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Introduction: In the modern obesogenic environment, heightened reactivity to

food-associated cues plays a major role in overconsumption by evoking appetitive

responses. Accordingly, functional magnetic resonance imaging (fMRI) studies have

implicated regions of the salience and rewards processing in this dysfunctional

food cue-reactivity, but the temporal dynamics of brain activation (sensitization or
habituation over time) remain poorly understood.

Methods: Forty-nine obese or overweight adults were scanned in a single fMRI

session to examine brain activation during the performance of a food cue-reactivity
task. A general linear model (GLM) was used to validate the activation pattern of

food cue reactivity in food > neutral contrast. The linear mixed effect models were

used to examine the effect of time on the neuronal response during the paradigm of

food cue reactivity. Neuro-behavioral relationships were investigated with Pearson’s

correlation tests and group factor analysis (GFA).

Results: A linear mixed-effect model revealed a trend for the time-by-condition

interactions in the left medial amygdala [t(289) = 2.21, β = 0.1, P = 0.028], right
lateral amygdala [t(289) = 2.01, β = 0.26, P = 0.045], right nucleus accumbens

(NAc) [t(289) = 2.81, β = 0.13, P = 0.005] and left dorsolateral prefrontal cortex

(DLPFC) [t(289) = 2.58, β = 0.14, P = 0.01], as well as in the left superior temporal

cortex [42 Area: t(289) = 2.53, β = 0.15, P = 0.012; TE1.0_TE1.2 Area: t(289) = 3.13,

β = 0.27, P = 0.002]. Habituation of blood-oxygenation-level-dependent (BOLD)

signal during exposure to food vs. neutral stimuli was evident in these regions. We

have not found any area in the brain with significant increased response to food-

related cues over time (sensitization). Our results elucidate the temporal dynamics

of cue-reactivity in overweight and obese individuals with food-induced craving.

Both subcortical areas involved in reward processing and cortical areas involved

in inhibitory processing are getting habituated over time in response to food

vs. neutral cues. There were significant bivariate correlations between self-report

behavioral/psychological measures with individual habituation slopes for the regions

with dynamic activity, but no robust cross-unit latent factors were identified between

the behavioral, demographic, and self-report psychological groups.

Discussion: This work provides novel insights into dynamic neural circuit

mechanisms supporting food cue reactivity, thereby suggesting pathways in

biomarker development and cue-desensitization interventions.
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Introduction

Overweight and obesity affect 39% of the adult population, are
a leading cause of death in the adults and are considered a public
health crisis in the USA and other countries, with more than 1.9
billion adults suffering from overweight, of which 650 million are
obese (Ritchie and Roser, 2017). In light of the dramatically rising
mortality and morbidity with surplus body weight (Hruby and Hu,
2015; Abdelaal et al., 2017), which is related to the overeating of
highly palatable foods, it is critical to understand the physiology
of overweight and obesity and the neurocognitive architecture
underlying relevant behaviors. Food craving is driven by the presence
of stimuli that predict the rewarding effect of food (Robinson and
Berridge, 1993; Nederkoorn and Jansen, 2002; Pedersen et al., 2022),
which is a key feature of eating disorders, but its association with
medical and psychological outcomes might depend on the type of
eating disorder (Chao et al., 2016; Oliveira and Cordás, 2020).

The incentive-sensitization theory of obesity postulates that
repeated pairings of rewards from food intake and cues that predict
imminent food intake result in a hyper-responsivity of rewards
circuitry to food cues, which can lead to craving and overeating
(Berridge et al., 2010; Nijs and Franken, 2012; Polk et al., 2017;
Agarwal et al., 2021). Food craving and subsequent weight gain can
be triggered by exposure to cues associated with palatable foods
(Boswell and Kober, 2016). The cue-potentiated feeding response
is the outcome of conditioning, in which neutral stimuli take on
incentive value after being repeatedly paired with food ingestion
(Han et al., 2018). Such cues include the sight, smell, and taste of
food. As an “ecologically valid” approach, food cue exposure has
been developed increasingly as a proxy measure for eliciting cue
reactivity and craving to examine the mechanistic and predictive
value of subjective, behavioral, and biological responses to food cues
(Lawrence et al., 2012; Boswell and Kober, 2016; Hermann et al., 2019;
Ghobadi-Azbari et al., 2022; Kanoski and Boutelle, 2022).

Functional magnetic resonance imaging (fMRI) is a standard
tool to investigate the neural correlates of food cravings during
cue exposure. These studies reported that neural cue reactivity
as indexed by fMRI signals is prospectively associated with food
seeking/consumption behavior measured by weight gain (Demos
et al., 2012; Yokum et al., 2014) but also predictive of weight loss
intervention outcome (Hermann et al., 2019; Neseliler et al., 2019).

Most fMRI food cue reactivity studies model the response to a
repeated stimulus using a single constant-amplitude regressor, an
approach that provides an estimate of the average response amplitude
along the fMRI session. However, there is a shred of evidence that
cue reactivity triggers a motivational response that has a temporal
behavior (Fischer et al., 2003; Strauss et al., 2005; Williams et al.,
2013; Murphy et al., 2018; Ekhtiari et al., 2021; Jafakesh et al., 2022).
In accordance with conventional methodological guidelines for fMRI
cue-reactivity paradigms, multiple exposures to cues occur as blocks
or events throughout each experiment. This provides a fantastic
opportunity to study the temporal dynamics of the response to food
cues by include time in the analysis. During repeated cue exposure
trials, we anticipate that various regions will exhibit habituating or
potentiating responses. Previous fMRI cue reactivity studies have
almost exclusively focused on dynamic responses to affective cues
(Wright et al., 2001; Luan Phan et al., 2003), including brain areas
such as the amygdala, ventral striatum, nucleus accumbens, and
prefrontal cortex. In particular, the amygdala, a region commonly

associated with rewards valuation and emotional reactivity, rapidly
habituates to repeated exposure to emotional stimuli (Breiter et al.,
1996; Fischer et al., 2003; Sladky et al., 2012; Plichta et al., 2014).
In addition, the nucleus accumbens habituates as the salience of
the motivational stimuli decreases with repetition (De Luca, 2014).
Several studies have demonstrated apparent habituation effects to
repeated presentations of drug cues in the superior temporal gyrus
(Ekhtiari et al., 2021; Jafakesh et al., 2022). Of particular interest
from the behavioral and clinical perspective, superior temporal gyrus
habituation has been shown to be negatively correlated with omission
error and reaction time (Jafakesh et al., 2022). Furthermore, it is
correlated with drug cravings, the total number of risky behaviors,
and the number of abuse days in the last month. However, the
habituation/sensitization of a neural response to repeated exposure to
food vs. neutral stimuli within overweight and obese people remain
unclear. This study intends to examine the temporally dynamic brain
activation patterns that underlie food cue-reactivity in overweight
and obese people using data from the fMRI implementation of a food
cue-reactivity task. The activation slopes may reflect the sensitization
(positive slope) or habituation (negative slope) of brain regions as
they engage in the processing of food cues. In addition, the clinical
and behavioral correlates of activation slopes over time in regions
with time-varying activity will be investigated, providing an initial
estimate of the potential clinical utility of activation slopes. To our
knowledge, this is the first food cue-reactivity study using a sliding
window over the BOLD response to assess the temporal dynamics of
brain activation.

Materials and methods

Participants

The study database was the same as described in our previous
work (Ghobadi-Azbari et al., 2022). After giving written informed
consent, 54 obese or overweight volunteers participated in the
fMRI experiment based on previous calculations of statistical power.
A total of five participants were excluded from the study—two
for excessive head motion during scanning, two for unanticipated
claustrophobia, and one for intracranial lesion. Thus, data from
49 participants were analyzed (33 females; mean age 35.55 years,
range 21–59 years). Table 1 provides information on demographic
and behavioral characteristics. Participants filled out a screening
questionnaire to assess eligibility for the study. Interested individuals
were eligible if they reported an unhealthy BMI (26–35 kg/m2),
no current or past history of psychiatric or neurological disorders,
no current or past history of eating or substance use disorders, no
current psychopharmacological medication, no current pregnancy,
and meeting MR-specific inclusion criteria (lack of claustrophobia,
no metallic implants, etc.). All participants had normal or corrected-
to-normal vision. As we aimed to study food cue reactivity in a
sample of overweight/obese adults who have frequent food cravings
(≥3 per day during last month), we also excluded people who (1)
reported having severe food allergies, (2) reported having special
diets, (3) reported gastrointestinal disorders, metabolic, or endocrine
disease, or (4) reported lower sensitivity to food cue responsiveness
(i.e., people with mean craving scores <80). The study was approved
by the ethics committee of the Iran University of Medical Sciences
(IR.IUMS.REC.1396.0459).
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Experimental procedures

After the screening procedure, each participant was scanned in a
single fMRI session. On the screening session, participants completed
a battery of baseline assessments {demographic questionnaire,
Depression Anxiety Stress Scales-21 [DASS-21; (Sahebi et al., 2005)],
Three-Factor Eating Questionnaire-R18 [TFEQ-R18; (Mostafavi
et al., 2017)], Eating Disorder Diagnostic Scale [EDDS; (Stice et al.,
2000)], Compulsive Eating Scale [CES; (Mostafavi et al., 2016)]}.
This was followed by familiarization with the task during a training
session outside the scanner, which lasted ∼3 min. On MRI scan day,
participants arrived in the morning between 8:30 and 10:30 a.m.,
after not eating anything for at least 2 h. Participants were asked

TABLE 1 Sample characteristics (n = 49).

Variable Mean SD

Age 35.55 10.00

Height (m) 1.67 0.10

Weight (kg) 82.57 14.51

BMI (kg m−2) 29.60 3.63

Education (year) 16.88 2.33

CES 10.94 5.81

DASS 20.77 12.77

Depression (0–21) 6.13 4.97

Anxiety (0–21) 5.02 4.15

Stress (0–21) 9.63 5.06

TFEQ

Hunger (0–30) 14.44 5.43

Cognitive restraint (0–12) 5.69 2.78

Emotional eating (0–6) 3.44 1.61

EDDQ

Body image (0–24) 14.69 5.39

Overeating (0–8) 4.44 2.08

Compensatory behaviors (0–56) 3.19 4.08

FCQ-trait 89.54 39.70

Lack of control under environmental cues 28.50 14.85

Thoughts or preoccupation with food 12.25 8.46

Hedonic hunger 30.88 13.22

Emotions before or during food craving 10.92 5.61

Guilt from craving 7.00 4.32

FCQ-state 31.91 16.04

Intense desire to eat 7.52 3.92

Anticipation of positive reinforcement that may result
from eating

7.77 3.86

Anticipation of relief from negative states and feelings
as a result of eating

6.07 4.07

Obsessive preoccupation with food or lack of control
over eating

6.20 4.20

Craving as a physiological state 4.34 3.89

BMI, body mass index; CES, compulsive eating scale; DASS-21, depression anxiety stress scales-
21; EDDQ, eating disorder diagnostic questionnaire; FCQ-T, food craving questionnaire-trait;
FCQ-S, food craving questionnaire-state; TFEQ-R18, three-factor eating questionnaire-R18.

to complete Food Craving Questionnaire-State [FCQ-S; (Cepeda-
Benito et al., 2000)] and the Food Craving Questionnaire-Trait [FCQ-
T; (Kachooei and Ashrafi, 2016)]. After ratings of feelings of the
current craving, hunger, prospective consumption, food control, and
emotional states (anger, anxiety, awareness, drowsiness, happiness,
and sadness) on a 0–100 visual analog scale (Figure 1A), participants
began the food cue reactivity paradigm (in the MRI scanner).
Participants assessed their feeling of food craving, prospective
consumption, hunger, food control, and emotional states following
the scans (Figure 1A).

Food cue reactivity task

The task consisted of six blocks featuring a series of six food
pictures each and six blocks featuring a series of six neutral pictures,
used in our previous study (Ghobadi-Azbari et al., 2022). Each picture
was presented for 4 s, and individual blocks were separated by 8–12 s
intervals (Figure 1B). Participants saw 72 pictures throughout the
course of 342 s. The order of presentation of stimulus was pseudo-
randomized across subjects. The pseudo-randomized order was the
same among subjects. The food and neutral cues were obtained from
a publicly available and validated cue database (Charbonnier et al.,
2016). Image presentation was controlled using the Psychtoolbox-
3 software (Kleiner et al., 2007). We used a sliding window over
the BOLD response to examine the temporal dynamics of brain
activation, with a window size of 198 s and a window step size of
103 s, leading to the extraction of three overlapping windows. The
overlapping nature of the sliding windows allows smoothing the
transition between windows to have a higher signal-to-noise ratio,
which increases the power of the LMEs and makes it possible to
identify stable dynamic activate regions.

MRI data acquisition

Functional images, field maps and an MPRAGE sequence were
acquired on a Siemens Magnetom Prisma 3T scanner using a 20-
channel head coil. For the functional MRI we used a T2∗-weighted
gradient echo planar (EPI) sequence with 43 transversal slices
oriented parallel to the AC–PC line [whole-brain coverage, repetition
time (TR) = 2,500 ms, echo time (TE) = 23 ms, flip angle (FA) = 70◦,
slice thickness 3.0 mm, FOV 192 mm, in-plane resolution 3 × 3 mm].
For the structural images we acquired a T1-weighted 3D MPRAGE
sequence of 5 min 18 s (176 sagittal slices, slice thickness = 1 mm,
TE = 3.45 ms, TR = 1,810 ms, FA = 7◦, FOV = 256 × 256 mm). For
the field map images we used a double-echo spoiled gradient echo
sequence (gre_field_map; TR = 444 ms, TE = 5.19/7.65 ms, voxel
size = 3 × 3 × 3 mm, FA = 60◦).

fMRI pre-processing

Functional MRI data were pre-processed with the AFNI
software package (National Institute of Mental Health, Bethesda,
MD)1. The first three functional scans were discarded to ensure
steady-state magnetization. The pre-processing pipeline consisted

1 https://afni.nimh.nih.gov
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FIGURE 1

Outline of study design and food cue-reactivity task. (A) Experimental procedure. Individuals were first subjected to a cognitive functional screening.
Each participant (n = 49) then underwent a food cue-reactivity training task. On the day of the experiment, participants completed the food craving
questionnaire (FCQ)-state and FCQ-Trait questionnaires before undergoing an magnetic resonance (MR) scan with the food cue-reactivity task.
Participants assessed their self-reported hunger, food craving, and emotional states before and after the MR scan. (B) Food cue-reactivity paradigm. In
the food cue-reactivity task, participants saw 12 blocks of six pictures each (six blocks with food cues and six blocks with neutral cues). After each block,
there was an inter-block interval that lasted between 8 and 12 s. Participants saw 72 stimuli throughout the course of 342 s.

of despiking, slice-time correction, realignment, co-registration,
spatial normalization to the Montreal Neurological Institute (MNI)
standardized space, and spatial smoothing with a 4 mm full-width
at half-maximum Gaussian kernel. Times of repetition (TRs) with
motion above 3 mm were censored.

Functional MRI whole-brain contrast
analysis

The preprocessed fMRI data were analyzed using a general
linear model (GLM) created by modeling onset times for the food
conditions and for the neutral conditions with a 25 s BLOCK
function, convolved with a standard hemodynamic response function
(HRF) to generate two regressors of interest. Six motion correction
parameters were included from each subject as nuisance regressors
into the first-level model. For each subject, the differential contrasts
directly comparing the food to the neutral conditions were then
entered into second-level mixed-effects models implemented using
AFNI’s 3dMEMA. The whole-brain statistical group maps were
corrected for multiple comparisons using a cluster-based approach.
A Monte Carlo simulation using the AFNI’s 3dClustSim determined
the cluster size threshold of 50 voxels corresponding to corrected
statistical results with a voxel-wise bi-sided threshold of p < 0.0039

and with a threshold for whole brain multiple comparisons set at
p < 0.05 using NN2 clustering, where clustered voxels can share faces
and edges (Forman et al., 1995; Cox et al., 2017).

Temporal dynamics of whole-brain
activation

The effects of Time (T1, T2, T3), Condition (Food, Neutral),
and Time × Condition interaction on the whole brain functional
activation were analyzed with linear mixed effect (LME) using the
function “3dLMEr” of the AFNI software package. Condition (Food,
Neutral), Time (T1, T2, T3), and Time × Condition interaction were
included as fixed-effects factors and Subjects as random effect. The
resulting statistical group maps of main effect of Time are corrected
for multiple comparisons using a cluster-based approach with a
voxel-wise bi-sided p-value threshold of p < 0.0033 and a minimum
cluster size of k = 40, which corresponds to a cluster-level alpha of
p < 0.05 using NN2 clustering. The effects of Condition and time-by-
condition interaction on the whole brain functional activation were
analyzed with voxel-wise p-value thresholds of p < 0.05 and p < 0.01,
respectively. The statistic values for main effects of Time, Condition,
and Time × Condition interaction on the whole brain functional
activation (generated by 3dLMEr) are represented in the output as
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chi-square with two degrees of freedom. The fixed number of DFs
(i.e., 2) for the chi-square statistic, regardless of the specific situation,
is adopted for convenience because of the varying DFs due to the
Satterthwaite approximation.

Temporal dynamics of regional activation

In order to examine the temporal dynamics of regional activation,
we performed LME models (function lmer in R package lme4)
for each subregion in the Brainnetome atlas with fixed effects of
Condition (Food, Neutral) and Time in windows (T1, T2, T3), also
adding an interaction term for the two effects (i.e., Condition and
Time), and by-subject random intercepts. Also, the model included
motion parameters as a fixed effect, which was defined as the
mean Euclidean norm across the entire imaging run and included
because of the potential for residual head motion effects after
standard correction procedures. The model was “Beta∼Condition
∗ Time + Motion + (1| Subject).” For each subject, mean beta
weight values were estimated for all 246 ROIs in the Brainnetome
atlas (BNA) (Fan et al., 2016). We then identified brain regions
with significant time-by-condition interaction term. The p-values
were not corrected in exploratory dynamic analysis of regional
activation, and only uncorrected p < 0.05 values were used. Finally,
we examined the temporal dynamics of significant regions using
the BOLD signal change for the relevant conditions across the
three windows. Information related to temporal dynamics of brain
activation for block-wise analysis is presented in Supplementary
material for Block-wise Temporal Dynamics.

Group factor analysis

We used the group factor analysis (GFA) to explain relationships
between groups of variables with a sparsity constraint (Klami et al.,
2015). GFA uses a sparse Bayesian estimation to identify latent factors
that either represent a robust relationship between groups or explain
away group-specific variation. Four variable groups were defined: (1)
brain activation measures; (2) behavioral measures; (3) demographic
measures; and (4) baseline psychological measures. For brain
activation measures, food minus neutral contrasts from 34 regions of
interest [OFC (47o_left, 47o_right, A11l_left, A11l_right, A11m_left,
A11m_right), vmPFC (A14m_left, A14m_right), ACC (A32p_left,
A32p_right, A32sg_left, A32sg_right), caudate (dCa_left, dCa_right,
vCa_left, vCa_right), putamen (dlPu_left, dlPu_right, vmPu_left,
vmPu_right), globus pallidus (GP_left, GP_right), amygdala
(lAmyg_left, lAmyg_right, mAmyg_left, mAmyg_right), nucleus
accumbens (NAc_left, NAc_right), hippocampus (rHipp_left,
rHipp_right), insula (vIa_left, vIa_right, vIg_left, vIg_right)] based
on the results of meta-analyses were included as neural GFA group.

In total, the model included 34 regions of interest brain activation
measures, 14 behavioral measures [changes in self-reported craving,
FCQ-State subscales (Lack of control, Desire, Positive reinforcement,
Negative reinforcement, Physiological hunger), and FCQ-Trait
subscales (Lack of control, Emotions, Guilt, Hunger, Thoughts)], three
demographic measures (Age, BMI, Education), and 10 self-report
psychological measures [CES, DASS subscales (Depression, Anxiety,
Stress), TEFQ subscales (Hunger, Cognitive restraint, Emotional
eating), EDDQ subscales (Body image, Overeating, Compensatory
behaviors)]. A form suited for GFA was achieved by z-normalizing

the variables to have a zero mean and unit variance. To reduce the
risk of identifying erroneous latent factors, GFA estimation was
repeated 10 times to retain the robust latent factors constant across
the sample chains.

Individual habituation slopes

Following the group-level analysis’s identification of regions
exhibiting dynamic activity, the relationship between the
behavioral/clinical data and the individual habituation slopes
for the regions with dynamic activity was examined (Plichta et al.,
2014; Avery and Blackford, 2016). For each significant region of
interest (ROI) in the Time × Condition interaction, we computed
linear regression models separately for each subject using the
function “lm” of the stats package in R programming language
and entered the Time (with three windows) and Condition (food
versus neutral), and their interaction as fixed effects. The model
was “Beta∼Condition + Time + Condition: Time.” The slope of the
interaction term, which represents the estimated beta coefficients of
the “condition: time” term from these subject-level models, reflects
the brain activity associated with one condition in the model in
comparison to the other condition (habituation slopes). The time-
by-condition interaction was considered to be the subject’s selective
habituation to food-related cues, with negative values indicating a
declining response to food-related cues as compared to the change in
response to neutral cues.

Results

Behavioral effects of food cue reactivity

We investigated the behavioral effects of cue reactivity on
craving, hunger, prospective consumption, and food control ratings.
As expected, individuals demonstrated increased scores in craving
[t(87.88) = –2.96, P = 0.004], hunger [t(53.30) = –2.69, P = 0.009],
prospective consumption [t(86.99) = –3.19, P = 0.002], and decreased
food control scores [t(56.67) = 2.12, P = 0.04] following food cue-
reactivity task. Interestingly, we did not observe any statistically
significant changes in anger [t(84.24) = 0.09, P = 0.925], awareness
[t(91.75) = 0.98, P = 0.33], drowsiness [t(92.26) = 0.32, P = 0.75],
sadness [t(92.95) = 0.49, P = 0.627], and happiness ratings
[t(92.99) = –1.02, P = 0.311] following food cue-reactivity paradigm.
Results revealed a significant decrease in anxiety state [t(84.67) = 2.46,
P = 0.016]. Results are illustrated in Supplementary Figure 1.

Time-invariant brain activation of food
cue reactivity

As a quality control to validate the activation pattern of
food cue reactivity, a whole-brain GLM analysis was conducted
with Food and Neutral as fixed regressors (see Figure 2A and
Supplementary Table 1). As expected, the main effect of cue
reactivity (contrast: food > neutral) was significant in several clusters.
These clusters included regions in the medioventral/dorsal cingulate
gyrus, medioventral fusiform gyrus, lateral superior frontal gyrus,
ventral middle frontal gyrus, posterior orbitofrontal cortex, rostral
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FIGURE 2

Change in functional brain activation during the functional magnetic resonance imaging (fMRI) food cue-reactivity task. Main effect of cue reactivity on
the whole brain functional activation (A) and on Brainnetome atlas regions (B). Main effect of Time on the whole brain functional activation (C) and on
Brainnetome atlas regions (D). Data in bar charts are represented as mean ± s.e.m. Tha, thalamus; BG, basal ganglia; Hipp, hippocampus; Amyg,
amygdala; LOcC, lateral occipital cortex; MVOcC, medioventral occipital cortex; CG, cingulate gyrus; INS, insular gyrus; PoG, postcentral gyrus; Pcun,
precuneus; IPL, inferior parietal lobule; SPL, superior parietal lobule; pSTS, posterior superior temporal sulcus; PhG, parahippocampal gyrus; FuG,
fusiform gyrus; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; PCL, paracentral lobule; PrG, precentral gyrus;
OrG, orbital gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; SFG, superior frontal gyrus.
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FIGURE 3

Detecting temporal dynamics on the Brainnetome atlas subregions. Time-by-condition interaction in the linear mixed effect (LME) model. Bars show the
t-value of the time-by-condition interaction term in an LME (Time × Condition as fixed effect and subjects as a random effect) model for each subregion
in the Brainnetome atlas (BNA). The horizontal dashed lines indicate brain regions with significant time-by-condition interaction term (P uncorrected
<0.05). Tha, thalamus; BG, basal ganglia; Hipp, hippocampus; Amyg, amygdala; LOcC, lateral occipital cortex; MVOcC, medioventral occipital cortex;
CG, cingulate gyrus; INS, insular gyrus; PoG, postcentral gyrus; Pcun, precuneus; IPL, inferior parietal lobule; SPL, superior parietal lobule; pSTS, posterior
superior temporal sulcus; PhG, parahippocampal gyrus; FuG, fusiform gyrus; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; STG, superior
temporal gyrus; PCL, paracentral lobule; PrG, precentral gyrus; OrG, orbital gyrus; IFG, inferior frontal gyrus; MFG, middle frontal gyrus; SFG, superior
frontal gyrus.

superior/inferior parietal lobule, inferior semilunar lobule and the
cerebellar tonsil, and occipital polar cortex. In addition, we also
reported the brain activation results across the 246 subregions in the
human Brainnetome Atlas (see Figure 2B).

Dynamic brain activation of food
cue-reactivity: Whole-brain analysis

Main effect of condition
The omnibus two-way (Time × Condition) LME model analysis

revealed the main effect of Condition to be statistically significant
in six clusters (with a voxel-wise p-value threshold of p < 0.05
and a minimum cluster size of k = 40; Supplementary Figure 2A
and Supplementary Table 2). These clusters were located in the
right superior parietal lobule, left medioventral fusiform gyrus, left
cingulate gyrus, right parahippocampal gyrus, right precuneus, and
right nucleus accumbens. In addition, we reported the results related
to the main effect of Condition across the 246 regions of the
Brainnetome atlas (see Supplementary Figure 2B).

Main effect of time
The LME model with Condition (Food, Neutral) and Time

(T1, T2, T3) as fixed factors showed a significant main effect of
Time in seven clusters (with a voxel-wise bi-sided p-value threshold
of p < 0.0033 and a minimum cluster size of k = 40, which
corresponds to a cluster-level alpha of p < 0.05 using NN2 clustering;
Figure 2C and Supplementary Table 2). More interestingly, the
two-way Time × Condition interaction was not significant for all
clusters, reflecting attenuated responses to both categories of cues
from T1 to T3. These clusters included regions in the occipital
polar cortex, dorsal agranular insular gyrus, superior temporal gyrus,
middle frontal gyrus, precuneus, ventromedial putamen, as well as in
the posterior superior temporal sulcus. Figure 2D presents the main
effect of Time across the 246 regions of the Brainnetome atlas.

Time × Condition interaction
At the whole-brain level, three clusters reached significance (with

a voxel-wise p-value threshold of p < 0.01 and a minimum cluster size
of k = 40). These clusters included regions in the precuneus and the
occipital polar cortex, as well as in the medioventral fusiform gyrus
(Supplementary Table 2).

Dynamic brain activation of food
cue-reactivity: Region of interest analysis

At the ROI-based whole-brain level, several clusters
reached significance (Figure 3). These clusters were located
in the frontal lobe (IFJ, lateral MFG, lateral IFG, lateral PrG),
limbic lobe (lateral cingulate gyrus), occipital lobe (rostral
cuneus/caudal cuneus/rostral lingual MVOcC, OPC/MT + LOcC),
parietal lobe (caudal IPL, dorsomedial parietooccipital sulcus,
3tonIa PoG, A2 PoG), temporal lobe [STG (TE1.0-TE1.2/42),
caudal/rostral MTG, intermediate ventral/rostral/ventrolateral
ITG, rostroventral/medioventral/lateroventral FuG, entorhinal
cortex/rostral PhG, rostral Psts], and subcortical nuclei
[medial/lateral amygdala, rostral/caudal hippocampus, ventral
caudate, Nucleus Accumbens (NAc), dorsolateral/ventromedial
putamen, occipital thalamus]. We selected six regions based on
significant time-by-condition interactions in the LME models
(Figure 3) and also based on regions involved in neural habituation
in previous fMRI cue reactivity studies. Specifically, we explored the
temporal dynamics of brain response to food and neutral stimuli
for these six regions by independent LME models (i.e., LME models
for each subregion in the Brainnetome atlas) (see Table 2). These
two-way interactions were decomposed by Condition. Indeed, the
food condition exhibited a declining trend in brain activation from
T1 to T3 for all clusters (see Figure 4). In contrast, the neutral
condition showed a progressive increase of brain activation from T1
to T3 (see Figure 4). For the six regions of interest with a dynamic
involvement in food-related response reactivity, the value of contrast
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for food cue reactivity was estimated across the overlapping windows
for further exploration, and the results are illustrated in Figure 4. All
regions of interest with dynamic activity show habituation to food vs.
neutral cues across time.

The independent LME models with Condition and Time (T1, T2,
T3) as fixed factors showed significant time-by-condition interactions
in the left medial amygdala [t(289) = 2.21, β = 0.1, P = 0.028], right
lateral amygdala [t(289) = 2.01, β = 0.26, P = 0.045], left STG [42 Area:
t(289) = 2.53, β = 0.15, P = 0.012; TE1.0_TE1.2 Area: t(289) = 3.13,
β = 0.27, P = 0.002], right NAc [t(289) = 2.81, β = 0.13, P = 0.005],
and left MFG [t(289) = 2.58, β = 0.14, P = 0.01]. In addition, the LME
models exhibited a significant main effect for time in the left medial
amygdala [t(289) = –2.14, β = –0.34, P = 0.033] and left STG [42
Area: t(289) = –2.71, β = –0.26, P = 0.007] but no significant effect
in the right lateral amygdala [t(289) = –0.43, β = –0.03, P = 0.671],
left STG [TE1.0_TE1.2 Area: t(289) = –1.34, β = –0.11, P = 0.182],
right NAc [t(289) = –0.80, β = –0.07, P = 0.423], and left MFG
[t(289) = –0.94, β = –0.09, P = 0.346]. Interestingly, the LME models
revealed no significant main effect for Condition in the left medial
amygdala [t(289) = –1.59, β = –0.35, P = 0.113], right lateral amygdala
[t(289) = 0.30, β = 0.03, P = 0.761], left STG [42 Area: t(289) = –1.83,
β = –0.24, P = 0.068; TE1.0_TE1.2 Area: t(289) = –1.51, β = –0.17,
P = 0.131], right NAc [t(289) = –0.46, β = –0.06, P = 0.648], and
left MFG [t(289) = –0.31, β = –0.04, P = 0.760]. As expected, no
significant effect of Motion was found for all regions (see Table 2).

Brain-behavior relationships

Group factor analysis
By using group factor analysis, two robust latent variables were

identified, which together explain 13.48% of the variance across
variable groups (see Figure 5). There were no robust cross-unit
latent factors found between the neural group with behavioral,
demographic, and self-report psychological groups. In other words,
the GFA failed to demonstrate any coherence in the latent variable
space between the neural group with the behavioral, demographic,
and self-report psychological groups. In contrast, a robust latent
factor that loaded across the behavioral and self-report psychological
groups of analysis was found using the GFA. The mean-variance
explained for the groups of behavioral and self-report psychological
variables, however, was 25.08 and 8.45%, respectively. As a result,
while this latent factor had loadings at both the behavioral and
self-report psychological levels of analysis, the behavioral variables
accounted for almost all of the variance explained.

Individual habituation slopes
We tested for bivariate correlations between self-report

psychological measures [DASS, DASS subscales (Depression,
Anxiety, Stress), CES], behavioral measures [FCQ-Trait, FCQ-Trait
subscales (Lack of control, Emotions, Guilt, Hunger, Thoughts),
FCQ-State, FCQ-State subscales (Lack of control, Desire, Positive
reinforcement, Negative reinforcement, Physiological hunger),
craving self-reports] with individual habituation slopes within the six
regions of interest. Here, the individual habituation slope in the left
medial amygdala was correlated with DASS subscales [Depression
(R = –0.12; P = 0.01), Anxiety (R = –0.09; P = 0.012), and Stress
(R = –0.13; P = 0.007)] and overall DASS (R = –0.13; P = 0.008).
The individual habituation slope in the right lateral amygdala was
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FIGURE 4

Temporal dynamics of regions of interest in the food cue-reactivity LME model. General linear model (GLM)-estimated percent signal change in
response to food cue reactivity for each region of interest (ROI) with significant time-by-condition interactions in the LME model. Gray and orange labels
denote the average main effect of food or neutral cue-exposure condition in the Brainnetome subregions or the result of food vs. neutral contrast. Error
bars indicate s.e.m. across overweight and obese subjects (N = 49) at each temporal window. STG, superior temporal gyrus; NAc, nucleus accumbens;
MFG, medial frontal gyrus.

correlated with CES (R = –0.11; P = 0.031), Emotions subscale of
the FCQ-T (R = –0.23; P = 0.020), and self-reported craving before
scanning (R = 0.28; P = 0.013). The individual habituation slope in
the left STG (42) was positively and significantly correlated with
self-reported craving before scanning (R = –0.27; P = 0.014). Finally,
the individual habituation slope in the left MFG was negatively and
significantly related to FCQ-S subscales [Desire (R = –0.10; P = 0.024)
and Physiological hunger (R = –0.08; P = 0.036)] and craving self-
reports before (R = –0.18; P = 0.007) and after (R = –0.15; P = 0.024)
scanning. Supplementary Figure 3 shows the relationship between
the self-report psychological measures and behavioral measures with
individual habituation slopes within the six regions of interest.

Discussion

The present study examined the temporal dynamics of regional
activation on the performance of food cue reactivity in overweight
and obese people. The primary novel finding of this study involves
the demonstration of habituation of activity of the amygdala, superior
temporal gyrus, nucleus accumbens, and medial frontal gyrus to
presentations of food vs. neutral cues across time in overweight
and obese people. We found that none of the brain regions with

dynamic activity shows an increased response to food cues over time
(sensitization) in overweight and obese people. Notably, dynamic
amygdala activity with a similar downward slope over time has
been observed in the recent cue-reactivity studies (Murphy et al.,
2018; Ekhtiari et al., 2021; Jafakesh et al., 2022). For example, a
study also similarly reported dynamic cue-reactivity in the STG, but
they observed an initially escalating and subsequently decreasing
activation whereas we observed a consistent habituation response
(Ekhtiari et al., 2021). Meanwhile, our findings show an initially
escalating and subsequently decreasing response to food cues (not
food vs. neutral) in the right amygdala and right NAc regions. Our
findings suggest generalized habituation to food vs. neutral stimuli
within regions with time-varying activity.

Habituation of the neural response to repeated exposure to
salient visual stimuli is well-documented, both at the animal and
human level. Neuroimaging studies consistently report a distinct
engagement of the regions supporting salience and rewards processes
in the habituation response to the salient cues. However, the
pattern of these habituation effects varies, depending on the types
of stimuli. Accordingly, our findings reveal a time-by-condition
interaction, indicating a temporally dynamic response to the
repeated presentation of food cues. The anatomic location of the
clusters with significant time-by-condition interaction falls within
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FIGURE 5

Group factor analysis. Heatmap colors represent the weight of each variable loading. The x-axis shows the variables included in each group. Extracted
robust group factors and the percentage of variance explained by each are shown on the y-axis. Asterisks show group factors that contained at least one
loading weight whose 95% credible interval did not contain 0. OFC, orbitofrontal cortex; vmPFC, ventromedial prefrontal cortex; ACC, anterior cingulate
cortex; dCa, dorsal caudate; vCa, ventral caudate; dlPu, dorsolateral putamen; vmPu, ventromedial putamen; GP, globus pallidus; lAmyg, lateral
amygdala; mAmyg, medial amygdala; NAc, nucleus accumbens; rHipp, rostral hippocampus; vIa, ventral agranular insular; vIg, ventral granular insular;
FCQ-S, food craving questionnaire-state; FCQ-T, food craving questionnaire-trait; VAS, visual analog scale; BMI, body mass index; CES, compulsive
eating scale; DASS, depression anxiety stress scales; TFEQ, three-factor eating questionnaire; EDDQ, eating disorder diagnostic questionnaire; Demogr,
demographic.

the medial or lateral amygdala, superior temporal gyrus, nucleus
accumbens, and medial frontal gyrus, implicated in the salience
and rewards processing. The present study adds to earlier findings
that repeatedly viewing salient visual stimuli leads to habituation
of limbic subcortical (e.g., amygdala, hippocampus) and cortical
(DLFPC, precentral gyrus) areas.

Neuroimaging studies strongly support a central role of superior
temporal gyrus (STG) in food cue reactivity (Nummenmaa et al.,
2012; Drummen et al., 2018; Bach et al., 2021). Our whole-
brain contrast analysis (contrast: food > neutral) reveal significant
decreases in the average BOLD signal (deactivation) in the STG
during food cue-reactivity task. Interestingly, although no significant
main effect of Condition was observed in the STG during the
paradigm of food cue reactivity using LME analysis (Table 2),
however, we observed a significant time-by-condition interaction
in the STG, which points to a temporal dynamic involvement in
food-related response reactivity. This discovery might indeed be
explained by the STG’s function in the visuotemporal attentional
processing of environmental cues (Li et al., 2012). Previous research
found that damage to the STG leads to a prolonged and more
severe impairment in visuotemporal attention (Shapiro et al.,
2002). In line with our expectations, food cues may cause the
STG to respond quickly to attentionally salient stimuli. However,
it is interesting to note that, the attentional saliency tends to
be decrease quickly for food cues, and in general, there is no
stronger activation for food cues in the STG compared to neutral
stimuli.

By suppressing the association between the conditioned stimulus
and the unconditioned stimulus, food cue exposure treatment, a

therapeutic strategy based on the Pavlovian conditioning paradigm,
aims to extinguish cravings and prevent future relapses (van den
Akker et al., 2014). However, the outcome of the cue-exposure
effects varies, depending on sufficient reductions, or habituation,
of anxiety (or cravings) throughout therapy (Agarwal et al., 2021).
Inhibitory learning models of extinction provide strong anchors
for understanding the mechanisms of cue exposure therapy in
psychiatric disorders (Craske et al., 2014; Schyns et al., 2020).
For example, the famous revised model of inhibitory learning
elaborated by Craske et al. (2014) provides a mechanistic framework
based on neurocognitive resources to strengthen inhibitory learning
between a fear-associated stimulus and the co-occurrence of
an aversive outcome. Brain areas associated with inhibitory
control include the caudate, dorsal anterior cingulate cortex,
dorsolateral prefrontal cortex, globus pallidus, parietal posterior
cortex, presupplementary motor area, and ventrolateral prefrontal
cortex (Agarwal et al., 2021). On exposure to visual food cues,
increased inhibitory control activation in the dorsolateral prefrontal
cortex was related to a stronger reduction of food craving
in obese people (Demos McDermott et al., 2019). Moreover,
successfully avoiding from consuming high-calorie foods is related
to decreased cue reactivity, which in turn makes it simpler to
resist enticing foods and encourage weight reduction (Janssen
et al., 2017). Furthermore, stimulating the medial prefrontal
cortex with deep repetitive transcranial magnetic stimulation in
a randomized double-blind sham-controlled trial enhanced the
effectiveness of cue exposure therapy (Ceccanti et al., 2015).
In order to reduce the affective response in individuals with
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psychiatric disorders, fMRI neurofeedback research are also focusing
on habituation in response to affective stimuli, including brain areas
such as the medial prefrontal cortex, amygdala, and ventral striatum
(Young et al., 2014; Nicholson et al., 2017; Zotev et al., 2018).
Similarly, we found in our research that, out of several brain regions
that were activated by exposure to the food cues, the amygdala,
PFC, NAc, and STG demonstrated significant habituation in response
to repeated exposure to food cues within the temporal window
of our fMRI cue-reactivity task. These findings can support the
potential role of conventional cue exposure therapies in habituation
and learning extinction across a select number of the neurocognitive
processes implicated in food cravings.

Limitations

This study is not without limitations. First, because the order
was not pseudo-randomized, the participants could predict the type
of the next block, which might have an impact on the outcomes.
Second, although we didn’t distinguish between high-calorie and low-
calorie food images in our cue presentation, research have shown that
high-calorie and low-calorie food images may have distinct effects
on the brain (Stoeckel et al., 2009; Schulte et al., 2019). Third, all
participants were exposed to the same stimuli, despite evidence that
different persons have varied interests and hence respond differently
to the same cues. Tailoring should be done to address this issue
(Franssen et al., 2020). Fourth, due to power problems, we took the
blocks together without separating them based on whether they were
food- or neutral-related. To further examine these findings, larger
research with more task durations is required (Luan Phan et al.,
2003).

Conclusion

In summary, the present results demonstrate for the first
time that the regions of the rewards and inhibitory processing
show fluctuations to repeated exposure to food visual stimuli
consistent with habituation. This study also underscores the
importance of examining the temporal dynamics of brain activation
in fMRI design and analysis in studies of food cue reactivity,
thereby suggesting pathways in biomarker development and cue-
desensitization interventions.
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