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Background: Autonomous motivation to exercise occurs when the activity is

voluntary and with a perceived inherent satisfaction from the activity itself.

It has been suggested that autonomous motivation is related to striatal

dopamine D2/3-receptor (D2/3R) availability within the brain. In this study,

we hypothesized that D2/3R availability in three striatal regions (nucleus

accumbens, caudate nucleus, and putamen) would be positively associated

with self-reported autonomous motivation to exercise. We also examined

this relationship with additional exploratory analyses across a set of a priori

extrastriatal regions of interest (ROI).

Methods: Our sample comprised 49 older adults (28 females) between 64 and

78 years of age. The D2/3R availability was quantified from positron emission

tomography using the non-displaceable binding potential of [11C]-raclopride

ligand. The exercise-related autonomous motivation was assessed with the

Swedish version of the Behavioral Regulations in Exercise Questionnaire-2.

Results: No significant associations were observed between self-reported

autonomous motivation to exercise and D2/3R availability within the striatum

(nucleus accumbens, caudate nucleus, and putamen) using semi-partial

correlations controlling for ROI volume on D2/3R availability. For exploratory

analyses, positive associations were observed for the superior (r = 0.289,

p = 0.023) and middle frontal gyrus (r = 0.330, p = 0.011), but not for
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the inferior frontal gyrus, orbitofrontal cortex, anterior cingulate cortex, or

anterior insular cortex.

Conclusion: This study could not confirm the suggested link between

striatal D2/3R availability and subjective autonomous motivation to exercise

among older adults. The exploratory findings, however, propose that frontal

brain regions may be involved in the intrinsic regulation of exercise-related

behaviors, though this has to be confirmed by future studies using a more

suitable ligand and objective measures of physical activity levels.

KEYWORDS

autonomous motivation, exercise motivation, self-determination theory (SDT),
dopamine, PET, aging

Introduction

The beneficial effects of staying physically active throughout
life are well established (Lee et al., 2012; Cunningham et al.,
2020; Holmlund et al., 2020). Still, many older adults do not
manage to engage in the recommended physical activity levels
(Hagströmer et al., 2015; Keadle et al., 2016). A fundamental
component in why people succeed or fail to engage in exercise is
motivation, more specifically, autonomous motivation (Teixeira
et al., 2012). According to the Self-Determination Theory
(SDT), one of the major motivational frameworks within
physical activity and behavioral change (Rhodes et al., 2019),
autonomous motivation occurs when activities are engaged for
the inherent interest and satisfaction of the activity itself, being
voluntary as well as aligned with our personal values (Deci and
Ryan, 2000; Ryan and Deci, 2000b). The perceived internal locus
of causality is central within SDT and autonomous motivation.
While external motivators also facilitate behaviors, such as a
monetary reward or avoidance of negative feelings such as
shame or guilt, internal motivators generate the more high-
quality form of autonomous motivation (Ryan and Deci, 2000b).
Sensations such as delight and having fun during the activity
are important characteristics of activities taxing autonomous
motivation, as well as common reasons for exercising among
those older adults that exercise regularly (Dacey et al., 2008;
Cancela et al., 2021). Further, autonomous motivation was more
positively associated with higher exercise volumes (Teixeira
et al., 2012) and long-term adoption of physical exercise among
older adults (Kekäläinen et al., 2018).

It has been suggested that the facilitation of autonomous
motivation is supported by the dopaminergic system within
the brain (Di Domenico and Ryan, 2017). Central to the
neurobiology of motivation is the neurotransmitter dopamine
(Botvinick and Braver, 2015), and due to its richness in
dopamine receptors, the striatum is the brain region most often
associated with motivation and reward processing (Haber and

Knutson, 2010; Tziortzi et al., 2014). Neuroimaging studies
have linked striatal dopamine to internal rewards and traits
closely related to autonomous motivation, such as positive affect
(Ashby et al., 1999), behavioral perseverance (Salamone and
Correa, 2012, 2016), and flow (de Manzano et al., 2013), leading
to the proposal that an individual’s capacity for autonomous
motivation is related to dopamine receptor availability within
the striatum (Di Domenico and Ryan, 2017).

Regarding dopamine and exercise, behavior selection
of physical efforts in rodents has been linked to tonic
dopamine signaling in the ventral striatum (Niv et al., 2007).
Injections of a dopamine antagonist decreased the willingness
to perform physical but not cognitive effort among mice
(Hosking et al., 2015), and a reduced dopamine D2/3-receptor
(D2/3R) availability down-regulated both energy expenditure
and physically effortful behaviors among obese mice (Mourra
et al., 2020). Similar results were recently detected when
modulating dopamine homeostasis in humans (Michely et al.,
2020). Also, among older adults, striatal D2/3R availability
positively correlates with self-reported physical activity ratings
(Köhncke et al., 2018) and cardiorespiratory fitness (Jonasson
et al., 2019).

Neuroimaging research on intrinsic regulation of
motivation has mainly focused on the striatum, however,
there is support also for the involvement of extrastriatal regions
such as the frontal cortex, anterior insular cortex, and anterior
cingulate cortex (Di Domenico and Ryan, 2017; Cromwell
et al., 2020). Even though not examining the direct link to
dopamine, functional Magnetic Resonance Imaging (fMRI)
studies have observed increased response in these frontal
regions during intrinsically motivating settings (Murayama
et al., 2010, 2015; Ellwood et al., 2017; Lee and Reeve, 2020).
The action of dopamine within these regions has been suggested
to be specifically involved in the valuation and consolidation
of reward outcome projections from the striatum (Bromberg-
Martin et al., 2010; Oldham et al., 2018), processes important
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for the maintenance and long-term perseverance of motivation
(Ryan and Di Domenico, 2016; Myers et al., 2016).

Accordingly, this study aimed to examine the suggested
link between dopamine receptor availability and autonomous
motivation (Di Domenico and Ryan, 2017). We hypothesized
that striatal D2/3R availability would be positively associated
with a self-report measurement of exercise-related autonomous
motivation among older adults. A secondary aim was to
explore this association in a priori specified extrastriatal regions
(superior frontal gyrus, middle frontal gyrus, inferior frontal
gyrus, orbitofrontal gyrus, anterior insular cortex, and the
anterior cingulate cortex).

Materials and methods

Participants and procedure

The present study used baseline data from the Physical
Influences on Brain in Aging (PHIBRA) study (Jonasson
et al., 2017). In short, the PHIBRA study recruited sixty older
adults (64–78 years) via a local newspaper advertisement to
participate in a 6-month exercise intervention (aerobic training
or stretching and toning control). Exclusion criteria in PHIBRA
included having a neurological disease, dopamine-influencing
medication, a Mini-Mental State Examination (MMSE) score
below 27, diabetes, regularly performing moderately high
to high-intensity training, or magnetic resonance imaging
(MRI)/positron emission tomography (PET)-incompatible
factors such as claustrophobia or metal implants. The Swedish
Ethics Review Authority approved the PHIBRA study (Umeå,
Sweden; registration number: 2013-238-31M). The study was
carried out per the WMA Declaration of Helsinki, and all
participants provided written consent before testing.

All participants underwent a baseline data collection
distributed on a total of six separate days, described in Jonasson
et al. (2017), including the Behavioral Regulations in Exercise
Questionnaire-2 (BREQ-2)(Markland and Tobin, 2004) to
assess exercise-related motivation, and MRI and PET-scans to
assess dopamine D2/3-receptor (D2/3R) availability. By routine,
all structural MRI images were screened for abnormalities by a
radiologist.

Autonomous motivation

Exercise-related autonomous motivation was assessed with
BREQ-2 (Markland and Tobin, 2004). This questionnaire stems
from the organismic integration theory within the SDT, a sub-
theory focused on behavior regulation in relation to the quality
of motivation (i.e., to what extent motivation is autonomous
or controlled) (Ryan and Deci, 2000a). The BREQ-2 consists
of 19 items measured on a five-point Likert scale, ranging

from 0 (not true for me) to 4 (very true for me), examining
five behavior regulation styles (intrinsic, identified, introjected,
external and amotivated). The BREQ-2 has been validated
with high reliability, and the Swedish version of BREQ-2 has
demonstrated Cronbach’s alpha between 0.73 and 0.86 within
groups of Swedish adults between 18 and 78 years of age
(Weman-Josefsson et al., 2015; Lindwall et al., 2017).

Participants missing no more than one value within
a domain were dealt with by imputing the participant’s
average score of the items loading on the same motivational
construct. Item-aggregation was used to compute a unit-
weighted composite score for each motivational construct
(Wilson et al., 2012). The scores for the intrinsic and identified
constructs were then further averaged into a composite score of
autonomous motivation (Standage et al., 2008).

Neuroimaging

Magnetic resonance imaging
Structural MRI data was acquired on a 3T 750 MR scanner

(General Electric, WI, US) equipped with a 32-channel head
coil. T1-weighted images were acquired using a 3D fast spoiled
gradient-echo sequence (180 slices with 1 mm thickness,
repetition time (TR) 8.2 ms, time to echo (TE) 3.2 ms, flip angle
12◦, field of view 25 × 25 cm).

Positron emission tomography
PET data was acquired on a Discovery PET/CT 690

(General Electric, WI, US) using the non-displacable binding
potential (BPND) of [11C]-raclopride ligand to quantify D2/3R
availability. Head movements were minimized by individually
fitted thermoplastic masks (Positocasts Thermoplastic; CIVCO
medical solutions, IA, US). Initially, a low-dose helical CT-
scan (20 mA, 120 kV, 0.8 s/revolution) was performed for
attenuation-correction purposes. This was followed by an
intravenous bolus injection of 250 MBq [11C]-raclopride, and a
55-min, 18-frame dynamic PET scan was acquired (9 × 120 s,
3 × 180 s, 3 × 260 s, 3 × 300 s) during resting-state
conditions. Attenuation-, scatter- and decay-corrected PET
images (slices = 47, field of view = 25 cm, 256 × 256 matrix,
voxel size = 0.98 × 0.98 × 3.27 mm3) were reconstructed with
the SharpIR algorithm (Bettinardi et al., 2011), and yielded a
full width half maximum (FWHM) of 3.2 mm (Wallstén et al.,
2013; for more detailed information about the PET-imaging
acquisition, see Jonasson et al., 2019; Karalija et al., 2020).

Preprocessing
Processing of T1 images and extraction of cortical (Desikan

et al., 2006) and subcortical (Fischl et al., 2002; Destrieux et al.,
2010) gray matter segmentation for each region of interest (ROI)
was done with Freesurfer version 6 (Figure 1). The a priori
specified ROIs included the striatum, divided into three sub-
regions (nucleus accumbens, caudate nucleus, and putamen).
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FIGURE 1

Visualization of gray matter segmentation for each region of
interest (ROI). (A) Coronal plane. (B) Horizontal plane. (C)
Sagittal plane. SFG, Superior frontal gyrus; MGF, middle frontal
gyrus; IFG, inferior frontal gyrus; OFG, orbitofrontal gyrus; AIC,
anterior insular cortex; ACC, anterior cingulate cortex.

TABLE 1 Sample characteristics.

Mean (±SD) Min; max

Age (years) 68.7 (2.7) 63.9; 77.7

Years of education 13.8 (4.2) 7.0; 25.0

BMI (kg/m2) 26.5 (3.5) 19.4; 37.3

Cardiorespiratory fitness (VO2 peak,
O2 ml/kg × min)

20.4 (3.7) 13.5; 30.0

BMI, Body Mass Index; VO2 peak, peak aerobic capacity assessed during a graded cycle
ergometer test, described in detail elsewhere (Jonasson et al., 2017).

The included extrastriatal regions were based on previous
findings of good test-retest reliability for the [11C]-raclopride
ligand within the PHIBRA Study control group (Karalija
et al., 2020), and their suggested involvement in motivational
processes (Bromberg-Martin et al., 2010; Di Domenico and
Ryan, 2017): superior frontal gyrus (SFG), middle frontal gyrus
(MFG; rostral and caudal middle frontal), inferior frontal gyrus
(IFG; pars opercularis, pars triangularis, pars orbitalis) and
orbitofrontal cortex (OFC; lateral and medial orbitofrontal), the
anterior insular cortex (AIC), and the anterior cingulate cortex
(ACC; rostral and caudal anterior cingulate).

Motion correction and co-registration of PET images onto
T1-weighted images were performed in SPM8. BPND was
calculated for each ROI using orthogonal reference Logan
analysis (Logan et al., 1996) with linear regression based on the
median of ROI voxel values across both hemispheres from each
time frame based on frame 10–18 from time 18 to 55 min, with
the cerebellum as reference region. See Supplementary Figure 2

for map of [11C]-raclopride distribution volume ratio across
gray matter.

Statistical analyses

Data were prepared and analyzed using R version 4.0.5 (R
Core Team, 2020) and RStudio version 1.1.463 (RStudio Team,
2016). Plots were produced using the tidyverse (v. 1.3.1 ) and
GridExtra (v. 2.3) packages (Auguie, 2017; Wickham et al.,
2019), and semi-partial correlations was performed with the
MASS (v. 7.3.53.1) and ppcor (v. 1.1) packages (Kim, 2015).

To examine the association between D2/3R availability
and self-reported autonomous motivation, we performed semi-
partial correlations on the autonomous motivation composite
score and the [11C]-raclopride BPND for each of the a priori
specified regions of interest, controlling for ROI volume on
BPND to account for partial volume effects. We assumed a
positive direction of the association between D2/3R availability
and autonomous motivation and therefore used one-tailed
significance testing with an α < 0.05. To control for multiple
comparisons among the exploratory analyses, we used the false
discovery rate (FDR) (Benjamini and Hochberg, 1995).

Results

In the present study, we excluded 11 participants due to
missing or major incomplete BREQ-2 data. Thus, complete
baseline data was obtained from 49 (females, n = 28) physically
inactive but otherwise healthy older adults (see Table 1). Table 2
presents descriptive data on ROI BPND and Autonomous
motivation, with the ROI segmentation visualized in Figure 1.

No significant associations were observed for the semi-
partial correlations between D2/3R availability (BPND) and self-
reported exercise-related autonomous motivation within any of
the three striatal regions; nucleus accumbens [r(46) = −0.021,
p = 0.56], caudate [r(46) = 0.037, p = 0.40], and putamen
[r(46) = 0.023, p = 0.44].

Exploratory analyses for extrastriatal regions revealed a
significant positive correlation with the superior frontal gyrus
[r(46) = 0.289, p = 0.023], and the middle frontal gyrus
[r(46) = 0.330, p = 0.011], but not for the inferior frontal
gyrus orbitofrontal gyrus, anterior insular cortex, and anterior
cingulate cortex. Both significant associations survived an FDR
correction of q < 0.1. See Table 3 for exact values and statistics,
and Figure 2 for scatterplots of autonomous motivation and
ROI BPND residuals (adjusted for ROI volume).

Results remained essentially the same for post hoc
sensitivity analyses not adjusting for ROI-volume (see
Supplementary Table 1 for test statistics, and Supplementary
Figure 1 for scatterplots of autonomous motivation and
raw BPND data), adjusting for ROI-volume, age, and sex
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TABLE 2 Descriptive information of D2/3R availability as
[11C]-raclopride BPND for each brain region of interest, and
self-reported autonomous motivation.

Mean ± SD Min; max

[11C]-raclopride BPND in ROIs

Striatum

Nucleus accumbens 2.15 (0.34) 1.40; 2.89

Caudate nucleus 2.22 (0.35) 1.39; 3.00

Putamen 3.39 (0.34) 2.70; 4.01

Extrastriatal ROIs

Superior frontal gyrus (SFG) 0.19 (0.05) 0.10; 0.33

Middle frontal gyrus (MFG) 0.24 (0.05) 0.13; 0.34

Inferior frontal gyrus (IFG) 0.22 (0.05) 0.08; 0.32

Orbitofrontal cortex (OFC) 0.25 (0.05) 0.13; 0.37

Anterior insular cortex (AIC) 0.30 (0.06) 0.15; 0.44

Anterior cingulate cortex (ACC) 0.26 (0.05) 0.13; 0.37

Exercise motivation

Autonomous motivation 2.21 (0.91) 0; 3.75

BPND , non-displaceable binding potential; SD, Standard deviation; Autonomous
motivation is a mean composite score based on mean scores for intrinsic and identified
motivation.

TABLE 3 Semi-partial correlations of ROI D2/3R availability measured
as [11C]-raclopride BPND and self-reported autonomous motivation.

Autonomous motivation

r p

Striatum

Nucleus accumbens −0.021 0.557

Caudate 0.037 0.400

Putamen 0.023 0.438

Extrastriatal ROIs

Superior frontal gyrus (SFG) 0.289 0.023*

Middle frontal gyrus (MFG) 0.330 0.011*

Inferior frontal gyrus (IFG) 0.129 0.190

Orbitofrontal cortex (OFC) 0.145 0.162

Anterior insular cortex (AIC) 0.010 0.474

Anterior cingulate cortex (ACC) 0.159 0.140

BPND , non-displaceable binding potential; p < 0.05 in bold face.
*If significant also after FDR correction (q < 0.1).

(Supplementary Table 2), or removing two outliers (≥ 2.5
SD in BPND change) detected during examination of
longitudinal data/repeated measurements (Supplementary
Table 3 controlling for ROI-volume, and Supplementary
Table 4 controlling for ROI-volume, age, and sex).

An additional correlation between participants’
cardiorespiratory fitness level (VO2 peak) and self-reported
autonomous motivation to exercise did not reach statistical
significance [r(47) = 0.194, p = 0.181], neither when adjusted
for age and sex [r(45) = 0.188, p = 0.205].

Discussion

This study examined the relationship between dopamine
and autonomous motivation to exercise among older adults. We
specifically aimed to examine the suggested link between D2/3R
availability in the striatum and exercise-related autonomous
motivation. We found no support for the hypothesis that D2/3R
availability was to be positively associated with self-reported
exercise-related autonomous motivation in neither of the three
striatal regions (nucleus accumbens, caudate nucleus, and
putamen). Exploratory analyses revealed statistically significant
positive associations for the superior frontal gyrus and
the medial frontal gyrus, but not for the inferior frontal
gyrus, orbitofrontal gyrus, anterior insular cortex, or anterior
cingulate cortex.

The absence of significant associations between striatal
D2/3R availability and self-reported autonomous motivation to
exercise may be explained by the striatum being more involved
in acute reward processes during an activity (Bromberg-Martin
et al., 2010; Olivetti et al., 2019). Striatal dopamine acts upon
intrinsic and extrinsic reward stimuli (Jonasson et al., 2014;
Oldham et al., 2018), and assessment of resting dopamine
D2/3R availability in the striatum might not be enough to
disentangle the specific influence on autonomous regulation.
Also, while the acute processes are important in the generation
phase of motivation, influencing maintenance and regulation
of motivation, these acute aspects might not be covered
by the BREQ-2 questionnaire (Markland and Tobin, 2004).
This questionnaire focuses on why people engage in exercise,
possibly only capturing already existing mental representations
of previous exercise-related experiences necessary for future
engagement of similar behaviors (Lee and Reeve, 2020). To
explore the role of striatal D2/3R availability during the acute
phase of internal reward processes and autonomous motivation,
future studies PET studies should use a different study design,
possibly including a memory recall or imaginary task designed
to target autonomous motivation (Lee and Reeve, 2020). In
addition, other reward-governing neurotransmitter systems
influenced by exercise, for example involving opioids (Saanijoki
et al., 2018) or endocannabinoids (Siebers et al., 2021) may also
be relevant to explore in relation to autonomous exercise-related
motivation.

Our results from the exploratory analyses suggest that
D2/3R availability in the superior and middle frontal gyrus
may be involved in the intrinsic regulation of autonomous
motivation to exercise. These frontal regions may support
the maintenance and long-term perseverance of autonomous
motivation via dopamine-dependent salience processes of
attention orientation toward consolidated positive memories
relevant for decision-making to perform a similar activity again
(Bromberg-Martin et al., 2010; Ott and Nieder, 2019). A possible
explanation for why autonomously motivated individuals more
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FIGURE 2

Scatterplots of D2/3R availability within each ROI and autonomous motivation. Self-reported autonomous motivation along the y-axis, and the
residual (controlling for structural ROI volume) dopamine D2/3-receptor availability (D2/3R residual) estimated with [11C]-raclopride positron
emission tomography (PET) along the x-axis. Nucleus accumbens (accumbens), caudate nucleus (caudate), superior frontal gyrus (superior
frontal), middle frontal gyrus (middle frontal), inferior frontal gyrus (inferior frontal), orbitofrontal gyrus (orbitofrontal), anterior insular cortex
(AIC), anterior cingulate cortex (ACC). *If p < 0.05.

successfully maintain a physically active lifestyle over time (Ryan
and Deci, 2000b; Teixeira et al., 2012; Kekäläinen et al., 2018).

The suggested relationship between dopamine and
autonomous motivation to exercise becomes particularly
interesting in light of the known age-related deteriorations of
the dopaminergic system (Karrer et al., 2017; Karalija et al.,
2019). Notably, older adults with higher physical activity
levels show less than expected age-related reduction in D2/3R
availability (Dang et al., 2017), and inter-individual variation in

dopamine-related genes that affects dopamine receptor efficacy

was associated with less time spent in moderate to vigorous

physical activity, and even more so among the oldest (Rosso

et al., 2018; Dohrn et al., 2020). Thus, while physical exercise

may have the potential to maintain or even strengthen the

integrity of the dopamine system, aging as well as a person’s

genetic makeup may cause difficulties in engaging in such

activities due to decreased D2/3R efficacy.
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The present study design cannot determine causality, and
we do not address the potential exercise-related changes
that might occur over time, such as plasticity mechanisms
within the dopaminergic system (Jonasson et al., 2019), or the
motivational profile (Kekäläinen et al., 2018). Still, we propose
that individuals with higher D2/3R availability in frontal regions
can, to a greater extent, rely more on autonomous motivation
processes. In contrast, those with lower levels might be more
dependent on controlled processes and external motivators.
In addition to other factors important for successful exercise
routines [e.g., environmental settings, external expectations,
consolidated habits or social norms (Pelssers et al., 2018;
Aaltonen et al., 2020; Jones et al., 2020; Cancela et al., 2021)],
future studies should acknowledge that the individual variation
in motivation might also be linked to biological differences in
the dopaminergic system, and that aging per se might affect this
system and shift the motivational profile (Yee et al., 2019).

It should be noted that the absence of associations between
striatal D2/3R and subjective exercise-related autonomous
motivation, and between autonomous motivation and VO2

peak, were despite a significant relationship between striatal
D2/3R and VO2 peak previously observed (Jonasson et al.,
2019). Striatal D2/3R among older adults has also been related
to self-reported physical activity, with a positive association
for higher levels of physical activity intensity but not physical
activity volume (Köhncke et al., 2018). Possibly, frontal D2/3R
and autonomous motivation operate in a parallel process to
that of striatal D2/3R and physical fitness, with frontal D2/3R
more involved in whether exercise will be performed or not (i.e.,
volume) rather than how it is performed (i.e., intensity). These
remaining questions need to be addressed in future studies, in
which it also should be included additional objective measures
of physical activity, such as accelerometer data, to examine the
intricate interplay of dopamine, motivation to exercise, and
different activity levels.

Limitations

This study has limitations. First, the validity of [11C]-
raclopride for BPND quantification in extrastriatal regions has
recently been questioned (Svensson et al., 2019; Freiburghaus
et al., 2021), emphasizing that the interpretation of [11C]-
raclopride BPND in frontal regions should be made with caution
(Freiburghaus et al., 2021). There is, however, evidence of
high test-retest reliability (Alakurtti et al., 2015; Karalija et al.,
2020), good measurement properties when linking functionally
connected cortical areas in latent space (Papenberg et al., 2019),
and strong linear relationships between [11C]-raclopride D2/3R
estimates in cortical regions (Papenberg et al., 2019) with D2/3R
measured in the post-mortem brain (Hall et al., 1994), all which
speaks to the feasibility of using [11C]-raclopride to assess
extrastriatal D2/3R in the living brain. Of note, in a subsample

of the current study sample, the extrastriatal regions included
have presented high test-retest reliability (superior frontal gurys,
ICC: 0.93, r = 0.88; middle frontal gurys, ICC: 0.96, r = 0.93),
and a coefficient of variance between 18.4 and 24.5% (Karalija
et al., 2020). Still, we recommend that future studies examining
extrastriatal D2/3R include a ligand with higher sensitivity,
such as [11C]FLB457 (Freiburghaus et al., 2021). Second, with
the [11C]-raclopride BPND we only assess receptor availability
and therefore cannot conclude about the number of receptors
(i.e., density), nor about the level of endogenous dopamine
bound to the receptors. Hence, if motivated subjects have
higher resting synaptic dopamine levels, this could potentially
reduce D2/3R availability in these individuals and consequently
reduce the estimated association between D2/3R availability
and autonomous motivation. Third, our sample consisted of a
group of non-exercising older adults that were interested (and
motivated) in participating in a 6-month exercise intervention.
Although our sample portrayed the whole range of autonomous
motivation with BREQ-2 scores ranging from low to high,
all participants had some degree of motivation to participate
in an exercise intervention and this may have narrowed the
autonomous motivation range in this study. Further exploration
of autonomous motivation in relation to dopamine should
also be done within more heterogeneous groups of older
individuals. Fourth, a larger sample size would allow for the
possibility of performing subgroup analyses not possible in
the present study, such as comparing the different domains
within the SDT (Chemolli and Gagné, 2014), genetic variations,
gender differences, and physical activity levels (Dacey et al.,
2008; Aaltonen et al., 2020). Finally, although widely used, the
BREQ-2 questionnaire (Markland and Tobin, 2004) excludes
the third regulation style of autonomous motivation in the
SDT, integrated motivation. This part of the autonomous
motivation spectrum has been considered highly relevant for
maintaining physical activity and exercise (Wilson et al., 2012;
Miquelon and Castonguay, 2017). However, concerns regarding
high inter-factor correlations favor assessment only of the
intrinsic and identified scales, as is done in the BREQ-2
questionnaire (Howard et al., 2017). In summary, future studies
could preferably include additional measures of dopamine,
larger sample sizes, and alternative designs to further explore
and disentangle the biological mechanisms of autonomous
motivation.

Conclusion

To summarize, D2/3R availability in the striatum was
not associated with self-reported exercise-related autonomous
motivation. The exploratory analyses suggest that D2/3R
availability in the superior and middle frontal gyrus may be
involved in the intrinsic regulation of exercise-related behaviors,
potentially via salient processes enhancing decision-making and

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.997131
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-997131 November 9, 2022 Time: 14:25 # 8

Simonsson et al. 10.3389/fnhum.2022.997131

long-term maintenance. This suggestion should preferably
be confirmed in larger studies, including a different
assessment of D2/3R availability. Still, studies aimed at
increasing motivation and engagement in physical activity
among older adults could benefit from considering the
possible variations in the support needed due to aging
and inter-individual biological differences in dopamine.
While some individuals might have better prerequisites
to develop and consolidate autonomous forms of
motivation to exercise, others might need more external
support over time.
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