue LPP with frontal sources (da Silva et al., 2013).
The study also indicated stimulation-related decreases in craving
and depression, no effects in terms of abstinence, and trends
to increased relapse in the active stimulation condition (da
Silva et al., 2013). Another study examined the effects of a
single session with 10-min tDCS (1 mA, left dlPFC) and found
increased frontal auditory alcohol-cue P3 and decreased centro-
parietal P3 for the Lesch IV AUD-subtype group (i.e., those
in whom, according to Lesch Typology (Schlaff et al., 2011),
drinking is caused by compulsion and early onset of severe
somatic disease), with opposite patterns in the Lesch II group
(i.e., those in whom, according to Lesch Typology, drinking
is primarily used to diminish anxiety; Nakamura-Palacios
et al., 2012). The same study indicated stimulation-related
increases in frontal-executive assessment scores (Nakamura-
Palacios et al., 2012). Another study examined the effects
of one session with ∼30 min TMS (inhibitory paired-pulse
paradigm, 75 paired-pulses, 1 s interstimulus interval, bilateral
dlPFC) with the left dlPFC target condition leading to
increased clustering coefficient (i.e., connectivity of nearby
nodes) and decreased efficiency (i.e., shortest path length
reflecting integrated processing). The same study also indicated
links between decreased mean degree (number of in and
out connections, hubness) and clustering coefficient to greater
severity of past use (Naim-Feil et al., 2022).

One spectral study examined the effects of four sessions
with ∼5 min high frequency rTMS (10 Hz, left dlPFC) across
2 weeks and found increased delta relative to gamma (Del
Felice et al., 2016). The study also reported, in the active
group only, positive correlations of central alpha and theta with
depression/somatization (T1) as well as negative correlations
of alpha2 and beta with Stroop performance (Del Felice et al.,
2016).

CUD

One study examined the effects of one session with 20-min
tDCS (2 mA, left dlPFC) and found decreased crack-cue N2 with
anterior cingulate sources (Conti and Nakamura-Palacios, 2014).
A second study with a similar sample and using dlPFC
P3 estimates, found single-session tDCS led to left P3 increases
to neutral cues and decreases to crack cues, as well as trends

suggesting decreased right P3 to crack cues (Conti et al., 2014).
The study also indicated that five tDCS sessions over 10 days
led to increased crack-cue reactivity at frontopolar, orbitofrontal,
dorsolateral prefrontal, and anterior cingulate regions (Conti
et al., 2014).

NIC

One spectral study examined the effects of one 12-min
session of high frequency rTMS (10 Hz, left dlPFC) and found
increased gamma, decreased delta and alpha, and decreased
craving (Pripfl et al., 2014).

MUD

One study examined the effects of 20 sessions with 5-min
iTBS (theta, 3-pulse 50 Hz bursts, left dlPFC) over 4 weeks
and found no changes in methamphetamine vs. neutral cue
ERPs but indicated decreases in frontal-central beta (Chen
et al., 2021). A second study with one session of 20-min tDCS
(2 mA, left dlPFC) reported stimulation-related decreased drug
vs. neutral P3 (at post-stimulation only) that was correlated
with decreased resting-state graph-theoretical (i.e., network)
efficiency in multiple areas including bilateral medial temporal,
left superior parietal and angular gyrus, and right frontal
and supplementary motor regions (Khajehpour et al., 2022).
A spectral study examining the effects of 20 sessions with
4-min iTBS (theta, 3-pulse 50 Hz, left dlPFC) over 10 days
found decreased left prefrontal delta that was linked to
treatment-related increases in working memory performance
(Zhang et al., 2021a).

OUD

One spectral study examined the effects of 10 sessions
of 20-min tDCS (2 mA, left/right dlPFC) over 10 days
(Mostafavi et al., 2022). Left anode/right cathode stimulation
decreased central and bilateral frontal delta, bilateral frontal
and right occipital-parietal beta2 (25–30 Hz), as well as
increased connectivity at right fronto-central and left fronto-
temporal delta, fronto-central and right fronto-temporal beta,
and parieto-temporal alpha (Mostafavi et al., 2022). Right
anode/left cathode stimulation decreased left occipital alpha
and beta1 (18–25 Hz), as well as increased connectivity at left
frontal-parietal theta and alpha, and right centro-frontal delta
(Mostafavi et al., 2022).

MIX

One study examined the effects of five sessions of 20-min
tDCS (2 mA, left dlPFC cathode, right anode) over 5–10 days
and found increased drug vs. neutral cue P3 with ventromedial
prefrontal sources from T1 to T2 (Nakamura-Palacios et al.,
2016). The same study indicated that these ventromedial
P3 increases predicted abstinence during and after treatment
(Nakamura-Palacios et al., 2016).
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Interim summary: brain stimulation

The literature on the effects of brain stimulation in SUD
is still preliminary, with small samples and no longitudinal
follow-ups, sparse and heterogeneous findings, and several
studies showing no clear EEG-specific pre vs. post stimulation
effects. Across the reviewed studies, the evidence suggests that
stimulation techniques can lead to a change in ERPs and in
spectra, alongside beneficial changes in clinical variables related
to treatment outcomes, such as craving and cognitive function.
In particular, the limited evidence is partly congruent with
treatment expectations based on other SUD-EEG work, e.g.,
decreased LPP and N2 drug-cue reactivity, increased delta,
decreased beta, and suggests that ERPs in SUD samples can
be modulated by stimulation effects. However, the current
evidence base for the directionality of stimulation effects on
ERP amplitude and spectral power metrics remains sparse and
mixed. At best, the studies reviewed here suggest the feasibility
and potential utility of brain stimulation methods for modifying
treatment-relevant electrophysiological brain activity in SUD
treatment research.

Pharmacological and behavioral treatments

These included seven studies: three pharmacological (one in
OUD, one in NIC, one in MIX), three behavioral (one in AUD,
one in NIC, one in CAN), and one in AUD with both behavioral
and brain stimulation (tDCS, right inferior gyrus) treatments.

AUD

One study examined the effects of alcohol-related memory
activation and cognitive-bias modification (A+CBM) with
four 20 min sessions over 1 week. The study found that
A+CBM was associated with increased alpha connectivity and
greater avoidance of alcohol-related cues from T1 to T2. The
same study also reported higher central beta at T2 for the
A+CBM group relative to other treatment groups (Martinez-
Maldonado et al., 2020). A second study examined the effects of
combined treatment, with eight 2-h sessions over 2–3 months,
including 90 min of mindfulness-based relapse prevention
(i.e., meditation) and 30 min of tDCS (2 mA, right inferior
frontal gyrus) per session (Brown et al., 2020). The report
indicated that whereas mindfulness led to decreased alcohol-cue
LPP, brain stimulation led to increased alcohol-cue LPP, and that
attending more mindfulness sessions was linked to decreased
craving (Brown et al., 2020).

NIC

One study examined the effects of bupropion and varenicline
over 12 weeks and found that those participants with greater
pleasant relative to cigarette cue LPP at T1 had higher overall
abstinence relative to placebo at the end of treatment, and at

3 and 6 month follow-ups (Cinciripini et al., 2017). Abstinence
rates were higher (doubly so) for varenicline than bupropion
(Cinciripini et al., 2017). A study examining the effects of
a hypnosis disgust-suggestion intervention (30 min) found
increased delta along with decreased alpha and beta (Li et al.,
2017). The same study also reported that T1 to T2 increases in
delta connectivity were correlated with decreases in craving (Li
et al., 2017).

CAN

A study examining the effects of a distress-tolerance
intervention (two sessions, one per week, 30 min
psychoeducation, 30 min idiographic distress exposure)
found no changes in cannabis and threat cue LPPs (Macatee
et al., 2022). However, the study noted links between higher
post-stressor cannabis cue LPP and greater severity/chronicity
at 4-month followup (Macatee et al., 2022).

OUD

One study examined the effects of methadone maintenance
treatment over 10 weeks in individuals with heroin use disorder
and found the treatment was associated with delayed auditory
oddball P3 (Motlagh et al., 2018). The report also noted T1 to
T2 trends for decreased frontal beta, increased temporal delta
and alpha, as well as positive correlations of theta with subjective
withdrawal (Motlagh et al., 2018).

MIX

One study examined the effects of piramate treatment over
5 weeks and found that the higher dosage condition had
decreased in both affective and drug cue LPPs at T2 (Robinson
et al., 2022). The report also indicated that the LPP effects did
not mediate the change in clinical variables (e.g., post-quit use,
craving; Robinson et al., 2022).

Interim summary: pharmacological and
behavioral

Overall, the current set of behavioral and pharmacological
studies is small and heterogeneous, with some studies reporting
lack of clear treatment effects (Martinez-Maldonado et al.,
2020; Macatee et al., 2022), lack of mediation of clinical
outcome variables by EEG metrics (Robinson et al., 2022),
or no links between EEG metrics and clinical variables
(Brown et al., 2020). Nevertheless, results showing decreases
in higher frequency bands and increases in lower frequency
bands with treatment, as well as higher LPP to pleasant
cues predicting positive outcomes, are generally in agreement
with the EEG-SUD literature reviewed above in previous
sections.
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Quality and bias assessment

In ratings using NIH tools, most of the studies included
were of good (81%, Total N = 36, 23 in Tool 1, 13 in Tool 2)
or fair quality (18%, Total N = 8, six in Tool 1, two in Tool
2), with no studies scored as poor quality. The percentage of
studies with Yes ratings across all questions, averaged across
studies, was 69% (SD: 11.06) for Tool 1 (56%, SD: 9.05, when
discounting Questions four and 11) and 66.67% (SD: 13.47)
for Tool 2. For Tool 1, questions with zero percent Yes ratings
included Question four (Were all eligible participants that met
the prespecified entry criteria enrolled?) and Question 11 [Were
outcome measures of interest taken multiple times before the
intervention and multiple times after the intervention (i.e., did
they use an interrupted time-series design)?]. The next questions
with low percentages of Yes responses from Tool 1 included
Question eight (3%, Were the people assessing the outcomes
blinded to the participants’ exposures/interventions?), Question
five (31%, Was the sample size sufficiently large to provide
confidence in the findings?), and Question 10 (34%, Did the
statistical methods examine changes in outcome measures from
before to after the intervention? Were statistical tests done that
provided p values for the pre-to-post changes?). Questions with
zero or low percentages of Yes responses from Tool 2 included
Question 14 (0%, Were all randomized participants analyzed
in the group to which they were originally assigned, i.e., did
they use an intention-to-treat analysis?), Question 12 (13%, Did
the authors report that the sample size was sufficiently large
to be able to detect a difference in the main outcome between
groups with at least 80% power?), Question four (20%, Were
study participants and providers blinded to treatment group
assignment?), Question 14 (20%, Were the people assessing
the outcomes blinded to the participants’ group assignments?).
Although multiple studies considered with Tool 2 mentioned
being part of a clinical trial or that group assignments were
randomized, few provided extended specific details on blinding
across participants, procedures and study staff.

General discussion

The rationale for this scoping review was to examine
cumulative knowledge since the year 2000 regarding EEG
markers related to SUD treatment changes and outcomes.
We examined potential EEG biomarkers in longitudinal and
multi time-point studies that assessed within-subject changes
following abstinence or treatment in EEG brain function, or that
associated EEG at an earlier time point to clinical assessments at
a later time-point. These studies are useful for identifying EEG
patterns at T1 and potential trajectories of EEG changes after
T1 associated with positive treatment outcomes and recovery in
individuals with SUD. Next, we overview some main patterns
and issues, with a general caveat that interpretations are limited

considering the heterogeneity of findings, methods, and samples
across the reviewed studies.

Overall, the reviewed research suggests that there are ERP
(mainly oddball P3, possibly No-Go N2 and cue-elicited LPP)
and spectral (mainly beta, possibly delta, alpha and theta)
changes in EEG associated with abstinence and treatment. We
note there is relatively good and consistent evidence to date
for higher cognitive P3 and lower beta at T1 as predictors of
abstinence and positive treatment outcomes at T2, and good
evidence for normalization of EEG (e.g., increased cognitive
P3 and decreased beta) at T2. Longitudinally (i.e., from T1 to
T2) increase in cognitive (e.g., visual oddball) P3, and decrease
in affective (drug cue-elicited) P3 (or LPP), were associated with
longer abstinence or positive outcomes. Higher LPPs elicited by
pleasant stimuli at T1, and their increase from T1 to T2, were
also related to better outcomes. These results are consistent with
SUD models of higher incentive salience of drugs in individuals
with chronic substance use (Lüscher et al., 2020). Although
there is less data on N2 relative to the P3, higher (i.e., more
negative) No-Go N2 and ERN (reflecting better inhibitory
control) seem to predict better outcomes, which together with
the P3/LPP results, are in line with the Impaired Response
Inhibition and Salience Attribution (iRISA) model of SUD
(Zilverstand and Goldstein, 2020; Ceceli et al., 2022). However,
future SUD-related cognitive and affective P3 research studies
need to better contextualize their models and findings with the
extensive current knowledge about P3, and ERPs more generally,
such as the distributed network of P3 cortical (midfrontal
and frontal-parietal) and deep-brain generators (Pfabigan et al.,
2014; Ragazzoni et al., 2019; Li et al., 2020; de la Salle et al., 2021)
and EEG/ERP changes indirectly related to SUD treatment,
such as those due to intoxication (Fairbairn et al., 2021), binge-
drinking (Lees et al., 2019) and ageing (van Dinteren et al., 2014).
Results from studies examining EEG spectra suggest that higher
power in low frequency bands (delta and theta) and lower power
in high frequency bands (beta) predict better clinical outcomes.
Relatedly, parietal delta and frontal theta oscillations are also
known to be involved with the generation and modulation of the
P3 (Başar-Eroglu et al., 1992; Bachman and Bernat, 2018), and
therefore, increases in P3 and in low frequency EEG activity may
reflect changes in similar neural substrates.

The evidence for the involvement of beta is also consistent
with previous SUD-EEG reviews (Liu et al., 2022), including
patterns suggesting that increase and decrease in beta are
associated with worse and better outcomes, respectively. There
is also accumulating evidence in this and past reviews for
delta, theta, and alpha effects related to treatment outcomes
that requires replication and extension. Beta (in particular,
central beta, variously reported from >13 to <40 Hz) has
established roles in somatosensory and motor processes (Neuper
and Pfurtscheller, 2001; Jenkinson and Brown, 2011; Pavlidou
et al., 2014; Khanna and Carmena, 2015; Little et al., 2019;
Barone and Rossiter, 2021). Considerable research also points
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to its involvement in executive control, working memory, and
brain network integration (Betti et al., 2021). In particular, beta
reflects a top-down “status quo” signal maintaining endogenous
rules or long-term “priors” regarding environmental stimuli and
behaviors involved with binding of large scale sensorimotor
networks (Engel and Fries, 2010; Spitzer and Haegens, 2017;
Betti et al., 2021; Michail et al., 2022). There is also strong
evidence for beta’s role in the genetic risk for AUD (Porjesz
et al., 2002; Smit et al., 2018), binge drinking (Lees et al., 2019;
Almeida-Antunes et al., 2022), and also in drug craving, e.g., in
AUD (Huang et al., 2018) and MUD (Zhao D. et al., 2021), an
important factor related to relapse (Serre et al., 2018; Stohs et al.,
2019). Overall, dysregulated beta in SUD and its modification
by abstinence or treatment, and its association with a range of
neurocognitive processes, suggests that higher beta may serve
as a marker of neurobehavioral deficits in motor and executive
control, impulsivity, and endogenously-driven habits in SUD.
Importantly, from the included studies it appears that these
impairments may have been caused by substance use, as evident
by reductions in beta with abstinence and treatment suggesting
recovery of these SUD-related deficits.

We found partial evidence for EEG or ERP “recovery”
with abstinence and treatment, which is in line with past ERP
(Campanella et al., 2014; Zhang et al., 2021b) and EEG (Liu
et al., 2022) reviews. In particular, past reviews highlighted
existing research that suggests recovery effects in oddball P3
(Campanella et al., 2014; Zhang et al., 2021b) or resting EEG
spectra for beta with abstinence in AUD (Liu et al., 2022),
as well as initial evidence for abstinence-related increases in
low-frequency bands (e.g., delta, theta) relative to decreases in
higher-frequency bands (Liu et al., 2022). The patterns of results
that have emerged from this review are generally concordant
with those from existing longitudinal structural, functional, and
neurochemical neuroimaging studies of sustained abstinence
that also show evidence of partial recovery (normalization),
especially across fronto-parietal, insula, and other brain regions
associated with SUD (Stewart et al., 2019b; Parvaz et al., 2022).
However, as in SUD-EEG research, the neuroimaging evidence
base is also challenged in terms of heterogeneity, sparsity
across SUDs, and lack of longitudinal studies. With continued
systematic validation and reliability work on SUD-EEG, and
coordination with multi-modal imaging findings, EEG metrics
may serve as potential biomarkers that can be targeted for
routine use in SUD treatments.

For pre-post treatment studies we found proof-of-
concept initial evidence for the impact of brain stimulation
on SUD-related ERP and EEG metrics, and scarce but promising
initial evidence for changes in EEG with pharmacological and
behavioral treatments. Brain stimulation studies are particularly
exciting, and have the potential to target neurobiological
mechanisms that underpin SUD and related behaviors (Hauer
et al., 2019; Wischnewski et al., 2019; Zhang et al., 2019;
Habelt et al., 2020; Bollen et al., 2022). Surprisingly, although

pharmacological and behavioral interventions have been
examined in SUDs for a few decades, only a few studies have
used EEG biomarkers to study SUD treatment outcomes.
Overall, however, results from treatment studies are largely
consistent with those from abstinence studies showing an
increase in P3 and decrease in beta frequency related to better
treatment outcomes. Nevertheless, results from pharmacological
and behavioral treatment studies were more heterogeneous
than those from brain stimulation studies. Indeed, integration
and extension of this literature is required in relation to the
broader evidence base regarding short term and longitudinal
drug treatment effects on EEG metrics, as well as various forms
and active ingredients of extant effective treatments.

One major challenge to current knowledge regarding
SUD-EEG biomarkers is that dysregulated ERPs and EEG are
not unique to SUD and suggest a need for transdiagnostic frame
works. For example, lower P3 is also seen in other disorders,
i.e., depression (Bruder et al., 2012; Klawohn et al., 2020),
schizophrenia (Qiu et al., 2014), bipolar (Wada et al., 2019),
attention deficit/hyper-activity (Kaiser et al., 2020), autism (Cui
et al., 2017), psychopathy (Gao and Raine, 2009), panic (Howe
et al., 2014), and Alzheimer’s (Hedges et al., 2016), suggesting
that P3 may be a trans-diagnostic factor (i.e., not specific to
SUD) related to deficits in P3-associated attentional, working
memory, and behavioral updating processes. Similarly, there is
evidence for beta as a transdiagnostic rather than SUD-specific
factor, as suggested by higher beta in insomnia (Zhao W.
et al., 2021), psychosocial stress (Vanhollebeke et al., 2022),
and Parkinson’s (Cagnan et al., 2019), and dysregulated (or
decreased) beta in externalizing disorder (Rudo-Hutt, 2015),
traumatic brain injury (Allen et al., 2021) and epilepsy (Dharan
et al., 2021). In addition, theta deserves more research attention,
as it is (like beta) a heritable marker of AUD (Meyers et al.,
2021), involved with working memory and executive control
(Cavanagh and Frank, 2014), and a well-studied biomarker in
depression (Jamieson et al., 2022) and schizophrenia (Hirano
and Uhlhaas, 2021). Overall, these trans-diagnostic issues also
reflect the known high comorbidity of SUD and psychiatric
disorders, which suggests a great potential for future synergy
by combining SUD and psychiatric (e.g., depression) treatment
efforts using EEG. However, we note that we formally excluded
any studies focused mainly on comorbid psychiatric disorders
(e.g., mood and anxiety disorders), in order to be consistent
with past reviews and with most of the included studies wherein
comorbid diagnoses were exclusionary. Nevertheless, given the
considerable prevalence of psychiatric comorbidity with SUD,
adequately powered studies should be conducted that can
tease apart the independent and interactive effects of these
comorbidities with SUD. The non-specificity of SUD-related
findings in relation to many other disorders may also be
due to the use of more “general” rather than disorder-specific
EEG metrics and tasks. Encouragingly however, many studies
reviewed used SUD-specific stimuli (e.g., cue-reactivity tasks)
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to better capture SUD-specific processes. Further, as we noted
in interim summaries, though some studies reported that EEG
metrics were strong predictors of outcomes at follow-up, other
studies noted null effects in terms of EEG metrics or pre-post
treatment EEG changes.

One major caveat of the current evidence base is that
more remains to be known especially about individuals with
SUD that do not seek treatment and/or do not participate
in research studies, and those who drop out of treatment or
treatment studies (Biele et al., 2019). Thus, SUD treatment-
seekers may be a self-selected group, perhaps with less
neurobiological vulnerability and/or be more apt to neural
recovery compared to those who do not seek treatment,
or are unable to quit or maintain abstinence (e.g., non-
treatment-seekers and/or relapsers). Alternatively, as many
individuals successfully recover from SUDs on their own
without ever seeking treatment (i.e., spontaneous recovery),
treatment-seeking individuals may represent more chronic and
severe cases. Regardless of their SUD severity phenotype,
treatment-seeking individuals with SUD are underrepresented in
current research and deserve more attention. In addition, better
accounting of the influence of potential confounders (e.g., age,
polysubstance use, baseline SUD severity) is warranted in these
studies. Lastly, there is a predominance of studies examining
treatment-related changes in individuals with AUD, whereas
treatment, abstinence, and recovery in other SUDs (e.g., opiates,
methamphetamine, cannabis) are understudied, representing a
critical gap in this area of research relative to current population
trends. Nevertheless, the literature is growing, and we anticipate
that future studies with larger sample sizes and longer follow-up
periods will help clarify these issues.

A general goal of SUD brain research is to leverage data
to improve prognostic outcomes in individuals with SUDs.
Thus, linking EEG brain changes to clinical improvements is
fundamental, and the current review suggests that EEG metrics
do have associations with clinical outcome variables such as
craving, and in some cases out perform clinical variables in
predicting abstinence. However, the full breadth of improved
clinical outcomes and their relation to longitudinal neural
changes over abstinence and post-treatment remains to be
discerned by future research.

Limitations of the current review

Multiple factors limit the generalizability of the current
findings. We did not include several interesting and related
studies that did not fit our selection criteria. These included
an estimated ∼20 studies that were: (1) published before
2000 (∼5 studies); (2) focused on sleep or neurofeedback
(∼7 studies); (3) used short-term and/or long-term abstainer
samples (∼5 studies); (4) used SUD samples that did not receive
treatment or abstain (∼3 studies). Further, we did not integrate

the review findings with current knowledge regarding: (5)
intoxication, binge-drinking, and chronic substance use effects
on EEG/ERPs; (6) non-EEG treatment outcome predictors
such as high impulsivity and low inhibitory control, concepts
with an extensive behavioral and brain imaging literature
(Vassileva and Conrod, 2019; Lees et al., 2021; Lutz et al.,
2021); (7) fMRI-based functional, structural, and connectivity
models of SUD treatment changes (Stewart et al., 2019b;
Parvaz et al., 2022); and (8) SUD subtypes (Schwartz et al.,
2010; Blonigen et al., 2016; Müller et al., 2020) or trajectories
(Haller et al., 2010; McCabe et al., 2019; Infante et al., 2020).
Moreover, (9) only a dozen of the reviewed studies were
from non-Western countries, reflecting a Western bias limiting
the generalizability of findings; and (10) the time frames in
brain stimulation studies were usually quite brief (i.e., pre-
and post- EEG on the same day), and although informative
for neuromodulation-mediated changes in brain function,
have limited utility in predicting longer-term treatment-related
changes or relapse.

Recommendations

This section integrates most limitations and
recommendations gathered from past reviews (Bauer, 2001a;
Kouri and Lukas, 2001; Campanella et al., 2014, 2019; Houston
and Schlienz, 2018; Hamidovic and Wang, 2019; Stewart et al.,
2019b; Jurado-Barba et al., 2020; Zhang et al., 2021b; Liu et al.,
2022) and from this current review, focusing on how limitations
of existing studies can be minimized, suggesting paths to
enhance the validity and usefulness of SUD-EEG studies, and
outlining possible future directions for research.

Suggested basic methodological enhancements include
increasing consistent and complete reporting of participant
demographics and backgrounds, polysubstance use assessment,
and EEG processing details, as well as regular use of toxicology
screens to confirm longitudinal abstinence and samples with
balanced sex ratios. One of the most important needs,
particularly in longitudinal SUD abstinence and/or treatment
studies, is larger sample sizes (i.e., multi-center longitudinal
or prospective cohort studies with N > 1,000, such as ABCD
(Karcher and Barch, 2021) with fMRI or ENIGMA (Smit et al.,
2021) with EEG, for reproducible (Pernet et al., 2020) brain
function studies (Marek et al., 2022) to have adequate statistical
power (Grady et al., 2021) and capture smaller nuanced
effects that may otherwise get masked, which is especially
required for complex multi-factorial diseases such as SUD.
Broadening treatment outcome targets would allow studies
to go beyond binary outcomes (i.e., abstainers vs. relapsers,
treatment completion vs. non-completion, although craving and
severity are often assessed as well). However, a wide array
of post-treatment outcomes may be assessed including harm-
minimization, quality of life, relapse episodes, social capital,
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insight, stress, exercise, sleep, and a range of other factors
(Donovan et al., 2012; Tiffany et al., 2012; Marchand et al., 2019;
Panlilio et al., 2020).

Another crucial need is increasing the number of
assessments and follow-up time-points, as well as the
prospective length of time for post-treatment follow-ups.
Only a few studies assessed at a 12 months follow-up time-point
or longer, thus prohibiting the examination of the long-term
trajectory of abstinence, treatment outcomes, and recovery,
which clearly awaits future research. Future studies employing
multiple assessments over extended abstinence periods (>12
months) are warranted to more accurately capture the precise
recovery time-course associated with treatment and protracted
abstinence (or moderation) in individuals with SUD. Especially
critical are EEG indicators at various phases related to SUD
treatments (i.e., pre-SUD, pre-quit/pre-treatment baselines,
detox/withdrawal, early/late abstinence, recovery, relapse,
post-relapse).

Comprehensive SUD phenotyping can also play a
crucial role in accurate identification of treatment outcomes
and requires more systematic assessment of non-EEG
variables including personality, family history, demographics,
polysubstance use, psychiatric/medical comorbidities, and
genetic profiles. Multivariate approaches, for example “deep
phenotyping” (Lahnakoski et al., 2021; Phillips and Kendler,
2021) and subtyping (Hong et al., 2018), are being increasingly
utilized in psychiatry (Beijers et al., 2019) and SUD (Kinreich
et al., 2021) research. In the same vein, we also expect greater
coordination (fusion) of EEG with SUD-relevant genomic
(Huggett and Stallings, 2020), epigenetic (Farris and Mayfield,
2021), cardiovascular (Eddie et al., 2022), gastrointestinal
(Meckel and Kiraly, 2019), metabolic (Caspani et al., 2022),
and exposome (Pries et al., 2022) variables. Such deep
phenotyping is also in line with multi-method/multi-level
transdiagnostic frameworks such as NIMH Research Domain
Criteria (Cuthbert, 2022). Addictions Neuroclinical Assessment
factors (Kwako et al., 2017; Nieto et al., 2021), and Addiction
Research Domain Criteria (Al-Khalil et al., 2021). Several
past reviews (Houston and Schlienz, 2018; Jurado-Barba
et al., 2020; Zhang et al., 2021b) summarized SUD-EEG links
within these organizing frameworks, linking EEG/ERP metrics
to salience (N1, P1, P3/SP, theta); inhibitory control/conflict
monitoring/executive (ERN)/NG-N2/P3); and negative
emotionality/motivated attention: (LPP, theta, face-elicited
P1/N1/N170). Such system-level thinking, triangulating
EEG/ERP metrics within broader nomothetic networks,
will help future research better align with SUD-specific and
transdiagnostic treatment models in psychiatry and medicine,
leading to new knowledge of active ingredients in treatment-
related behavior change (Houston and Schlienz, 2018; Rothman
and Sheeran, 2021; Witkiewitz et al., 2022).

The experimental EEG tasks used across current studies
are diverse and suggest a need for common (standardized)

task batteries. Using both ERP-generating tasks (e.g., oddball,
cue-reactivity) as well as resting EEG is recommended. Resting
EEG data of up to 10 min are considered adequate for most
analytic purposes in experimental, clinical and pharmaco-EEG
(Jobert et al., 2012; Babiloni et al., 2020). In terms of tasks,
we recommend using EEG task batteries, e.g., ERP CORE
(Kappenman et al., 2021), and also at least two established tasks
that have previously been used in several past SUD studies.
The benefits of state-of-the-art task batteries are that each
task is relatively brief (e.g., 10 min per ERP metric instead of
20–30 min) and leads to valid and reliable ERPs (Kappenman
et al., 2021). The field needs to validate and use new tasks that are
built to specifically access SUD-related cognition, e.g., mirroring
clinical animal studies, focusing on features of SUD treatment
such as craving, drug-seeking, personally meaningful stimuli,
social environments and interpersonal cognition, and use of
more naturalistic stimuli, i.e., gustatory or olfactory (Agarwal
et al., 2021), music, movies. This need for SUD-specificity of
tasks is in line with the current search for addiction-focused
phenotype assessment batteries (Keyser-Marcus et al., 2021).

Enhancing EEG assessment and analyses can improve
the validity, reliability, replicability, and overall transdiagnostic
utility of SUD-EEG data. We recommend that future research
studies adhere with up to date EEG guidelines for recording,
analysis, and reporting (Keil et al., 2014, 2022; Clayson et al.,
2019; Pernet et al., 2019; Babiloni et al., 2020; Styles et al.,
2021) and leverage open-source data processing pipelines
for replication and standardization (Pedroni et al., 2019;
Desjardins et al., 2021; Delorme et al., 2022). Advances in
the spatial resolution of distributed intracranial sources of
EEG (Mahjoory et al., 2017; Samuelsson et al., 2021), and
methods for indexing functional connectivity (Cao et al.,
2022) and intrinsic networks (Sadaghiani et al., 2022), now
allow for better linkages with transdiagnostic and multimodal
neural circuit and brain-network findings. Current atlases
of cognitive (Varoquaux et al., 2018; Bueichekú et al.,
2020; Markello et al., 2022), neurochemical (Seidlitz et al.,
2020) and neurogenetic (Seidlitz et al., 2020) distributions
also allow for coordination of EEG data with multi-level
brain function. Last, we noted a paucity of studies in
our selected sample, relative to the broader field of EEG
research, with analyses involving source estimation, functional
and effective connectivity, event-related oscillations, single-
trials, network or graph-theory, individualized frequency peak
detection, and use of specific principal or independent
components.

Finally, we emphasize that, relative to other brain imaging
methods, high-quality EEG/ERP (and MEG) recordings
directly index regional and global electrophysiological
brain dynamics (e.g., neural activity, networks, and
oscillations) with unparalleled millisecond temporal precision,
providing both unique and complementary information
about brain function. Further, although existing large-
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scale longitudinal or international multicenter studies are
critical for enhancing knowledge, we recommend current
and future mega-studies to also consider EEG as a brain
imaging method, which, may allow for much higher sample
sizes for the same costs as other brain imaging studies.
Specifically, EEG equipment is much lower in cost than
MRI and associated overheads, requires relatively brief
training procedures, and is highly portable/mobile for
deployment in medical centers, clinics, homes, and remote
locations.

Conclusion

The current scoping review included 44 empirical studies
on EEG markers in abstinence and treatment studies. The
main findings are that odd ball P3 and resting beta have
strong evidence as useful potential biomarkers of SUD
treatment outcomes, along with small but growing evidence
for the utility of LPP, N2, delta, theta, and alpha, and for
EEG effects from several forms of short-term treatment
(stimulation, pharmacological, and behavioral). The use of
EEG techniques in SUD abstinence and treatment research
has increased substantially in the last two decades and
these studies are instrumental in providing initial evidence
that changes can occur longitudinally in ERP and spectral
markers. Beyond providing hope for individuals with SUD
and encouraging them to seek treatment, characterization of
these neurobiological processes may help to identify novel
EEG biomarkers that can be targeted for SUD interventions.
Capturing the trajectory of neural changes over abstinence
or long after treatment may help establish a neuroscience-
informed framework for developing pharmacological,
psychotherapeutic, and/or neuromodulatory interventions
that can mimic and/or enhance the brain’s ability to repair
itself, restoring cognitive function, and contributing to positive
long-term treatment outcomes in individuals with SUD.
Overall, SUD-EEG treatment studies require considerable
investment of new research efforts, including more transparent
and consistent reporting, longer abstinence and/or follow-up
periods, larger sample sizes and deeper phenotyping, more
focus on understudied SUDs, and enhancements in EEG
tasks and analytic methods. Such advances will undoubtedly
propel the use of EEG markers as effective biomarkers (e.g.,

prognostic, predictive, diagnostic, monitoring) for evidence-
based treatments and precision psychiatry (García-Gutiérrez
et al., 2020; Lahnakoski et al., 2021; Niculescu and Le-Niculescu,
2022).
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