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Functional MRI (fMRI) is an indirect reflection of neuronal activity. Using generative

biophysical model of fMRI data such as Dynamic Causal Model (DCM), the underlying

neuronal activities of different brain areas and their causal interactions (i.e., effective

connectivity) can be calculated. Most DCM studies typically consider the effective

connectivity to be static for a cognitive task within an experimental run. However,

changes in experimental conditions during complex tasks such as movie-watching

might result in temporal variations in the connectivity strengths. In this fMRI

simulation study, we leverage state-of-the-art Physiologically informed DCM (P-

DCM) along with a recurrent window approach and discretization of the equations

to infer the underlying neuronal dynamics and concurrently the dynamic (time-

varying) effective connectivities between various brain regions for task-based fMRI.

Results from simulation studies on 3- and 10-region models showed that functional

magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD)

responses and effective connectivity time-courses can be accurately predicted

and distinguished from faulty graphical connectivity models representing cognitive

hypotheses. In summary, we propose and validate a novel approach to determine

dynamic effective connectivity between brain areas during complex cognitive tasks

by combining P-DCM with recurrent units.

KEYWORDS

dynamic effective connectivity, neuroscience, graphical models, BOLD fMRI, causality

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) non-invasively measures neural activity
indirectly via changes in the hemodynamic response (i.e., changes in cerebral blood flow and
volume). Local blood brain flow increases when the neuron increases its activity in the presence
of a stimulus or intrinsically to support the increased metabolic demand and subsequently
oxygenated blood displaces deoxygenated blood (Buxton et al., 2004; Stefanovic et al., 2004;
Uludağ et al., 2004). This leads to a rise in the blood oxygenation level-dependent (BOLD)
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response during stimulation before the response typically falls
to a post-stimulus undershoot below the initial baseline and
ultimately returns to baseline. The BOLD signal is not only used
to map task-correlated brain activity or study brain physiology
in individual voxels but also used to study functional and
effective connectivity (Friston, 2011; Goldenberg and Galván,
2015; Kuhnke et al., 2021; Underwood et al., 2021). Functional
connectivity is another term for instantaneous BOLD signal
correlations during resting-state of remote voxels and brain areas
(van den Heuvel and Pol, 2010; Friston, 2011; Shakil et al.,
2016). However, functional connectivity methods typically are
not utilized to infer causal relationships between these voxels
(Friston, 2011). In contrast, effective connectivity utilizes causal
connectivity graphs on the neuronal level representing a specific
cognitive hypothesis for a task and a local generative model
numerically describing the underlying BOLD signal physiology
(Friston, 2011).

One prominent approach for effective connectivity is the
Dynamic Causal Model (DCM) (Friston et al., 2003; Stephan
et al., 2008; Moran et al., 2009; Havlicek et al., 2015). The basic
idea behind DCM is to treat the brain as a nonlinear dynamical
system and the observations (e.g., whole-brain fMRI signals) as
indirect reflections of the signal of interest (e.g., the local neuronal
activity and their connections). Using Bayesian model inversion
(Ulrych et al., 2001; Friston et al., 2003), the local neuronal,
effective connectivity values, and the vascular parameters can be
estimated (Friston et al., 2003; Havlicek et al., 2015). The variants
of DCM include stochastic DCM (Daunizeau et al., 2009), non-
linear DCM (Stephan et al., 2008), spectral DCM (Moran et al.,
2009) and physiologically informed DCM (P-DCM) (Havlicek
et al., 2015). The P-DCM is the state-of-the-art model, which
is inspired by experimental observations about the physiological
underpinnings of the fMRI signal. It overcomes the limitations
of earlier DCMs, such as inaccurate modeling of the initial
overshoot and the post-stimulus undershoot, observations which
are typically present in the time courses of task-based fMRI BOLD
signals.

Dynamic Causal Model studies typically consider the causal
interactions between brain areas to be fixed for an entire experimental
run. However, experimental conditions can change with time within
a run, for example when a subject is watching a movie, and
consequently it is expected that the connectivity strengths between
disparate brain regions also vary with time. In the recent years,
more and more studies utilize these time-varying stimuli to study
cognitive processes in the human brain (see, for example, Finn,
2021). To capture the dynamic nature of functional connectivity
in resting-state, Dynamic Functional Connectivity (DFC) studies
using sliding windows were proposed (Chang and Glover, 2010;
Kiviniemi et al., 2011; Jones et al., 2012; Shakil et al., 2016).
This is done by finding the statistical correlations amongst
different brain area-specific resting-state fMRI BOLD time-series
(Cribben et al., 2012; Handwerker et al., 2012; Calhoun et al.,
2014; Monti et al., 2014; Shakil et al., 2016). However, as this
analysis is done on the level of observations and, hence, does
not utilize a generative model of the BOLD signal, DFC does
not provide an assessment of the underlying neuronal mechanisms
reflected in the fMRI BOLD responses (Stephan et al., 2010;
Friston, 2011).

In this study, we propose a P-DCM based Dynamic Effective
Connectivity approach the for modeling underlying neuronal

dynamics in task-based fMRI. Our approach consists of sliding
(recurrent) overlapping windows to capture the entire extent of
fMRI BOLD time-series in a sequential manner. For each window,
we have used discretized P-DCM with different parameter sets
(i.e., connectivity variables, neuronal and vascular parameters)
for different windows following a recurrence (from the previous
window). Finally, for each such recurrent unit, we perform model
inversion (parameter estimation) until convergence.

2. Methods

To determine time varying connectivity, we combined two
approaches: discretized Physiologically informed Dynamic Causal
Model (dP-DCM) and Recurrent Unit (RU).

2.1. discretized Physiologically informed
Dynamic Causal Model (dP-DCM)

Physiologically informed Dynamic Causal Model (P-DCM) for
fMRI was introduced by Havlicek et al. (2015) to describe the
link between hidden neuronal activity and measured BOLD signals,
overcoming the physiological limitations of previous Dynamic
Causal Models (DCMs). The drawbacks of previous models
included inaccurate modeling of initial overshoot and post-stimulus
undershoot, which are temporal features typically observed in task-
based fMRI BOLD signals.

The DCM approaches consist of a forward generative model
and a backward model or inference (Friston et al., 2003; Havlicek
et al., 2015). The P-DCM forward model (see Havlicek et al., 2015)
consists of a two-state excitatory-inhibitory neuronal model which
incorporates adaptive neuronal dynamics, capable of reproducing
local field potential time courses as observed with invasive
electrophysiology; neurovascular coupling is described as a feed-
forward mechanism, and cerebral blood flow and volume can be
uncoupled; and finally, Havlicek et al. also derived new parameters
for the BOLD signal equation. Importantly, it has been shown that
the different physiological assumptions of P-DCM compared with
previous DCM approaches can lead to different estimated effective
connectivity values (please see Havlicek et al., 2017b, for details).

To utilize RUs, we used a discretized version of P-DCM. For
simplicity, instead of locally linearize the matrix exponential (Ozaki,
1992), we have used the Euler’s method.

dz(t)
dt
=

z(t +1t)− z(t)
1t

(1)

Where z ∈ {xE, xI , a, f, v, q}, xE the excitatory and xI the inhibitory
neuronal response, a the vasoactive signal, f the normalized cerebral
blood flow response, v the normalized cerebral blood volume
response, q the normalized deoxyhemoglobin content and 1t the
difference between two adjacent time-points.

2.1.1. Neuronal component
The neuronal component estimates excitatory and inhibitory

neuronal dynamics by modeling intra-regional and inter-regional
neuronal interactions. The discretized neuronal component
consisting of both excitatory (xE) and inhibitory neuronal states (xI)
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is given as (here and below, please see Havlicek et al., 2015, for the
corresponding continuous variable equations):

xE (t +1t) = (1− σ1t) · xE (t)− (µ1t) · xI (t)+ (c1t) · u(t)
(2a)

xI (t +1t) = (λ1t) · xE (t)+ (1− λ1t) · xI(t) (2b)

Equation 2a refers to the excitatory neuronal dynamics and
2b refers to the inhibitory neuronal dynamics. σ denotes the self-
connectivity whose magnitude determines the temporal scaling of
the neuronal dynamics. λ is the inhibitory gain factor that controls
relative amplitude of the inhibitory activity with respect to the
excitatory activity and the temporal smoothness. µ represents the
inhibitory-excitatory connection, which regulates the temporary
imbalance of the excitatory activity due to the inhibition. λ and µ
are also deciding the rate, at which the activity of excitatory neuronal
response drops from its initial peak to the plateau level and its return
from the post-stimulus dip to the baseline value.

A discretized version of the multivariate form of the two-state
connectivity equation (Havlicek et al., 2015) based on the neuronal
component (described in the equations 2a and 2b) is given as:

XE (t +1t) = (I+1tψ)XE (t)+ (1tψ−)XI (t)+ (1tC)Ud(t)
(2c)

XI (t +1t) = (1tC)XE (t)+ (I− 1tC)XI(t) (2d)

for which

ψij = Aij +
∑M

m = 1 B
(m)
ij um (t) ,

ψ−ij = 0,
Cij = 0,

 ∀ i 6= j,

ψii = −σ e
(
σ̃ +

∑M
m = 1 b(m)ii um(t)

)
,

ψ−ii = −µe
(
µ̃i +

∑K
k = 1 b(k)µi uµk(t)

)
,

Cii = λe
(
λ̃i +

∑L
l =1 b(l)λi uλl(t)

)


A is the connectivity matrix [whose off-diagonal elements encode

connections between regions whereas diagonal elements encode self-
connections (Havlicek et al., 2015)], B denotes the matrix consisting
of the additive modulatory effects controlled by modulatory inputs
um(t), and ψ is the total connectivity matrix. The direct input
stimulus matrix is given as Ud(t). The context dependent inputs
are represented as uµ k(t) and uλ l(t), which are scaled by region-
specific parameters bµ i

(k) and bλ i
(l), and together they modulate

the inhibitory-excitatory connections and inhibitory gain factors,
respectively. These factors are encoded in the matrix given by C. I
is the identity matrix. In the above equations (derived from Havlicek
et al., 2015), the parameters σ̃,µ̃,̃λ represent self-connectivity,
inhibitory-excitatory connection, and inhibitory gain, respectively,
and σ, µ, λ are the corresponding constant scaling factors (please
refer to Havlicek et al., 2015 for further details). Equations 2c and 2d
can be represented in matrix form as follows:

[
XE(t+1t)
XI(t+1t)

]
=

[
I+ 4tψ 1tψ−

1tC I− 1tC

][
XE (t)
XI (t)

]
+

[
1tC

0

]
Ud(t)

(2e)

X(t +1t) = WXX(t)+ WUUd(t) (2f)

In the equation 2f, X represents the excitatory and inhibitory
neuronal variables stacked together in a matrix form, WX and WU
represent the collective matrices of individual weight matrices of X(t)
and Ud(t), respectively.

2.1.2. Feedforward neurovascular coupling (NVC)
component

Neurovascular coupling is the relationship between local
neuronal activity and subsequent changes in CBF occurring through a
complex sequence of coordinated events involving neurons, glia, and
vascular cells. That is, neuronal excitation/inhibition leads to arterial
vasodilation/vasoconstriction associated with increased/decreased
CBF (Zonta et al., 2003; Uludağ et al., 2004; Lauritzen, 2005; Devor
et al., 2007; Attwell et al., 2010)—with the result that the CBF time
course is a smoothed version of the neuronal activity. Considering the
constraint of linear relationship between synaptic activity and blood
flow, the discretized version of feedforward NVC component can be
given as:

a (t +1t) = (1− ϕ1t) ·a (t)+ (1t) ·xE(t) (3a)

f (t +1t) = (φ1t) ·a (t)+ (1− χ1t) ·f (t)+ χ1t (3b)

Here, a(t) is the time-varying vasoactive signal responsible for
transforming the excitatory neuronal response xE(t) to the CBF
response f (t). The set of equations 3a and 3b acts as a positively
constrained low-pass filter of the neuronal dynamics as regulated
by vasoactive signal decay (ϕ), vasoactive signal gain (φ) and blood
inflow signal decay (χ ).

The above set of equations in matrix form can be written as:

[
a(t+1t)
f (t+1t)

]
=

[
1− ϕ1t 0
φ1t 1− χ1t

] [
a(t)
f (t)

]
+

[
1t
0

]
xE (t)

+

[
0
χ1t

]
(3c)

2.1.3. Hemodynamic component
The CBF response f (t) acts as an input to the post-capillary

vessels, which are represented by an expandable venous balloon.
The system of equations governing the hemodynamics describes the
interaction between blood inflow f (t), blood outflow fout(t), blood
volume v(t) and deoxyhemoglobin content q(t) as they flow through
the venous balloon. The discretized version of the set of equations is
given as:

v (t +1t) = v (t)+ 1t·
[

f (t)− fout(v, t)
tMTT

]
(4a)

q (t +1t) = q (t) ·
[

1−
1t·f out(v, t)

tMTT·v(t)

]
+ 1t·

f (t) ·E(f )
tMTT ·E0

(4b)

E
(
f
)
= 1− (1− E0)

1/f (4c)

These equations are following mass balance principles: The
blood volume v(t) depends on the difference between the blood
inflow f (t) and the blood outflow fout(t). The deoxyhemoglobin
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FIGURE 1

(A) Simulated BOLD fMRI time-courses for R1 along with two overlapping windows each of 12 s duration which moves from left to right. The time course
between 0 and 20 seconds has been magnified to show the overlap of two successive windows. The stride of each overlapping window is 1 s.
(B) Unfolded version of the discretized Physiologically informed Dynamic Causal Model (dPDCM)-recurrent unit (RU) architecture through time. For ith

window for which the input is ui and the output is yi. The set of hidden variables from the 0th window, g0 are being fed to the next window. Thus, a
recurrence is followed and the same unit with different parameter values is being repeated time and again till the final window. (C) Overall schematic
representation of each dP-DCM recurrent unit consisting of neuronal, neurovascular, hemodynamic, and blood oxygenation level-dependent (BOLD)
components. These components include respective latent variables, whose states are updated according to the associated equations (shown on the
right, also refer to Equation 8). xE2 i and xE1 i refer to excitatory populations from regions 1 to 2, respectively. These regions are connected at the
excitatory level. For each region, an inhibitory population exists, given by xI1 i. Neuronal responses are the resultant of neuronal activity (due to the
application of input stimulus) generated at the neuronal component. These excitatory responses induce vasoactive signals si, which increase the blood
flow fi. Changes in blood flow cause changes in blood volume (vi) and deoxyhemoglobin content (qi). Finally, these two hemodynamic states together
yield BOLD response yi.

content q(t) depends on the difference between the delivery rate
of deoxyhemoglobin into the venous compartment and the rate of
clearance of deoxyhemoglobin from the tissue. The scaling factor
tMTT denotes the mean transit time that blood takes to pass through

the veins. E(f ) represents the oxygen extraction fraction and E0 is
the net oxygen extraction at rest. [Please note that it is easy to use
a different relationship between E and f. However, for consistency
with previous papers (Havlicek et al., 2015), we employ equation (4c)
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FIGURE 2

Workflow of discretized Physiologically informed Dynamic Causal
Model (dP-DCM)-recurrent unit (RU).

for this relationship]. In addition to this steady-state relationship,
some studies indicate a tight temporal association (but not necessarily
mechanistic coupling) between CBF and cerebral metabolic rate of
oxygen (CMRO2) (Buxton and Frank, 1997; Masamoto et al., 2008;
Zappe et al., 2008; Havlicek et al., 2017a).

2.1.4. Balloon model with viscoelastic effect
Instead of using the steady state flow-volume relationship as used

in the earlier versions of DCMs as in Friston et al. (2003), Stephan
et al. (2008), Havlicek et al. (2015) considered the original balloon
model with viscoelastic effect. It was experimentally revealed in
Mandeville et al. (1998) that the steady-state power law relationship
does not adequately describe the temporal properties of the CBF-
CBV relationship (see Uludağ and Blinder, 2018, for a recent review).
The post-stimulus BOLD undershoot, for example, is primarily
due to slow recovery of venous CBV to baseline rather than a
metabolic effect [(Buxton, 2012), but see van Zijl et al. (2012)

for opposing view]. Considering the dynamic viscoelastic effect
term leads to:

fout (v, t) = v (t)
1
α + τ ·

dv (t)
dt

=
1

τ + tMTT
·

(
tMTT ·v(t)

1
α + τ ·f (t)

)
(5a)

Here, α is Grubb’s exponent, which describes the stiffness of the
vessel. The value of α was experimentally found to be about 0.38
(Grubb et al., 1974; Chen and Pike, 2009) but lower values have
also been found, especially for short stimuli (see Uludağ and Blinder,
2018, for an overview). τ indicates the viscoelastic time constant,
which controls the duration of transient adjustment of the shape of
the venous balloon. The value of the viscoelastic time constant τ is
non-zero and thus cerebral blood outflow follows a different curve
than the inflow, resulting in a temporal uncoupling of CBF and CBV.

Combining equations 4a, 4b, 4c, and 5 in matrix form we get,

[
v(t+1t)
q(t+1t)

]
=

[
1 0

(
4t

tMTT
−

τ4t
τ+tMTT

)
−

tMTT4t
τ+tMTT

0 0 0

0 1 0 0 tMTT4t
tMTT (τ+tMTT )

τ4t
tMTT (τ+tMTT )

4t
tMTT

]



v(t)
q(t)
f (t)

v(t)
1
α

q(t)v(t)
1
α

v(t)
q(t)f (t)

v(t)(
1−(1−E0)

1
f (t)

E0

)
f (t)


(5b)

Combining equations 3c and 5b we get,


a (t +1t)
f (t +1t)
v (t +1t)
q(t +1t)

 =


1− ϕ1t 0 0 0 0 0
φ1t 1− χ1t 0 0 0 0

0
(
4t

tMTT
−

τ4t
τ+tMTT

)
1 0 − tMTT4t

τ+tMTT
0

0 0 0 1 0 tMTT4t
tMTT (τ+tMTT )

0 0
0 0
0 0
τ4t

tMTT (τ+tMTT )
4t

tMTT


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

a (t)
f (t)
v(t)
q(t)

v(t)
1
α

q(t)v(t)
1
α

v(t)
q(t)f (t)

v(t)(
1−(1−E0)

1
f (t)

E0

)
f (t)



+


1t
0
0
0

 xE (t)+


0
χ1t

0
0

 (5c)

The above equation 5c can be further simplified in matrix form
to:

H (t +1t) = WHθH (H (t))+ WHXxE (t)+ ωH (5d)

for which

H (t) =


a (t)
f (t)
v (t)
q(t)

 (5e)

and

θH (H (t)) =
[

a (t) f (t) v (t) q (t) v (t)
1
α

q(t)v(t)
1
α

v(t)
(5f)

q(t)f (t)
v(t)

(
1−(1−E0)

1
f (t)

E0

)
f (t)

]T

WH is weight matrix of the neurovascular coupling,
hemodynamic and Balloon model parameters collectively given
by H (Equation 5e), WHX is the column matrix connecting the
excitatory neuronal response xE with H and ωH is the constant term.
θH(H(t)) is the column matrix consisting of the combination of the
variables as shown in the equation 5f.

2.1.5. BOLD signal component
The BOLD signal y(t) is determined by v(t) and q(t).

y (t) = V0

[
k1·
(
1− q(t)

)
+ k2·

(
1−

q(t)
v(t)

)
+ k3· (1− v(t))

]
(6a)

k1 = 4.3·ϑ0·E0·TE, (6b)

k2 = ε· r0·E0·TE,

k3 = 1− ε

Here, V0 is the resting venous blood volume fraction and k1,
k2, k3 are dimensionless constants, which are dependent on the
physiological properties of brain tissue and acquisition parameters
of the Gradient Echo (GE) sequence. ε refers to the ratio of intra-
to extravascular fMRI signal contributions. ϑ0 symbolizes the field-
dependent frequency offset at the outer surface of the magnetized
blood vessel for fully deoxygenated blood. r0 is the regression slope of
the relation between the variations in intravascular signal relaxation
rate and alterations in oxygen saturation. TE denotes the echo time

(in ms). The first term in the equation 6a describes the relationship
of the extravascular signal and the deoxyhemoglobin content, the
second term of the intravascular signal and the ratio between
deoxyhemoglobin content and venous blood volume, and the third
term depicts the volume-weighted balance between extravascular and
intravascular signals. The values of the parameters in Equation (6b)
for various field strengths can be found in Havlicek et al. (2015).

The above equation 6a can be written in the following matrix
form:

y (t) =
[
−V0k1 −V0k2 −V0k3

] q (t)
q(t)
v(t)

v (t)

+ V0(k1 + k2 + k3)

(6c)

y (t) = WBOLDθBOLD

([
q (t)
v(t)

])
+ ωBOLD (6d)

In total, the discretized P-DCM (dP-DCM) can be represented
using the following set of equations:

dP − DCM = (7)
X(t +1t) = WXX(t)+ WUUd (t)

H (t +1t) = WHθH (H (t))+ WHXxE (t)+ ωH

y (t +1t) = WBOLDθBOLD

([
q (t +1t)
v(t +1t)

])
+ ωBOLD

2.2. Time varying calculations of the
model parameters

We have partitioned the time-series (including the inputs and
the observed/measured BOLD fMRI responses) into N number of
overlapping windows. Each such overlapping window i of duration M
seconds moves from left to right as demonstrated in the Figure 1A.
Please note that for illustration purposes the window size (M) is
chosen to be 12 s in the Figure 1A. However, it can be easily adjusted
and optimized for any given signal-to-noise ratio of the time series.
The time course between 0 and 20 s has been magnified to show
the overlap of two successive windows centered at 6th second and
7th second, respectively. Considering the total number of samples in
a window being T, we have M = T1t. Thus, for every second, we
have T/M = 1/1t samples (sampling frequency). The stride of these
overlapping windows has been set to 1 s.

An unfolded version of the P-DCM-Recurrent Unit architecture
through time is shown in the Figure 1B. For ith window, the input
stimulus to the unit is ui and the output fMRI BOLD response from
the unit is yi. Each unit corresponds to one window and has four
sub-units (components), namely, neuronal, neurovascular Coupling,
hemodynamic and BOLD signal components (Figure 1C).

Every unit has two operations: (a) Forward Model and (b)
Backward Model or Model Inference. In the Forward model, the
model parameters and variables are initialized, and the fMRI BOLD
response of the model is computed. To reduce the error between
the calculated response and the observed fMRI BOLD response, we
use model inference (as a part of the generative modeling technique)
to update the parameters iteratively using gradient descent (Curry,
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1944) until convergence is achieved (typically for 200 iterations or
predefined tolerance threshold, usually 10−6). The unit has a similar
structure to that of a vanilla Recurrent Neural Network (RNN)
(Rumelhart et al., 1985), in which the same unit is being used again
and again but with different set of inputs to get different sets of hidden
variables and outputs. Please note that in the Forward modeling
step, for the first window, we follow zero-mean initializations of the
connectivity parameters as recommended by Friston et al. (2003),
Havlicek et al. (2015). This has been done owing to the following
reasons: (i) to ensure stability of the system (Friston et al., 2003), (ii)
we compare task modulation with control condition, and therefore
only the changes in baseline connectivity are of interest.

For any window i, we employ a dP-DCM-RU, which takes in
input stimuli (for that window) and fits output BOLD responses
(for the same window). In doing so, latent (e.g., neuronal,
hemodynamic, vascular) responses are generated and parameters
(e.g., connectivity) are inferred. Therefore, for any window i
(i ∈ {0, 1, 2, . . ., N–1}), this set can be represented as:
gi = {Xi, Hi,WXi,WU i,WH iWHXiWBOLDi}(see Figures 1B, C and
Equation 8 below). The values of these parameters serve as the
starting values or initializations for the next, i.e., (i + 1)th window.
In other words, the parameters for window (i + 1) are initialized with
the predicted values for its previous window i, preserving continuity
between adjacent windows. It is to be noted that before performing
model inversion, we do zero-padding with half-window length on
each end of the data so that we can cover the entire extent of the
actual signal. Therefore, the computed connectivity at every window
is centered at that window.

The output of each dP-DCM recurrent unit is the fMRI BOLD
response. A recurrence is being followed because the same unit with
different parameter values repeatedly performs the same task or
operation (on input sequences) till the final window.

Dynamic effective connectivity is estimated using overlapping
windows. That is, partitioning the time-series (including the inputs
and the observed/measured BOLD fMRI responses) into N number
of overlapping windows such that ∀ i ∈ {0, 1, 2, . . ., N–1}, we get:

dP − DCMi = (8)
Xi(t +1t) = WXiXi(t)+ WU iUdi (t)

Hi (t +1t) = WH iθH i (Hi (t))+ WHXixEi (t)+ ωH i

yi (t +1t) = WBOLDiθBOLDi

([
qi (t +1t)
vi(t +1t)

])
+ ωBOLDi

A schematic illustrating the updates of the neuronal,
neurovascular, hemodynamic, and BOLD variables (following
the above Equation 8) in each dPDCM recurrent unit has been
shown in the Figure 1C. Our proposed workflow has also been
demonstrated in Figure 2 in a nutshell.

3. Simulations set-up and results

To check the face validity of the approach, first, we simulated
connectivity profiles for 3- and 10-region graphical models
(representing cognitive hypotheses), to show the ability of dP-DCM-
RU to estimate dynamic effective connectivity and to distinguish
different causal functional graphs using model evidence for a simple
and a complex case, respectively.

3.1. Three-region model

3.1.1. Case a: Time-varying connectivity
This model comprises three regions (R1, R2, and R3) (as shown in

Figure 3A). A sinusoidal input u is applied to R1 which then activates
R2 and R3. Area-specific time-varying fMRI BOLD responses, given
as a percentage signal change are shown in the Figure 3B. The colored
boxes correspond to the recurrent window size for each of these time
courses.

3.1.1.1. Forward simulation
In this example, we have considered a fast-varying connection

from R1 to R2 and a slow-varying connection from R1 to R3.
The assumed connectivity time courses between R1 and R2 and
between R1 and R3 are shown in Figure 4A (colored plots).
Supplementary Table 1A shows the piece-wise continuous functions
used to simulate the connectivity values. The effective connectivity as
a function of time (t) is denoted as eff_conn(t). Using the simulated
connectivity pattern, we get the corresponding area-specific fMRI
BOLD responses as shown in the Figure 4B (colored plots). The value
of 1t is 1/32s for all simulations (Wang et al., 2018). For all other
parameters of the model, we please see Supplementary Table 1B (also
please refer to Supplementary Table 1A of Havlicek et al., 2015).

3.1.1.2. Model inversion
For this model inversion, we assume the same connectivity graph

as was used for the forward simulation. In Figure 4, the black dashed
lines represent the predicted estimates from the model on top of
the colored ground truth (i.e., forward simulated) values. It can be
noticed that for both connectivity time courses (Figure 4A) and
fMRI BOLD responses (Figure 4B) the fitting is highly accurate,
with slight inaccuracies in the effective connectivity estimates during
the initial rise and during return to baseline, indicating that sharp
increases or decreases are smoothed out in the BOLD signal and
model inversion.

The Normalized Root Mean Squared Error [NRMSE
(Shcherbakov et al., 2013)]1 value averaged over the two
connections (R1 and R2, R1 and R3) is 2.14% and the NRMSE
value averaged over the fMRI BOLD responses from the three
regions (R1, R2, and R3) is 0.91%. We have repeated the above
simulation set-up for a higher frequency input and have done
corresponding model inversion, whose results have been provided in
the Supplementary Section 1.1.1.

3.1.1.3. Model comparison
To show a noticeable difference in performance between

two models during model comparison, we have considered an
additional scenario. In this scenario, we have considered 2 competing
hypotheses models m1 and m2 as shown in Figures 5A, B. In m1,
driving input u1 (in red) is applied to R1, which is connected to
both R2, and R3. Feedback connection exists from R2 to R1, which is
influenced by modulatory input u2 (in purple). In m2, driving input u1
is applied to R1, which is connected to R2, which in turn is connected
to R3. Feedback connection exists from R3 to R2. Connection from
R2 to R3 is modulated by input u2. Hypothesis model m1 has been
used for generating the ground truth BOLD data.

1 NRMSE is defined as the ratio of Root Mean Squared Error (RMSE) to the
difference between the maximum and minimum values of the ground truth
data (Shcherbakov et al., 2013).
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FIGURE 3

Three-region model and corresponding area-specific simulated functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent
(BOLD) responses. (A) Three-region model for which connections exist from Region 1 (R1) to Region 2 (R2) and from Region 1 (R1) to Region 3 (R3). The
sinusoidal input u is applied to R1 and then activity propagates to both R2 and R3. The model inside the white circle (with black border) shows the
internal sample model representation of R2. (B) Corresponding area-specific simulated fluctuating fMRI BOLD time courses with windows centered at
the 30th second. The gray horizontal line represents the duration of the input stimulus.

FIGURE 4

Predicted estimates along with the ground truth values for Case a. The black dashed lines represent the predicted responses and the colored time
courses are the ground truth values. (A) Connectivity time courses, (B) area-specific functional magnetic resonance imaging (fMRI) blood oxygenation
level-dependent (BOLD) time courses each expressed as a percentage change in response. The gray horizontal bar represents the stimulus duration.

3.1.1.3.1. Predictions using m1 and m2

In Figures 5A, B, the black dashed lines represent the predicted
estimates from the model on top of the colored ground truth
(simulated) values.

For m1, it can be noticed that the fitting of the BOLD responses
is accurate for all three regions (Figure 5A). The NRMSE value for
this reconstructed fMRI BOLD time-series with respect to the ground
truth time-series is 1.45%. For m2, the errors of the predicted BOLD
responses are higher compared to those of m1 (Figure 5B). This

can be attributed to the absence of feedback connection from R2 to
R1 in model m2. The NRMSE value2 thus has increased to 10.31%.
Hence, in terms of accuracy, m1 performed better than m2,1NRMSE

2 In noiseless cases, as in some of the current simulations, Free Energy
(Friston et al., 2003) formulation cannot be utilized. Instead, NRMSE values
between the fits (with respect to ground truth) obtained using different models
can be used to indicate, which model is more accurate than the other. NRMSE
is independent of the signal strength or amplitude and therefore, a more robust
indicator of accuracy (while comparing different models) than RMSE.
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FIGURE 5

Competing hypotheses models (A) m1 (ground truth model) and (B) m2 (randomly chosen model) along with the corresponding area-specific functional
magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses. The black dashed lines represent the predicted responses
and the colored time courses are the ground truth values. The red and purple arrows represent direct and modulatory inputs, respectively.

(= NRMSEm2–NRMSEm1 = 8.86%) is high. This demonstrates that
our method is able to adequately distinguish between two cognitive
hypotheses.

In addition to the above m2, we have the also evaluated
performances of 10 more three-region models with randomly chosen
configurations (Supplementary Section 1.1.2). 1NRMSE values of
these models with respect to m1 (Supplementary Figure 2) clearly
show that m1 is superior in terms of performance and m2 is one of
the less inferior models in the group (m2–m12).

3.2. 10-region model

In a typical fMRI experiment, more than three brain areas are
active. Thus, to demonstrate scalability, we evaluated a 10-region
model as shown in the Figure 6 (center). The connectivity graph
for the forward simulation is illustrated in the Supplementary
Figure 4 (colored plots). Two time-varying inputs u1 and u2 (see
Supplementary Figure 3) are applied to R1 and R2, respectively (see
Figure 6 for the time courses). There is a delay of 20 s between these
two inputs (see Supplementary Figure 3). Activity then propagates
from R1 and R2 to the remaining regions.

3.2.1. Forward simulation
The assumed connectivity time courses are shown in the

Supplementary Figure 4 (colored plots). Using the model and the
connectivity time courses, we get the corresponding area-specific
fMRI BOLD responses.

3.2.2. Model inversion
In both Figure 6 and Supplementary Figure 4, the black dashed

lines represent the predicted estimates from the model on top

of the colored ground truth (simulated) values. The prediction
has a low NRMSE value (averaged over all the 10 regions) of
1.17%. The predicted connectivity time courses are also shown
in Supplementary Figure 4. As can be seen, the predictions
follow the ground truth time courses very closely for all brain
areas.

3.2.3. Model comparison
For model comparison purposes, we additionally performed

model inversion for randomly selected model m2 as shown in
Figure 7 (center).

3.2.3.1. Prediction using m2

In Figure 7, the black dashed lines represent the predicted
estimates from the model on top of the colored ground truth
(simulated) values. Please notice that for fMRI BOLD responses the
reconstruction and hence the fitting is good in the earlier brain areas,
such as R1 and R2, but the discrepancies become more pronounced
and errors larger for the later brain areas. The predicted connectivity
time-courses are shown in Supplementary Figure 5. The NRMSE
value (averaged over all the regions) for this reconstructed fMRI
BOLD time-series with respect to the ground truth time-series
is 25.75%. Hence, in terms of accuracy, m1 performed better
than m2, 1NRMSE (= NRMSEm2–NRMSEm1 = 24.58%) is high
showing that our method can sufficiently differentiate between
two cognitive hypotheses. Additionally, we have also considered
another 10-region model with reciprocal connections and have
performed corresponding model inversion with a randomly chosen
configuration as shown in the Supplementary Section 3, confirming
that m1 can be distinguished from a model with erroneous
connectivity graphs.
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FIGURE 6

Functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) time courses for 10-region model where connections exist
between R1 to R3, R3 to R8, R1 to R5, R1 to R6, R1 to R7, R2 to R6, R2 to R4, R4 to R9, and R4 to R10. Two time-varying inputs u1 and u2 are applied to R1
and R2, respectively. The black dashed lines represent the predicted responses, and the colored lines represent the simulated time courses.

FIGURE 7

Predicted area-specific functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) time courses along with the ground
truth values for m2 which is a randomly chosen model. The black dashed lines represent the predicted responses and the colored time courses are the
ground truth values. There are fitting inconsistencies for R3, R4, R5, R6, R7, R8, R9, and R10 fMRI BOLD time courses.

4. fMRI BOLD time courses with
measurement noise

In this case, we have used two models- a Three-region model
(from “section 3.1.1 Case a: Time-varying connectivity”) as a
simple model and a 10-region model (from “section 3.2.1 Forward
simulation”) as a complex model. Here, the fMRI BOLD time

courses are noisy with measurement or physical noise being present.
Measurement or physical noise is an external noise which gets added
to the signal while it is being acquired. For simulation purposes,
this measurement noise used by us is a zero mean gaussian random
noise with varying levels of standard deviation. Contrast-to-Noise
Ratio (CNR) values were computed with respect to the ground truth
values for fMRI BOLD responses. It is worth noting that we have
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defined CNR as the ratio between the standard deviation of the signal
and the standard deviation of the noise (Definition four of CNR,
Welvaert and Rosseel, 2013) and this definition is consistent with the
previous DCM works (Friston et al., 2003; Frässle et al., 2017)3.

The extracted fMRI time series stem from Principal Component
Analysis (PCA) over numerous voxels in local volumes of interest
which suppresses noise (Frässle et al., 2017). Therefore, as outlined
in Frässle et al. (2017), the typical CNR levels (SNR in DCM
terminology, see footnote 3 for further clarification) of fMRI time
series used for DCM are three or more. It is to be noted that this
value is highly dependent on the tasks and brain areas investigated.
That is, for some tasks and/or brain areas, DCM and its variants
and the derived connectivity values are unreliable. This is already
true for DCM estimating only one connectivity profile for a run
and even more so for estimation of time-varying connectivity. Please
note that this is also true for estimation of time-varying functional
connectivity using resting-state. That is, it is not our claim that
our approach (and no other statistical approach) will work for any
task and/or brain area or any MRI acquisition parameters (such as
field strength, sequence, etc.) but only if certain conditions, such
as CNR levels, are met that time-varying effective connectivity can
be estimated using our approach. Therefore, we have conducted the
simulations for 3- and 10-region models with different CNR values
[CNR = (1, 3, 5, 10, 20)] and repetition times [TR = (4, 2, 1, 0.25,
0.1 s)]. In each case, we resampled (via linear interpolation) the
timeseries to sampling frequency of 32 Hz resulting in an increase
in the number of samples4. Using our method, we did model
inversions for each of these settings for both three-region and 10-
region models. We compared the estimated effective connectivity
time courses to those of the simulated ground truth using Normalized
Root Mean Squared Error (NRMSE), expressed as a percentage (%)
as shown in Figure 8. We repeated the above setup for 10 runs
with newly sampled noise and reported the mean and standard
deviations (s.d.) of the NRMSE values over these 10 runs in
Figure 8.

We make the following two major observations for both three-
region (Figure 8A) and 10-region (Figure 8B) models:

(i) The respective NRMSE values decrease with increase in the
CNR levels for each TR setting. Moreover, at any TR value we observe
that the standard deviations decrease with an increase in the CNR
level, as expected. This indicates that the reliability of predictions
increases toward high CNR values (i.e., when the data is less noisy).

(ii) The corresponding NRMSE values decrease with a decrease
in the TR value for each CNR level. Notably, at any CNR level,
the standard deviations also typically decrease with a decrease in
the TR value (i.e., when the sampling rate is high) indicating more
reliable predictions.

3 There exist several definitions of SNR and CNR: SNR is typically defined
as the ratio of the mean of the fMRI signal to the standard deviation during
baseline. However, the one that is predominantly used in the DCM literature is
given as the ratio between the standard deviation of the signal and the standard
deviation of the noise. This definition is the same as the Definition 4 of CNR in
Welvaert and Rosseel, 2013. Therefore, following Welvaert and Rosseel, 2013,
we will be using CNR terminology in our paper.

4 We have used linear interpolation technique for upsampling/resampling.
Other interpolation/resampling methods (cubic, spline, etc.) and resampling
frequencies have not been explored and it is beyond the scope of the current
paper.

5. Discussion

The fMRI signal is an indirect reflection of neuronal activity,
mediated by neurovascular coupling and hemodynamics. Generative
models describe the biophysical basis underlying fMRI and present
a framework to interpret empirical observations. Through model
inversion, generative models enable investigations of underlying
neuronal dynamics and functional integration in the brain. One
such state-of-the-art generative model is the Physiologically informed
Dynamic Causal Modeling (P-DCM, Havlicek et al., 2015). Most
existing DCM studies (Friston et al., 2003; Stephan et al., 2008; Moran
et al., 2009; Havlicek et al., 2015) typically consider the effective
connectivity to be static for a cognitive task within an experimental
run. However, experimental conditions can vary with time, especially
in cases of complex stimuli, e.g., movie, music, etc. Consequently,
the connectivity strengths between disparate brain regions involved
in processing these complex stimuli may fluctuate with time. Please
note that in the conventional DCM framework (Friston et al., 2003;
Stephan et al., 2008; Moran et al., 2009), it may also be possible to
model dynamic connectivity by utilizing dynamic B or C matrices
(please refer to Equations 2a–f for definition of B and C). However,
such an approach requires prior knowledge of the time-varying
connectivity profiles and just estimates the strength of these dynamic
connectivity predictors. In contrast, our method does not require
prior knowledge of connectivity profiles.

In the recent years, there has been an increasing number
of studies to elucidate the dynamic (functional) connectivity in
fMRI by investigating the temporal correlations of resting-state
BOLD fluctuations in distributed brain areas (Cribben et al., 2012;
Handwerker et al., 2012; Calhoun et al., 2014; Monti et al., 2014).
In such Dynamic Functional Connectivity (DFC) studies, one of
the predominant methods is to employ a sliding window-based
approach to find the time-varying correlations (Chang and Glover,
2010; Kiviniemi et al., 2011; Jones et al., 2012). However, lacking a
generative model, the correlations between the areas are determined
on the level of observations but not on the level of the underlying
causes (Stephan et al., 2010). In contrast, DCM accounts for the
indirect nature of the BOLD signal and fits BOLD signals in the
different ROIs using a system of differential equations (Friston et al.,
2003; Stephan et al., 2008; Havlicek et al., 2015, Havlicek et al., 2017b).

In this paper, we have introduced discretized Physiologically
Informed Dynamic Causal Model with Recurrent Units (dP-DCM-
RU) to characterize dynamic effective connectivity of various
brain regions during tasks. This method is a combination of two
approaches, namely, a Euler based discretization technique and
a recurrent sliding window approach for dynamically modeling
fMRI BOLD responses and for exploring the causal interactions
between different neuronal populations. To validate, we have carried
out simulations with 3- and 10-region models. To that end, we
have decomposed effective connectivity into static and dynamic
components. The static component acts as a baseline component
and the dynamic component varies with time sinusoidally. However,
please note that our recurrent window-based parameter estimation
method can predict any connectivity profiles.

For the Three-region model, we have considered two different
connectivity graphs. Using the first example, we have simulated
noiseless time-varying effective connectivity between the regions. The
results show that the fits of fMRI BOLD responses and the effective
connectivity have low error values, compared to the ground truth
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FIGURE 8

Normalized Root Mean Squared Error (NRMSE) (mean ± s.d.) expressed as a % vs. CNR for. (A) Three-region model and (B) 10-region model for five
different repetition time (TR) settings.

(i.e., forward simulated) BOLD responses. This is not a trivial result
as even assuming the correct connectivity graphs does not guarantee
model invertibility due to potential ill-posed problem.

To show a noticeable difference in performance between models
during model comparison, we have selected another example
scenario (Three-region model) with feedback from R2 to R1
modulated by an input (i.e., the ground truth model, m1) and 11
randomly chosen models for comparison. Results show that the
randomly chosen models did not perform well in terms of fitting
accuracy values (given by NRMSE) relative to the ground truth model
(m1). The results indicate a clear distinction between the hypothesis
models and demonstrates that the dP-DCM-RU approach does not
necessarily guarantee a good fit to any BOLD signal and is therefore
capable of distinguishing models.

Typically, more than three brain regions are active during a
complex cognitive task. Therefore, to illustrate a more complex
case, we have performed simulations for a 10-region model (also
see 10-region model example with reciprocal connections in the
Supplementary Section 3). Results clearly suggested that the method
was able to predict effective connectivity with low error values
and to fit fMRI BOLD responses with high accuracy. We did
model a competing 10-region connectivity graph (hypothesis model)
for comparison. Model inversion results demonstrated that this
randomly chosen hypothesis model was unable to reconstruct fMRI
BOLD signals accurately leading to large deviation values from the
ground truth fMRI BOLD responses, in particular, in areas most
distant from the input areas. In this 10-region example (“section
3.2 10-region model”), we did not provide any delay between the
input and connectivity (e.g., R1 to other regions). However, the
window/duration of connectivity and input do not necessarily have
to match. That is, connectivity from a certain brain region to another
brain region may change from baseline value later than the input
depending on the experiment (for such an example, please refer to
“section 3.1.1 Case a: Time-varying connectivity”).

In addition, we have considered noisy scenarios by adding
measurement noise (see “section 4 fMRI bold time courses with
measurement noise”). We have conducted simulations for 3- and
10-region models with different Contrast-to-Noise Ratio (CNR)

values [CNR = (1, 3, 5, 10, 20)] and repetition times [TR = (4,
2, 1, 0.25, 0.1 s)]. We observed that the connectivity prediction
error decreases and the reliability of predictions increases with an
increase in CNR and a decrease in TR values, respectively (see
Figure 8). Depending on the threshold for accuracy used, estimation
of dynamic connectivity using our method may be prohibited (the
same argument also applies for dynamic functional connectivity
calculation). In the cases of low CNR and high TR values, standard
denoising procedures may be used, which may lead to less erroneous
and more reliable parameter estimates.

One of the foremost limitations of DCM in general is that they are
restricted to a fixed number of regions because of their computational
demand (Frässle et al., 2017). In particular, the number of coupling
parameters (i.e., connectivities) grows quadratically with the number
of nodes, and therefore the computational time required to invert
these models grows exponentially with the number of free parameters
(Seghier and Friston, 2013; Frässle et al., 2017). Since our method is
based on the P-DCM framework, the above problem also persists in
our case. Additionally, the windowing scheme makes the approach
even more computationally intensive. Furthermore, higher-order
integrators are potentially slow in practice and computational
(memory) requirements become even larger because of explicit
Jacobian-based update schemes, which are evaluated numerically
at each time point (Friston et al., 2003). Therefore, to increase
computational speed and reduce memory, we utilize the lower-
order Euler method. However, a disadvantage of the Euler method
compared to higher order ODE solvers is lower numerical accuracy.
Nevertheless, the numerical errors can be kept low for small step size
1t values. Following Wang et al. (2018), we have assessed the impact
of different step sizes for the three-region model. As illustrated in
the Supplementary Figure 10, NRMSE is the lowest (with a value
of 0.82%) for 1t = 1/32 s and it increases (more than linearly) with
step-size (e.g., for 1t = 1/4 s, NRMSE = 19.97%). Hence, we selected
1t = 1/32 s for all our simulations.

Another challenge for dP-DCM-RU is the selection of optimal
window size. If the window sizes are too large, then the transients
may not be captured, whereas too small window sizes may lead to
overfitting of the model (Sakoğlu et al., 2010; Shakil et al., 2016).
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We investigated the effect of window sizes on the (three-region)
model performance given in terms of NRMSE (%). Supplementary
Figure 11 shows that for a window size of 5 s, NRMSE is low (1.45%),
whereas model performance substantially degrades for a window size
of 11 s (NRMSE increases to 22.68%). However, the window size
can be easily adjusted to the complexity of the experimental design.
A 5 s window size worked well for varying connectivity chosen in
our simulations (Supplementary Figure 11). Please note that—as the
BOLD signal can be represented as a smoothing kernel—very fast
neuronal dynamics cannot be recovered by fMRI for any window size,
independent of acquisition speed and analysis method (Polimeni and
Lewis, 2021).

Park et al. (2018), Zarghami and Friston (2020) have proposed
dynamic functional connectivity estimation frameworks for resting
state fMRI (rs-fMRI). Park et al. (2018) utilized discrete cosine
transform eigenvariates and Hierarchical Parametric Empirical Bayes
(PEB) approach (Friston et al., 2016) to model dynamic functional
connectivity at two levels. In the first level, they have inverted
a spectral DCM (spDCM) separately for each window to obtain
(within-window) connectivity parameters. Subsequently, in the
second level they have applied PEB to estimate between-window
effects on these connectivity parameters. Motivated by the nonlinear
dynamical systems theory, Zarghami and Friston (2020) proposed a
hybrid generative framework consisting of Hidden Markov Model
(HMM), PEB and spDCM (discrete and continuous hierarchical
models) to explain metastable dynamics in the brain via modeling the
temporal evolution of different connectivity states. Their paradigm
utilized the variational message passing technique, for which the
HMM provided Bayesian model averages for the intermediate PEB
level, which successively supplied priors to each spDCM. In this
manner, by assigning an itinerant prior to the state-transition
matrix, they estimated the transition and state-dependent effective
connectivity parameters. On the contrary, our approach (“section
2.2 Time varying calculations of the model parameters”) neither
requires “two-level” connectivity estimation nor involves a “hybrid”
generative approach. Furthermore, these previous studies have
typically considered larger window sizes for their estimations, which
they have shown to work well for rs-fMRI. It is important to note that
in contrast to our approach, these works do not capture the entire
temporal extent of connectivity dynamics (i.e., connectivity values
do not exist for all time-points) and are only suitable for tracking
slow dynamics (Park et al., 2018, Zarghami and Friston, 2020).
Furthermore, our method considers the stride of the overlapping
windows to be 1 s and, therefore, covers the entire extent of the
signal (in the order of seconds), and is able to track relatively faster
dynamics (as demonstrated in Figure 4, where we have considered
slow and fast varying connectivities). Finally, our work deals with
task-based fMRI and not rs-fMRI.

Another recent work (Wang et al., 2018) utilizing Recurrent
Neural Networks (RNNs) (Rumelhart et al., 1985; Hochreiter and
Schmidhuber, 1997) proposed a biophysically interpretable DCM-
RNN. Although both dP-DCM-RU and DCM-RNN take inspiration
from the recurrence concept as in RNNs, DCM-RNN differs from
dP-DCM-RU in many aspects: In their method, they have used
Truncated Backpropagation Through Time (TBPTT) for computing
parameter updates, whereas we have simply used gradient descent
as done in standard DCM implementations (Havlicek et al., 2015).
Their definition of recurrence is the same as in standard RNNs
utilizing segmented batches. Therefore, they have used multiple
batches in parallel (as in deep learning) and updated model

parameters via TBPTT. To ensure that the gradients obtained by
TBPTT are reliable, each of these segments has to be sufficiently
long and the sampling time has to be sufficiently small. Since
they use parallel batches for parameter update, the gradients
may often not be accurate (Wang et al., 2018). This is because
each of those batches does not represent the characteristic of
the whole signal. Due to this batch parallel processing, they can
only estimate static connectivity. In our case, the recurrence lies
between the successive P-DCM units. We do sequential processing
of each such unit estimating time-varying connectivity parameters.
Furthermore, unlike DCM-RNN, we have used the state-of-the-
art DCM model, i.e., P-DCM (Havlicek et al., 2015) in our
framework instead of Single-State DCM (S-DCM) (Friston et al.,
2003). Finally, the authors of DCM-RNN claimed that their model
can be extended for complex paradigms such as movie watching
using representations of the complex stimuli. However, at this stage
their model cannot estimate dynamic connectivity without further
modifications.

One of the major DCM steps is to conduct a Model
Selection (using group Bayes factor) between several alternative
competing models to establish which model accounts best for
the experimental observations. After selection of the optimal
model, making further inferences about its parameter estimates
(e.g., connectivity) is typically not done in DCM studies and
usually some statistical values (e.g., mean) of the parameter
estimates for the group is reported (Stephan et al., 2009). However,
inferences about model parameters can still be made with either
a fixed effects or a random effects approach. For fixed effects
parameter inference, a common way is to use Bayesian average
(for example “DCM average” function in SPM) (Friston et al.,
1994). For random effects parameter inference, subject-specific
parameter estimates can be used with a classical frequentist
test, such as a paired t-test (between model parameters) or
repeated measures ANOVA in case of multiple sessions per subject
(Stephan et al., 2009).

It is important to note that our proposed method is not
necessarily restricted to block designs. Naturalistic stimulus typically
comprises block (e.g., fluctuation of light intensity) and event-related
(e.g., presence of face for a limited period of time) components.
However, that due to sluggishness of the hemodynamic response, very
fast events may not be detected, similarly as in standard fMRI data
and analysis. Please note that our approach can be used with arbitrary
time-varying inputs and the choice of sinusoidal inputs (in our
simulations) is for illustrative purposes and can easily be modified.

In our approach, the estimates from the previous window serve
as the initial values (and not constraints) for the next window.
Therefore, the model gets a good starting point which makes it easier
to optimize. However, for any window, model inversion is performed
independently, therefore, an estimation error in the previous window
will unlikely be reflected in the next window. Furthermore, for
optimization we have resorted to using the conventional gradient
based scheme, i.e., gradient descent. Although gradient descent can
potentially be slow, it has a better generalization performance (Zhou
et al., 2020). Alternatively, one can use momentum based (Sutskever
et al., 2013) or adaptive algorithms (Kingma and Ba, 2015) to further
speed up performance while maintaining accuracy (Ruder, 2016).
Nonetheless, we have not explored different optimization algorithms
and strongly feel that it is beyond the scope of the current paper since
this is a general topic for all DCM and model inversion approaches
and not specific to our paper. To summarize, when a subject is
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exposed to a complex stimulus (e.g., watching a movie), human brains
show dynamic effective connectivity between remote areas on the
neuronal level, which can be indirectly measured using fMRI and
which can be effectively recovered using the d-PDCM-RU approach.
In the future, we will demonstrate the validity of our method in
clinical and cognitive neuroscience studies.
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