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Background: Attention-deficit/hyperactivity disorder (ADHD) is a

neurodevelopmental disorder of multifactorial pathogenesis, which is often

accompanied by dysfunction in several brain functional connectivity. Resting-

state functional MRI have been used in ADHD, and they have been proposed as

a possible biomarker of diagnosis information. This study’s primary aim was to

offer an effective seed-correlation analysis procedure to investigate the possible

biomarker within resting state brain networks as diagnosis information.

Method: Resting-state functional magnetic resonance imaging (rs-fMRI) data

of 149 childhood ADHD were analyzed. In this study, we proposed a two-

step hierarchical analysis method to extract functional connectivity features and

evaluation by linear classifiers and random sampling validation.

Result: The data-driven method–ReHo provides four brain regions (mPFC,

temporal pole, motor area, and putamen) with regional homogeneity differences

as second-level seeds for analyzing functional connectivity differences between

distant brain regions. The procedure reduces the difficulty of seed selection

(location, shape, and size) in estimations of brain interconnections, improving

the search for an effective seed; The features proposed in our study achieved

a success rate of 83.24% in identifying ADHD patients through random sampling

(saving 25% as the test set, while the remaining data was the training set) validation

(using a simple linear classifier), surpassing the use of traditional seeds.

Conclusion: This preliminary study examines the feasibility of diagnosing ADHD

by analyzing the resting-state fMRI data from the ADHD-200 NYU dataset. The

data-driven model provides a precise way to find reliable seeds. Data-driven

models offer precise methods for finding reliable seeds and are feasible across

different datasets. Moreover, this phenomenon may reveal that using a data-

driven approach to build a model specific to a single data set may be better than

combining several data and creating a general model.
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Highlights

- Rs-fMRI is a common approach for examining abnormal brain
function in patients with psychiatric disorders. It has high
potential for providing auxiliary diagnosis information through
machine learning.

- The proposed data-driven strategy uses the concept of regional
homogeneity to reduce the difficulty of seed selection in rs-fMRI.

- The established model was applied to a database including
73 patients with and 76 individuals without ADHD; 83.24%
accuracy was achieved, and the model was unbiased.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder in childhood and adolescence. The
reported incidence of ADHD differs between both studies and
countries. The estimated worldwide prevalence of ADHD is
up to 7.1% in children and adolescents (Thomas et al., 2015).
The Diagnostic and Statistical Manual of Mental Disorders
(DSM), Fifth Edition (DSM-5) characterizes ADHD by its three
cardinal symptoms: inattention, hyperactivity, and impulsivity.
These symptoms affect healthy psychological functioning and
are associated with mental health problems as well as impaired
academic and social functioning (Missiuna et al., 2014; Asherson
et al., 2016). The disorder is not limited to children and adolescents;
for 40–60% of children with ADHD, the disorder persists into
adulthood and results in lifelong impairment (Faraone et al., 2000;
Volkow and Swanson, 2013).

Currently, the standard diagnostic procedure for ADHD
is based on clinical interviews and symptom questionnaires.
Although these questionnaires serve as objective and quantitative
measures in conjunction with the subjective criteria listed in
DSM fourth edition (DSM-4) and DSM-5, diagnosis is still
time-consuming. Clinically, diagnosis requires more retrospective
reports from parents and teachers than it does patient self-
reports (Sibley et al., 2012). Integrating clinical questionnaires with
behavioral and cognition test results is complex and challenging
and requires an experienced expert evaluator (Morrill, 2009).
Therefore, this process must be carefully performed by trained
professionals following repeated observations and by using reports
obtained from parents, teachers, or other caregivers. Moreover,
the evaluator must confirm the absence of any other underlying
disorders that could be mislabeled as ADHD (Rader et al.,
2009). According to a survey by Morrill (2009), more than
85% of clinical staff (primary care physicians) expect auxiliary
diagnostic tools for ADHD to be available. The selective use
of neuropsychological tests is one such auxiliary diagnostic
approach. ADHD is typically associated with substantial cognitive
deficits in various neuropsychological studies, such as reaction
time variability, intelligence and achievement, vigilance, working
memory, and response inhibition (Pievsky and McGrath, 2018).
Thus, ADHD may interfere with several brain functional structures,
and this interference is reflected in behavior.

Although physiological characteristics are not included in the
current diagnostic criteria, the existing body of neuroscientific

evidence from structural and functional neuroimaging studies
indicates a correspondence between the abnormal behaviors used
for ADHD diagnosis and brain features; for example, some brain
areas may have a smaller volume and be prone toward hyperactivity
or hypoactivity (Konrad and Eickhoff, 2010) in patients with
ADHD compared with healthy patients, such as the frontal lobe
(Durston et al., 2004; Paloyelis et al., 2007), cerebellum (Semrud-
Clikeman et al., 2000; Hart et al., 2012), motor cortex (Mostofsky
et al., 2006; McLeod et al., 2014), and deep brain area (Schneider
et al., 2006; Konrad and Eickhoff, 2010; Castellanos and Proal,
2011). To accelerate the rate at which neuroscience informs
clinical practice, The ADHD-200 Consortium (2012) constructed
a large-scale ADHD data set (sample size over 1,000) and a
global competition to integrate information technology with brain
image analysis. A survey of follow-up studies (The ADHD-
200 Consortium, 2012) demonstrated that neuroimaging data,
especially data from resting state functional magnetic resonance
imaging (rs-fMRI), are highly promising for the diagnosis,
assessment, and treatment evaluation of patients with ADHD.
These objective biological tools can be used by an individual or
auxiliary clinician to inform an ADHD diagnosis during their
decision-making regarding treatment.

Resting state is defined as spontaneous brain activity in the
absence of any specific cognitive task during the acquisition of
a brain signal or image; this definition reduces the difficulty of
clinical diagnosis of ADHD. Rs-fMRI has been widely applied
in the diagnosis of neurological or psychiatric diseases such as
ADHD, autism spectrum disorder, Alzheimer’s disease, depression,
etc (Uddin et al., 2010; Lee et al., 2013; Fox et al., 2014). A variety
of neurological evidence of brain network abnormalities in ADHD
revealed through rs-fMRI have been reported. For example,
abnormalities in default mode networks (DMN), including
increases (Tian et al., 2008) or decreases in network homogeneity
(Uddin et al., 2008) or decreases in connectivity (Castellanos et al.,
2008; Uddin et al., 2008) in patients with ADHD were observed by
using seed-based correlation analysis (SCA). Regional homogeneity
analyses of rs-fMRI results have also revealed that patients with
ADHD have similarly high activation in the sensory areas of the
brain (Cao et al., 2006; Krain and Castellanos, 2006).

Seed-based correlation analysis (SCA) is the oldest and most
popular method for investigating abnormal brain activity in
rs-fMRI research on ADHD and other psychiatric disorders
(Biswal et al., 1995). Due to the lack of a task design, referring
the literature to selected regions of interest (ROIs) as seeds
to estimate functional connectivity (FC) is common in rs-
fMRI research. Because this selection usually stands with strong
evidence, the results of abnormal brain investigations are more
accepted and understood in clinical research. However, some
seed details, such as shape, size, and boundary may induce bias
in the results, and the results may be difficult to replicate or
apply. By contrast, the use of general whole-brain anatomical
or functional maps as seeds can increase the reproducibility
of SCA results. Craddock et al. (2013) used the automated
anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002), CC200,
and CC400 (Craddock et al., 2012) atlases to divide the whole
brain into several seeds and construct the resting networks.
Regardless of the seed selection method, the auxiliary diagnostic
performance reported in the ADHD-200 consortium competition
(The ADHD-200 Consortium, 2012) was an accuracy of only
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60 ± 5%. Thus, the model-driven seed selection method may be
unsuitable for diagnosing multisymptomatic neurodevelopmental
disorders. If a more flexible, data-driven seed selection method
that is responsive to abnormalities in ADHD could be identified,
providing auxiliary diagnostic information with SCA should
become more effective.

The aim of this study is to evaluate the feasibility of diagnosing
ADHD by analyzing rs-fMRI data. To achieve this goal, we propose
a smart seed selection method for diagnosing ADHD in children
with rs-fMRI data. We refer regional homogeneity (ReHo) analysis
results. This data-driven method can determine specific seeds
with within-group homogeneity and between-group differences.
Furthermore, principal component analysis was used to reduce
the SCA feature dimensions, and linear discriminant analysis
(LDA) was used to distinguish healthy children and those with
ADHD. The classification accuracies of different feature extraction
approaches were also compared.

2. Materials and methods

2.1. Image data set

In this study, rs-fMRI data sets were downloaded from
the ADHD-200 Global Competition.1 The original data sets
are available on the websites of eight institutions: New York
University Child Study Center (NYU), Peking University,
Bradley Hospital/Brown University, Kennedy Krieger Institute,
NeuroIMAGE Sample, Oregon Health & Science University,
University of Pittsburgh, and Washington University in St.
Louis. Except for the NYU data set, all these data sets had
unbalanced data samples. For example, some centers only
provided fMRI data for patients with specific ADHD subtypes.
To avoid interference due to the heterogeneity of different
medical centers and acquisition machines, we used only the
NYU data set. The NYU data set covered 123 children with
ADHD (mean age 11.2 ± 2.7 years; 97 boys and 25 girls); among
these patients, 77 were diagnosed with ADHD-combined, 44
with ADHD-inattentive (AD), and two with ADHD-hyperactive
(HD). The data set also included 99 controls (48 boys and 51
girls) with mean age 12.2 ± 3.1 years. To consider the reliability
of classification, this study considered ADHD-combined and
ADHD-inattentive patients as the ADHD group. Moreover, the
following exclusion criteria were used: the image contains excessive
head movement, the control group has non-ADHD psychiatric
symptoms, the ADHD group has neurologic or psychiatric
comorbidity (Supplementary Appendix Table 1 in Supplementary
file), or data were missing for identity or diagnosis attributes.
Finally, we analyzed rs-fMRI data for 73 patients in the ADHD
group and 76 healthy children. There was no significant difference
in age (ADHD: 11.2 ± 2.7, Normal: 11.9 ± 2.98, t = −1.49,
p = 0.1365) between the two groups. The gender factor showed
significant difference between the ADHD group (F/M = 16/57)
and normal group (F/M = 34/42, p < 0.01). This study used
gender as a covariate in the random sampling validation of the
feature extraction.

1 http://fcon_1000.projects.nitrc.org/indi/adhd200/

2.2. Preprocessing

Stepwise structural and functional data preprocessing was
previously conducted by the Neurobureau community using the
Athena pipeline (Bellec et al., 2017). This pipeline comprises
following steps: remove the first four echo planar imaging
(EPI) volumes; perform slice time correction, realignment, and
motion correction; co-register mean EPI images to corresponding
anatomic image; normalize the fMRI data and mean image into the
template space (NIHPD average T1 image atlases for children and
adolescents 4.5–18.5 years of age published by the McConnell Brain
Imaging Center were used in this study) at 4 mm× 4 mm× 4 mm
resolution. Finally, we implemented bandpass filters at 0.01–
0.08 Hz in the voxel time courses to exclude frequency components
that were not related to resting brain activity.

2.3. Brain FC analysis

The detailed architecture of the proposed approach is displayed
in Figure 1. In the proposed method, a machine learning model
is trained to learn FC features. Three categories of features
were investigated: (a) whole-brain FC from key DMN seeds in
ADHD, (b) ReHo, and (c) a hybrid of regional homogeneity
and seed correlation. The performance of features and classifiers
were evaluated by random sampling. In training and verification,
principal component analysis (PCA) was used to reduce the
dimensionality of the features.

2.3.1. FC of SCA
Functional connectivity (FC)-SCA is the oldest and most

popular FC analysis method in rs-fMRI research on ADHD and
other psychiatric disorders. FC denote long-range correlations
between seed voxels or ROIs and other individual voxels in the
brain area. The selection of seeds typically has a strong theoretical
basis; a seed could be a reported lesion or a hub or node in the
brain network. Three seeds are often used in studies of the resting
state and ADHD. In this study, we selected the dorsal anterior
cingulate cortex (dACC, MNI coordinates x = 8, y = 7, z = 38),
ventro-medial prefrontal cortex (vmPFC, MNI coordinates x = 2,
y = 56, z = 0), and the precuneus/posterior cingulate cortex (PCC,
MNI coordinates x = −2, y = −54, z = 27) as the seeds with a
6-mm radius. FC between each seed and the whole-brain voxels
were estimated with Eq. (1). Voxel-wise correlation coefficients that
indicate significant differences between groups were reserved as
features for classifier training (p < 0.01 and cluster size ≥ 10).

CC =
∑N

i=1(r(i)− R) ∗ (Fi − F)√∑N
i=1 (r(i)− R)

2
∗

∑N
i=1 (Fi− F)

2
, (1)

where CC indicates the cross-correlation coefficient between the
seed and the target voxel. r is the reference average time course
of the seed and F is the signal of voxels to be analyzed. R and
F are the mean values of the reference and the compared time
series, respectively. To eliminate individual differences, the Fisher
z transformation was performed on the whole-brain FC of each
individual. This study considered these three seeds as the valuable
feature (literature FC, LFC).
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FIGURE 1

Flowchart of the proposed method of extracting rs-fMRI physiological information for auxiliary diagnosis and treatment of ADHD and non-ADHD.

2.3.2. ReHo analysis
Regional homogeneity (ReHo) was used to measure brain

intrasimilarity. If a given voxel has a high intensity, its cluster has
high regional temporal synchronization. For a given voxel p, ReHo
was defined as Kendall’s coefficient of concordance (KCC) (Kendall
and Smith, 1939). The homogeneity coefficient of a time series
with those of its K − 1 nearest neighbors can be used measure the
similarity of multiple time series as with Eq.2:

W(p) =

∑
(Ri)

2
− n(R)

2

1
12 ∗ K2(n3 − n)

, (2)

in this equation, W is KCC among the given voxels from 0 to 1
and indicates the similarity of the activity of voxels in a cluster. Ri
is the sum of the rank of the ith time points, R = [(n + 1) × K]/2
is the mean of all Ri, K is the number of neighboring voxels plus
1 (here, K = 27), n is the rank (here, n = 172, the number of EPI
volumes in each scan).

2.3.3. ReHo seed correlation (ReHo-SC) analysis
Although relevant literature and map templates provide some

guidance for seed selection, the representativeness of the selected
regions for abnormalities in the ADHD brain is still controversial.
If the seed is too small, the average signal is not representative;
if the seed is too large, excessive useless signals are captured. In
this study, we propose a novel data-driven seed selection method
based on a ReHo map. After generating the ReHo map, we select
the four largest clusters as seeds for the whole-brain FC calculation.
The clusters (named ReHo seeds) marked as having significant
differences on the ReHo map have significantly greater regional

similarity among the ADHD and control groups, respectively. If
the average signals extracted from two ReHo seed differ in regional
representation between groups, voxel-wise FC calculations are
expected to enable the generation of distinguishable features FC.
To eliminate individual differences, the Fisher’s z transformation
was performed on the whole-brain FC of ReHo seeds (ReHo-FC)
of each individual.

2.4. Feature extraction

After feature estimation, two steps were performed to extract
features for classifier training. First, the whole-brain voxel-wise
two-sample t-test was used to determine candidate features. As
suggested in AlphaSim (Ward, 2000), a cluster size threshold
was set to correct the results of the t-test. The candidate cluster
should be significant at least the p < 0.01 level and cover more
than 10 voxels, and these voxels should be at least connected
by their edges. To avoid overfitting, we also applied the leave-
one-out cross-validation pipeline in a two-sample t-test with the
gender covariate. This study would generate 149 t maps in each
t-test procedure then found a valuable feature map through the
voting procedure. The candidate voxels need to get >33% of
the votes. Empirically, the study needs to reduce the order of
candidate voxels before training a classifier. PCA is a technique
of identifying key modes of variation in high-dimensional data as
a set of orthogonal directions in space. It attempts to determine
linear combinations of the original features that explain most of the
variance in these features by using just a few components. In this
study, for each trial (validation) of classifier training and testing,
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the number of the principal components (PCs) was determined
as that with the best classifying performance for the training set;
the search range included PCs that explained 50–90% of total
variability.

2.5. Classification

Fisher’s LDA was used to distinguish normal and ADHD
children. LDA is a well-known scheme for pattern recognition
(Pereira et al., 2009). Zhu et al. (2008) also used this method
for the classification of small data sets (normal individuals = 11,
patients with ADHD = 9). In the method, an algorithm is
trained by using samples to determine the optimal projection
of the data into a lower-dimensional vector space such that
the between-group distance is maximized, and the within-group
distance is minimized. In this study, accuracy is evaluated by
random sampling validation. We randomly selected 25% of
the data as the test set, while the remaining data was the
training set. This process was repeated ten times, and the average
value was reported as the result. Sensitivity (SE) indicates the
percentage of correctly predicted ADHD patients, while specificity
(SP) indicates the percentage of correctly classified normal
individuals. The method’s overall performance is assessed using
total accuracy (ACC).

3. Results

3.1. Classification performance

The performance of distinguishing subjects with and without
ADHD using rs-fMRI functional connection features, specifically
LFC, ReHo (Zhu et al., 2008), and ReHo-FC, is presented inTable 1.
The proposed ReHo-FC features achieved accuracy rates of 83.89
and 81.08%, sensitivities of 83.89 and 86.67%, and specificities
of 82.63 and 75.79% for linear models (LDA and linSVM) in
differentiating between individuals with and without ADHD.
Overall, our study demonstrates an improvement in performance
compared to using ReHo and LFC features alone. Additionally,
when employing complex nonlinear classifiers (RBF-SVM, BPNN,
and 2D-CNN), ReHo-FC consistently outperformed the other two
types of features. We conducted experiments with different feature
combinations to assess the proposed features’ complementarity
further. As presented in Table 1, regardless of the classification
model employed, incorporating ReHo-FC with other features
resulted in an accuracy improvement of at least 5%. The overall
accuracy rate exceeded 80% for all combinations. Among them, the
combination of ReHo-FC and LFC exhibited the highest accuracy
when using two features. The ReHo-FC features were divided based
on the selected seeds, and individual linear classifiers (LDA) were
constructed to assess the contribution of each ReHo seed to ADHD
classification. The accuracy of each ReHo-FC seed (mPFC: 73.51%,
temporal pole: 75.14%, putamen: 74.60%, motor area: 73.24%) was
comparable to or higher than ReHo (73.78%), but slightly lower
than LFC (79.73%).

TABLE 1 Classification accuracies with different features for
ADHD identification.

Feature combinations

PCs Sensitivity
(%)

Specificity
(%)

ACC
(%)

LDA

ReHo-FC 23.80 83.89 82.63 83.24

LFC 20.00 78.33 81.05 79.73

ReHo 4.10 76.67 71.05 73.78

ReHo-FC+ LFC 13.60 85.00 84.74 84.87

ReHo-FC+ ReHo 55.30 78.89 85.26 82.16

ReHo+ LFC 16.10 90.00 76.84 83.24

All features 32.90 86.67 84.21 85.41

RBFSVM

ReHo-FC 11.30 81.67 80.00 80.81

LFC 13.10 80.55 73.68 77.03

ReHo 9.60 68.33 63.16 65.68

ReHo-FC+ LFC 48.20 90.55 83.68 87.03

ReHo-FC+ ReHo 67.70 78.89 81.05 80.00

ReHo+ LFC 24.60 85.00 73.16 78.92

All features 58.80 89.44 80.00 84.59

Linear-SVM

ReHo-FC 23.70 86.67 75.79 81.08

LFC 13.10 80.55 76.84 78.65

ReHo 4.30 73.33 70.53 71.89

ReHo-FC+ LFC 13.40 83.89 87.89 85.95

ReHo-FC+ ReHo 18.70 82.78 81.05 81.89

ReHo+ LFC 8.70 80.55 80.00 80.27

All features 13.60 83.89 85.79 84.87

BPNN

ReHo-FC 11.50 85.56 71.58 78.38

LFC 20.20 73.89 75.26 74.59

ReHo 3.10 60.00 63.68 61.89

ReHo-FC+ LFC 17.10 90.55 82.10 86.22

ReHo-FC+ ReHo 67.70 76.67 78.95 77.84

ReHo+ LFC 16.10 82.22 72.11 77.03

All features 13.60 88.89 83.16 85.95

2D-CNN

ReHo-FC 76.32 76.67 76.49

LFC 66.84 71.11 68.92

ReHo 57.89 68.33 62.97

ReHo-FC+ LFC 80.53 82.78 81.62

ReHo-FC+ ReHo 72.63 84.44 78.38

ReHo+ LFC 74.74 73.33 74.05

All features 84.21 86.11 85.13

LFCS, literature functional connectivity; ReHo, regional homogeneity; ReHo-FC, ReHo seed
functional connectivity.
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3.2. Patterns in NYU data set

3.2.1. ReHo
Regional homogeneity (ReHo) was used to estimate regional

activation patterns through indices of localized concordance. On
the basis of regional intrasimilarity, the ReHo method indicated
that several localized areas were highly discriminative regions
between the ADHD and control groups. As presented in Figure 2,
abnormal regions identified by the two-sample t-test (p < 0.01,
got over 33% voting and with at least 10 voxels connected in the
cluster) were mostly located in the mPFC (130 voxels), temporal
pole (90 voxels), putamen (89 voxels), and motor area (53 voxels).
Abnormal regions were also identified in the occipital lobe and
cerebellum (Table 2). Most of the abnormal brain regions had
higher ReHo in patients with ADHD than in healthy individuals.
However, ReHo was lower in the superior temporal and frontal
lobes. Moreover, cluster coverage was used to exclude small and
scattered clusters. Thus, we chose the four largest clusters (mPFC,
temporal pole, putamen, and motor area) as the ReHo seeds for
further estimation using ReHo-FC.

However, we observed that the ReHo seed (height regional
distance homogeneity) did not substantially overlap with either the
anatomical or functional atlases. Figure 3 presents the overlap with
the three atlases. The ReHo seed only occupied a small portion
of the atlas region for mPFC (AAL: 6.10%, CC200: 26.82%, and
CC400: 34.31%), the temporal pole (AAL: 3.07%, CC200: 13.54%,
and CC400: 31.81%), putamen (AAL: 17.39%, CC200: 9.67%, and
CC400: 18.70%) and the motor area (AAL: 5.28%, CC200: 12.41%,
and CC400: 7.36%). This result implies that if the atlas is used to
select the seed, the seed may contain numerous voxels that are
not unrelated to the phenomenon of investigation, reducing the
representativeness of the average signal.

3.2.2. ReHo seed correlation
Figure 4 presents the distinguishing features of FC the

significant mPFC and temporal pole ReHo-FC. Detailed regional
information is presented in Supplementary Appendix Table 1.
For the mPFC, a strong correlation was observed with ADHD
and links in the DMN frontal hub and its subsystem covering the
superior frontal gyrus and anterior cingulate cortex. However, a
weak connection was observed in the links between the posterior
DMN part-precuneus, temporal lobe, and occipital lobe. This result
reveals that ADHD is associated with not only strong connectivity
within the temporal lobe (DMN subsystem) but with strong links
to the hippocampus.

Figure 5 reveals that the putamen, as a part of the striatum,
has multiple significant strong and weak connections (p < 0.01,
got over 33% voting and with at least 10 voxels connected in the
cluster) in children with ADHD compared with healthy controls.
The detailed regional information is presented in Supplementary
Appendix Table 2. These enhanced links can be divided into two
categories: one was the other members of the basal ganglia (e.g.,
the caudate and thalamus), and the others covered the anterior
cingulate cortex. By contrast, the connectivity between the putamen
and occipital lobe in the ADHD group were lower than those in the
healthy control group. For the motor area, strong connections were
observed in the cap around the motor area for the ADHD group,
but the link with the right mPFC was weak.

FIGURE 2

(A) Significant patterns in the ReHo map between the all ADHD and
control groups (p < 0.01, got over 33% voting and with at least 10
voxels connected in the cluster); (B) based on the results of the
one-out-two-sample t-test, the four largest clusters with more
than 33% votes were used as ReHo seeds (clusters in the same area
are not repeatedly selected). These were located in the mPFC (130
voxels), temporal pole (90 voxels), putamen (89 voxels), and motor
area (28 voxels).

TABLE 2 Detailed differences of ReHo between the ADHD and control
groups (sorted by cluster size).

X Y Z Cluster size
(voxels)

Region

32 64 −10 130 Middle frontal gyrus R

52 0 −18 90 Temporal_Pole_R

24 4 −2 89 Putamen_R

−4 −32 66 53 Paracentral_Lobule (Motor area)

−32 −4 −2 47 Putamen_L

−12 32 26 37 Anterior cingulate

−24 −84 22 34 Occipital_Sup_L

40 −60 −42 33 Cerebellum Posterior Lobe_R

−8 0 50 28 Supp_Motor_Area_L

32 −64 −6 26 Temporal Lobe_R

28 −92 22 23 Occipital_Sup_R

−64 −40 −2 20 Temporal Lobe_L

40 8 −18 16 Superior temporal Gyrus_R

−8 −36 −62 15 Cerebellum

36 8 46 13 Middle frontal Gyrus_R

−52 −64 −42 12 Cerebellum_Crus1_L

8 36 −30 10 Brodmann area 11_R

48 −72 42 10 Brodmann area 7_R

4. Discussion

At present, no ideal biological test for ADHD diagnosis
exists. Currently, ADHD is primarily evaluated by observing the
symptoms listed in the diagnostic criteria. The availability of
more physiological information (e.g., brain images or signals)
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FIGURE 3

Overlap of the ReHo seed and the three atlas templates AAL, CC200, and CC400. The overlapping part covers a small portion of the AAL, CC200,
and CC400 atlases templates of 6.10, 26.82, and 34.31% for the mPFC; 3.07, 13.54, and 31.81% for the temporal pole; 17.39, 9.67, and 18.70% for the
putamen; and 5.28, 12.41, and 7.36% for the motor area.

is key to improving the diagnosis or treatment of ADHD
by medical teams. Such physiological information can provide
objective information about cognitive deficits and increase the
confidence of the medical team in diagnosis. Rs-fMRI is an

FIGURE 4

Significant patterns in the (A) mPFC and (B) temporal pole in a
voxel-wise comparison of correlations between the ADHD and
control groups (p < 0.01 and at least 10 voxels connected in a
cluster with over 33% votes). Red indicates greater connections in
the ADHD group than in the control group. For the mPFC, the
ADHD group has stronger connections with the frontal lobe but
weaker connection with the parietal and occipital lobes. The
temporal pole in ADHD patients have stronger connectivity within
the contralateral superior temporal lobe.

excellent acquisition method for physiological brain information
for people with psychiatric disorders. However, analyzing rs-fMRI
data and confirming observations is challenging due to the lack
of a preexisting model; in this study, we propose a procedure for

FIGURE 5

Significant patterns in the (A) putamen and (B) motor area in a
voxel-wise comparison of correlations between the ADHD and
control groups (p < 0.01 and at least 10 voxels connected in a
cluster with over 33% votes). Red indicates higher connections in
the ADHD group than in the control group. For the putamen,
compared with the control group, the ADHD group had stronger
connection with other members of the basal ganglia. In the motor
area, significant differences were observed in the connections with
the frontal lobe and temporal gyrus.
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automatically determining effective seeds for investigating brain
abnormalities in ADHD (ReHo-FC). The procedure reduces the
difficulty of seed selection (location, shape, and size) in estimations
of brain interconnections, improving the search for an effective
seed; Our proposed feature combination of ReHo-FC and LFC can
achieve a success rate of 84.87% (LDA) for identifying patients
with ADHD by 10 times random sampling of the data from
149 individuals in the NYU data set. The identified ReHo seeds
have been noted in studies on ADHD. The present results are
sufficient for a medical center to construct an auxiliary diagnostic
information system in accordance with its needs and resources (e.g.,
individuals, instruments, and technicians).

As noted in the previous sections, the challenge of SCA is
the difficulty of selecting or defining an effective ROI as a seed.
The use of anatomical and functional atlases to select seeds and
then estimating brain networks is a straightforward method of
analyzing abnormal FC and resting state networks (RSNs). In this
study, we compared the overlap between the identified ReHo seeds
and the atlas maps. The overlapping area was only approximately
10–40% of the atlas map size. Asynchronous voxels may affect
the representativeness of the extracted signal. Yao et al. (2015)
demonstrated bias in RSNs from different atlas and suggested that
the quantification of brain networks might be substantially affected
by the selection of atlas. In an example of a use of ADHD-200
with a functional atlas in practice, Chang et al. (2012) used the
CC400 atlas to estimate the whole-brain connectivity network to
detect ADHD. The accuracy rates were 67% (46.9% selectivity
and 82.27% specificity) and 62% (41.8% selectivity and 73.13%
specificity); Dey et al. (2014) reached 64.4% (selectivity 30.66%
and 84.1% specificity) by using the CC200 atlas; The proposed
method, in which four precise ReHo seeds were used to estimate
FC, an accuracy of 81% and balanced selectivity and specificity
were achieved. Moreover, the accuracy of each seed approached
or exceeded 70%—higher than whole-brain atlas FC. This result
supports the introduction of a data-driven method (e.g., ReHo) to
improve selection efficiency in FC analysis.

Moreover, the difficulty of using multisite data is an obstacle
to identifying effective auxiliary FC patterns for diagnosis. The
scanning device, parameters, and protocol may differ between sites
participating in the ADHD-200. For example, individuals in the
NYU data set were required to close their eyes, but this is optional
for individuals in the Peking data set. Moreover, individuals are
insufficiently categorized into subgroups or uncategorized in some
data sets. The aggregation of data sets recorded from different
institutions generates a clustered structure within the data that
may cause a batch effect (Olivetti et al., 2012). The presence
of batch effects conflicts with one of the basic assumptions
of statistical learning theory: that data are independent and
identically distributed (iid). The use of non-iid data may result
in suboptimal training. During the ADHD-200 competition, most
teams (including our team) used non-iid information to train
a general classifier model. The final scores of most teams were
approximately 60± 5% and biased to detecting healthy individuals.
Even the winners (Eloyan et al., 2012) had a substantial bias for
healthy individuals (accuracy 89%, sensitivity 21%, and specificity
94%). Beyond the competition, the consistency of abnormal
functional connectivity in the ADHD-200 dataset across different
data centers was investigated by Zhou et al. (2019). The results
show that the abnormality of seed-based connectivity in children
with ADHD was inconsistent among all datasets, including those

from the same research site (but not the same equipment). This
inconsistency was observed even in areas frequently reported to
be associated with the default mode network (DMN). Therefore,
Shao et al. (2019), Riaz et al. (2020) and Ke et al. (2022) used
this independent site training method. Although the proposed
classifiers and the selected sites are different, they are better
than the results in the above competition in discriminating
ADHD patients. Itani et al. (2018) not only developed separate
classification models for different sites but also proposed a method
for automatically selecting an appropriate site-specific classifier
based on the similarity of the testing data for prediction. The results
are also better than most research results in the above competition.
In this study, we focused on the NYU data set and applied the
proposed feature (ReHo-FC) with LDA model. The result could
reach 83.89% in total accuracy and was balanced in terms of
sensitivity (82.63%) and specificity (83.24%). Moreover, the same
procedure was applied to the Peking-1 data set (other data sets have
the problems of overly small or excessively unbalanced samples),
and our method reached 94.71% total accuracy, 76.67% sensitivity,
and 98.57% specificity. Both results were superior to above results
in ADHD-200. Therefore, using multiple data sets to establish
multiple independent classification models may be more suitable
than establishing a general model. Alternatively, as suggested by
Olivetti et al. (2012), multiple data sets could be connected by using
a statistical model such as Combat (Johnson et al., 2007) and Seurat
Integration (Stuart et al., 2019) to correct the batch effect.

Another approach, deep learning, is usually presented as
an end-to-end learning process. Deep learning can alleviate
feature engineering requirements and reduce domain knowledge
requirements. Its multilayer, nonlinear learning strategy provide
more flexibility in features extraction and classification. Hence,
deep learning is a promising approach for informaticists in
abnormal brain investigation. In the practical application part
of the ADHD-200, most studies have used general atlases to
generate whole-brain FC features for the deep learning model. The
approximate classification accuracies of the general deep learning
architecture were approximately 60–75% (Riaz et al., 2017, 2018;
Zou et al., 2017; Chen et al., 2020). Mao et al. (2019) skipped
feature extraction and directly imported overall rs-fMRI images to
construct customized long short-term memory (LSTM) and four-
dimensional convolutional neural network (CNN) classification
models. However, the accuracy rates (68.8 and 71.3%) were not
substantially better than the aforementioned FC-based models.
Thus, we propose using an FC feature calculation method
with effective guidance (ReHo seed) and deemphasizing the
customization of classifiers. As presented in Table 3, the proposed
method is superior for distinguishing patients with ADHD. An
accuracy of 81.8% can be achieved with simple linear classification.
With the application of a two-dimensional CNN architecture, the
accuracy rate can be increased to 82.5%. We believe that this
large performance improvement compared with previous models
is primarily due to reducing the size of the input feature space
by identifying meaningful features. Although deep learning is a
powerful tool in processing high-dimensional data, its use with
MRI images is typically hindered by the relatively small size of
available samples (Mao et al., 2019). The sample size required
to successfully train a deep learning model depends on multiple
factors, such as the type of data, network size and architecture,
type of stochasticity in the data, dimensionality of the feature
space, regularization schemes, and the actual target function that
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TABLE 3 Performance and characteristics of other deep learning
methods for comparison.

Methods Feature type and
counts

Accuracy

NYU Muti-site

FCNet
(Riaz et al., 2017)

Whole-brain atlas FC
(over 5,000)

58.5%

3D-CNN
(Zou et al., 2017)

Whole-brain atlas FC
(over 5,000)

70.5%

Deep fMRI
(Riaz et al., 2018)

Whole-brain atlas FC
(over 5,000)

73.1%

3DCNN+ LSTM
(Mao et al., 2019)

Overall rs-fMRI slice image
(each image over 20,000 voxels)

68.8%

4D-CNN
(Mao et al., 2019)

Overall rs-fMRI slice image
(each image over 20,000 voxels)

71.3%

Our proposed

LDA ReHo-FC
(approximately 13PCs)

83.24% -

2D-CNN ReHo-FC
(approximately 1,690 features)

76.49% -

the deep learning neural network is intended to learn, to name
only a few (Koppe et al., 2021). A systematic review even notes
that, for sample sizes less than 200, deep learning models may
have heterogeneous performance results (Quaak et al., 2021). The
advantages of deep learning in terms of dimensionality reduction
instead resulted in overfitting in a small sample data set. Because
deep learning relies on multiple hidden layers, clinical staff would
have difficulty adjusting the architecture to avoid overfitting and
to fit their data set. Moreover, the deep learning outcome typically
lacks interpretable auxiliary information. The decision process of
deep learning models is also difficult to understand and visualize for
human beings. Therefore, we do not recommend directly importing
deep learning architectures for auxiliary diagnosis and treatment of
ADHD at this stage. We are more inclined to use meaningful and
well-known features in the clinic, and the comparatively simple and
easily adjustable machine learning models could provide auxiliary
diagnostic information.

Although the reasons for abnormal RSNs in ADHD are
unclear, recent studies in neuroscience have identified a number
of abnormal RSNs, including the DMN, ventral attention, dorsal
attention, and the frontal and motor networks in patients with
ADHD (Castellanos and Proal, 2011). We used a number of ReHo-
FC features that belong to a DMN subnetwork (e.g., from the
mPFC to the precuneus or anterior temporal lobe network or from
the motor area to the mPFC). We also observed some potential
connections, such as in the frontal-striatal and frontal-striatal-
cerebellar circuits of the putamen, through the ReHo-FC analysis.
These circuits have been frequently reported as being associated
with ADHD in recent years (Krain and Castellanos, 2006; Vaidya
and Stollstorff, 2008; Durston et al., 2011; Cubillo et al., 2012; Kucyi
et al., 2015). These circuits enables changes in behavior according to
environmental demands and can be considered to affect cognitive
or behavioral control (Durston et al., 2011). Circuit hyperactivation
causes children with ADHD to be unable to avoid distractions while
performing a task, efficiently manipulate information in working
memory, and switch between tasks or priorities (Castellanos et al.,

2006). However, the result that almost 70% accuracy in ADHD
classification was achieved when the circuit was observed in the
task-free resting state is intriguing. We surmise that structural
changes in myelin and gray matter revealed by diffusion tensor
imaging caused this abnormal functional connectivity (Liston et al.,
2011).

This study may have a limitation in the generalization for
classification of ADHD because we excluded subjects of a small
sample size (e.g., The Supplementary Appendix Table 3 presents
small population of non-ADHD psychiatric symptoms in the
control group and neurologic or psychiatric comorbidity in the
ADHD group). We need more data with large sample size to help
classification of various ADHD subtypes. Structural and functional
MRI researches have revealed that various comorbidities may
be involved in the pathology of ADHD (Schneider et al., 2006;
Singh et al., 2006; Wolosin et al., 2009). The contribution of
comorbidity on classification of ADHD subtypes remains to further
investigation.

In the future, clinical auxiliary diagnosis information could
be adapted to various ADHD conditions such as subtypes,
comorbidities, and even age (a critical improvement in the DSM-
V standard) to enhance evaluator confidence in diagnosis. Second,
although our proposed features can achieve good classification rates
with the NYU (83%) and Peking (94%) data sets, the deleterious
effects of using multisite data sets cannot be ignored. At present,
each data set is used independently, which enables the extraction
of numerous meaningful features and results in an improved the
accuracy rate. We expect the system to undergo more substantial
development at various hospitals and pediatric centers. Finally,
by integrating the models of multiple independent centers with
methods such as reinforcement learning, transfer learning, bagging,
and bootstrapping, developers can increase the clinical confidence
in the auxiliary medical information provided by the method.
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