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Introduction: Studies have revealed that the language network of Broca's area
and Wernicke's area is modulated by factors such as disease, gender, aging, and
handedness. However, how occupational factors modulate the language network
remains unclear.

Methods: In this study, taking professional seafarers as an example, we explored
the resting-state functional connectivity (RSFC) of the language network with
seeds (the original and flipped Broca's area and Wernicke's area).

Results: The results showed seafarers had weakened RSFC of Broca's area with
the left superior/middle frontal gyrus and left precentral gyrus, and enhanced
RSFC of Wernicke's area with the cingulate and precuneus. Further, seafarers had
a less right-lateralized RSFC with Broca's area in the left inferior frontal gyrus,
while the controls showed a left-lateralized RSFC pattern in Broca's area and a
right-lateralized one in Wernicke's area. Moreover, seafarers displayed stronger
RSFC with the left seeds of Broca’'s area and Wernicke's area.

Discussion: These findings suggest that years of working experience significantly
modulates the RSFC of language networks and their lateralization, providing rich
insights into language networks and occupational neuroplasticity.

functional magnetic resonance imaging, lateralization, occupational neuroplasticity,
occupation, language network, seafarers

1. Introduction

The human brain controls language (Catani et al., 2005), movement (Weiller et al,
1996), learning (Hein et al., 2016), emotion (Kringelbach and Berridge, 2017), memory
(Lane et al., 2015), consciousness (Penfield, 2015), the subconscious (Martin et al., 2016),
and other high-level cognitive activities. Language-related functions were among the first to
be ascribed to a specific location in the human brain (Broca, 1861) and have been the subject
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of intense research for well over a century. A “classical model”
of language organization, based on data from aphasic patients
with brain lesions, was popularized during the late 19th century
and remains in common use (Wernicke, 1874; Mayeux and
Kandel, 1985). Furthermore, studies with neuroimaging techniques
(Biswal et al., 1995; Achard et al, 2006; Damoiseaux et al.,
2006) have found that the human brain has stable, low-frequency
fluctuations in resting states, forming reliable intrinsic brain
networks (Wang et al, 2012, 2013, 2015a,b, 2016, 2017a; Yao
et al, 2013; Shi et al, 2017) with specific functions, such as
the language network (Gohel et al., 2019; Broday-Dvir and
Malach, 2021), auditory network (Chen et al, 2017), default
network (Schilbach et al., 2016), and visual network (Shen et al.,
2019).

Resting-state functional magnetic resonance imaging (rstMRI)
is widely used to map the physiology and behavior of the
healthy/diseased brain (Lottman et al, 2019). Furthermore,
rstMRI-based connectivity (RSFC)
provides a useful technique for assessing lateralization, which

resting-state  functional
is increasingly being used in clinical practice and research
(Fox and Greicius, 2010; Friederici, 2011). Previous studies on
the neurophysiological basis of human language ability have
generally found that, for most individuals, the left hemisphere
is the dominant hemisphere of language ability (Bradshaw
et al, 2017). For example, clinical language lateralization
assessment is necessary in the examination of epilepsy patients
prior to resection surgery of the temporal lobe (Baxendale,
2009). At the same time, in the healthy population, language
lateralization has historically been found to depend on gender
(Nenert et al., 2017), age (Sepeta et al., 2016), handedness
(Agcaoglu et al, 2021), genetics (Schmitz et al, 2017), and
2020).

However, language lateralization may also be affected by

language-learning experience (Gurunandan et al,
other factors, e.g., occupation, which is the main focus in this
study. At present, only a few research studies have reported
on the association of the language network and occupational
neuroplasticity (Villar-Rodriguez et al., 2020; Wu et al,
2020). Villar-Rodriguez et al. (2020) found musicianship is
related to atypical (symmetric or right-hemispheric) language
in healthy left-handed subjects. Further, the
lateralization of language functions can be used to explain

dominance

subtle differences in behavior and cognitive levels (Szaflarski
et al, 2006; Olulade et al., 2020). Thus, given the mechanism
of language lateralization and the relative noise (auditory
stimulation, e.g., the sound of waves or machines) and isolation
(lacking social interaction) of seafarers’ long-term training
and stable work environments, we hypothesized that there
is a higher incidence of atypical language dominance among
seafarers.

In this paper, taking seafarers as an example, two important
sub-functions of language, namely, the language network (study
1) and the lateralization of the language network (study
2), were investigated to explore the association between the
occupational factor and language by using the method of
resting state functional connectivity (RSFC) (Tomasi and Volkow,
2012; Zhu et al, 2014). The analysis is presented together
with interpretations, discussion, and conclusions related to the
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language network and occupational neuroplasticity in professional
seafarers.

2. Materials and methods

2.1. Data acquisition

Since seafarers have been engaged in repetitive technical work
for a long time we recruited twenty male professional seafarers
(age: 42-57 years, mean age = 49 years old, right handedness) from
a shipping company in Shanghai, China. All of them had more
than 10 years of experience in navigation. For non-seafarers, 20
Chinese male participants (age: 48-55 years, mean age = 51 years
old, right handedness), were recruited from land-based jobs (i.e.,
campus landscaping and office support) at university or secondary
school campuses. All the subjects in the non-seafarer group had
no maritime professional training, maritime navigational skills, or
long-term experience on the sea. All subjects signed the informed
consent form and were considered to have normal functions
of language and communication. Also, no history of mental
health conditions or neurological diseases were reported. The
blood-oxygen-level-dependent imaging (BOLD) rsfMRI data for
each participant was scanned at the Shanghai Key Laboratory of
Magnetic Resonance. All participants were informed about the
purpose of the study and signed a written consent form according
to the procedures approved by the IRB of East China Normal
University (ECNU). The specific parameters were listed as follows:
GE 3.0 Tesla using a gradient echo EP]J, a total of 36 slices covering
the whole brain area, 160 time points, TR (time of repetition) =2 s,
matrix size = 64 X 64, in-plane resolution = 3.75 mm X 3.75 mm,
and slice thickness = 4 mm. The detailed information related to the
dataset can also be found in Wang et al. (2017b), Wang et al. (2018),
Shi et al. (2021), and Yan et al. (2022).

2.2. Data preprocessing

All data preprocessing was performed using the Data
Processing Assistant for RS-fMRI software package (DPARSF)
(Yan and Zang, 2010) which is based on Statistical Parametric
Mapping (SPM)* and the Resting-State fMRI Data Analysis
Toolkit (REST).? The preprocessing steps for the Resting-State
fMRI data of each subject were as follows: (1) slice timing;
(2) realignment; (3) normalization by EPI template (resampling
voxel size = 3 mm*3 mm™*3 mm); (4) spatial smoothing using a
Gaussian kernel with FWHM = 6 mm; (5) nuisance regression
including covariates such as six head motion parameters, whole
brain mean signal, white matter signal, and cerebrospinal fluid
signal; (6) band-pass temporal filtering (0.01-0.1 Hz); and (7)
scrubbing volumes with sudden head motion, i.e., a threshold
of frame-wise displacement (FD) was set to 0.05, and we
removed one volume before and two volumes after the motion
spike.

1 http://www.filion.ucl.ac.uk/spm

2 http://www.restfmri.net
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2.3. Functional connectivity and
lateralization of language network

The RSFC method generates a high-precision functional
connection diagram of a complex brain system by interpreting
the relevant patterns of low-frequency fluctuations in the blood
oxygen level signals, which can be used to identify language-related
functional tissues. In this paper, the Broca and Wernicke in the left
side of brain were selected as the region of interest (ROI) (IBro
and 1Wer), with MNI coordinates (—51, 27, 18) and (—51, —51,
30) as the center of the seed points (Zuo et al., 2013; Zhu et al,,
2014) with a radius of 3 mm, respectively. In order to explore the
functional asymmetry of the main language regions in the brain,
the right Brocas area (rBro) and right Wernicke’s area (rWer)
were reversed from the left side of the brain to the right side,
respectively; the central coordinates of the seed points, i.e., rBro
and rWer, were (51, 27, 18) and (51, —51, 30), with the same
volume size. Based on DPARSF software, the time series of the
four aforementioned ROIs were extracted, and then the Pearson
correlation coefficients were computed between the average time
series of four ROIs and the time series of each voxel across the brain.
Furthermore, the correlation coefficient (cc) value was subjected to
Fisher Z-transformation (Fisher, 1921) according to formula (1).
According to the transformed correlation coefficient, the functional
connection diagram of the seed points and whole brain voxels can
be obtained according to the following formula:

1 1
z = fln( +CC) (1)
2 1—cc

Based on the RSFC map of each subject, the one-sample t-test

results (Figure 1) for each group and two-sample t-test results
(Table 1; Figures 2, 3) between two groups were performed using
REST software.

When discussing the functional asymmetry, we calculated each
seed-based whole brain RSFC maps, namely the 1Bro and IWer
RSFC maps, and the flipped rBro and rWer RSFC maps. The
hemispheric asymmetry was evaluated through comparison of the
RSFC maps of the 1Bro and IWer and the left-right flipped RSFC
maps of the rBro and rWer (Yan et al., 2009). In this study, the non-
normalized asymmetry index (AI) is defined by following formula
(2) (Zhu et al., 2014):

Al = ZFCL—ZFCﬂipped R» (2)

where zFCy, is a whole brain functional connection diagram based
on the left seed points (ie., IBro and IWer), respectively, and
2FCipped R is a left-right flipped functional connection diagram
based on the right seed points (rBro and rWer), respectively.
Similarly, as in previous studies (Yan et al, 2009; Zhu et al,
2014), ipsilateral asymmetry was shown on the left side of the AI
map, representing the difference between the 1Bro or IWer and
the left hemisphere (LH) and the rBro and rWer and the right
hemisphere (RH). Also, contralateral asymmetry was established
on the right side of the AI map, indicating the differences between
the IBro or 1Wer and the RH and the rBro and rWer and the
LH. Further, a one-sample ¢-test was conducted to reveal regions
which show significant hemispheric asymmetry based on individual
AI maps. Moreover, the two-sample t-test was applied to analyze
the differences of language lateralization between seafarers and the
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control participants. All RSFC maps and AI maps were established
with the test criteria of p 0.005 and cluster size >200 voxels
(corresponding to corrected prwg 0.05).

3. Results

3.1. Functional connectivity using
language areas as seed points

First, we identified the brain areas that were significantly
functionally correlated with the two seed points, i.e., Broca’s and
Wernicke’s regions, with regard to the seafarer group and the non-
seafarer group; the results are shown in Figure 1, and the color
bar reflects the correlation. Figure 1 shows that the linguistic
functional connectivity patterns of the non-seafarer group were
highly similar to those previously reported (Zhu et al.,, 2014),
while the ones of seafarers showed some differences in the
involved locations and connectivity values. Further, two-sample
t-test analysis of the linguistic functional connectivity patterns from
the seafarer and non-seafarer groups revealed that: the negative
functional connectivity of Broca’s region appeared weaker in the
seafarer group than the non-seafarer group, especially in the left
superior/middle frontal gyrus and left precentral gyrus (Figure 2;
Table 1); functional connectivity of the Wernicke’s region as the
seed region was higher in the seafarer group compared to the non-
seafarer group (Figure 3; Table 1), where this phenomenon was
especially reflected in the posterior cingulate cortex and precuneus.

3.2. Functional asymmetry of language
areas

A profile of the lateralization for each subject was obtained
based on the RSFC map in terms of Brocas area and Wernicke’s
area. REST software was used to conduct a one-sample ¢-test
(results in Table 2 and Figure 4) for each group and a two-sample
t-test (results in Table 3 and Figures 5, 6) between the two groups,
respectively, where the test criterion was p < 0.005 and cluster size
>200 voxels (corresponding to corrected prwr < 0.05).

According to Figure 4, three distinct cortical language-related
areas were observed in the left hemisphere. These were: (1) for
the Broca’s region of the non-seafarer group, significant ipsilateral
asymmetry showed in the left inferior frontal gyrus (IFG) and
precuneus, while contralateral asymmetry was displayed in the
right superior occipital gyrus (SOG), IFG, and precuneus; (2)
for the Wernicke’s region of the non-seafarer group, significant
ipsilateral asymmetry areas were in the left superior frontal gyrus
(SFG), middle frontal gyrus (MFG), precentral, precuneus, and
cuneus, while the right IFG and supramarginal gyrus (SMG)
showed contralateral hemispheric asymmetry; (3) for the Broca’s
region of seafarer group, the IFG showed significant ipsilateral
hemispheric asymmetry and greater connection with rBro; (4)
there was no significant language networks’ lateralized brain areas
for the Wernicke’s area of the seafarer group. The detailed brain
regions involved in significant functional lateralization with regard
to Broca’s and Wernicke’s areas for the seafarer and control groups
were coordinated and recorded in Table 2.
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Broca

Seafarers

Non-seafarers

FIGURE 1

Visualization of functional connectivity using Broca's region and Wernicke's region as the independent seeds in the seafarer and non-seafarer group
(p 0.005, cluster size >200 voxels, corresponding to corrected prye 0.05). R: right hemisphere, L: left hemisphere.

Wernicke

TABLE 1 The cerebral cortex involved significant functional connectivity with Broca’'s and Wernicke's areas in the seafarer group and the non-seafarer
group (p 0.005, cluster size >200 voxels, corresponding to corrected prye 0.05).

Broca's area (seafarer < non-seafarer)

1 L SFG 6 —-28 -8 68 —3.78
2 Precentral gyrus 6 —32 —22 67 —4.803
3 Precentral gyrus 4 -33 —28 68 —3.74
4 L MFG 6 —35 -7 58 —2.559
Wernicke's area (seafarer > non-seafarer)

1 Parietal 7 -2 —65 41 3.465
2 Limbic 31 -5 —43 41 3.701
3 Precuneus 7 11 —69 35 4.016
4 Cingulate gyrus 23 =5 —37 25 4.528

BA, Brodmann area; L, left; SFG, superior frontal gyrus; MFG, middle frontal gyrus.

In order to further quantify the differences in language
lateralization between the seafarer group and the non-seafarer
group, we performed a two-sample t-test analysis on the AI
maps of the two core language regions for the two groups.
The statistical results are shown in Figures 5, 6 and Table 3.
For the AI maps corresponding to the Brocas region, the
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seafarer group elicited greater functional asymmetry in the
paracentral and precuneus (BA7 and BA31). For the AI
maps corresponding to the Wernicke’s area, the lateralization
difference between the seafarer group and the non-seafarer group
was mainly reflected in the left frontal gyrus and bilateral
precuneus.
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FIGURE 2

Results of two-sample t-test of functional connectivity of Broca's
region (the seafarer group < the non-seafarer group; p 0.005,
cluster size >200 voxels, corresponding to corrected prye 0.05).
R: right hemisphere, L: left hemisphere.

4. Discussion

Previous studies have investigated whole-brain language
networks using the RSFC method (Gao et al., 2019; Sulpizio et al,,
2020). Sulpizio et al. (2020) found that each experience-related
factor seems to play a role in brain plasticity changing; bilingual
experience especially impacts both within and between language
and control networks. Interestingly, the functional connectivity of
language networks is also affected by disease, and children with
autism spectrum disorders (ASDs) show increased connectivity
between regions of an extended language network. Further,
these brain regions are associated with self-reflection and visual
processing (Gao et al., 2019). In its most general form, this model
proposes a frontal “expressive” area for planning and executing
speech and writing movements, named after Broca (1861), and
a posterior “receptive” area for analysis and identification of
linguistic sensory stimuli, named after Wernicke (1874). One study
(Binder et al, 1997) suggested that Wernickes area, although
important for auditory processing, is not the primary location
where language comprehension occurs, and that the frontal areas
involved in language extend well beyond the traditional Broca’s area
to include much of the lateral and medial prefrontal cortex. Based
on seed regions in Broca and Wernicke, seed-based RSFC were
applied to the characterization and reproducibility of functional
connectivity of language networks (Tomasi and Volkow, 2012; Zhu
et al,, 2014; Wang et al,, 2019). Meanwhile, language lateralization
has been widely approached to detect different patterns in children
(Phillips et al., 2021; Stipdonk et al., 2021), tumors (Polczynska
et al, 2021), psychiatric disorders (Jouravlev et al., 2020), and
neurological disorders (Rolinski et al., 2020).

4.1. Language network’s functional
connectivity and its relation to
occupation

In this study, we selected the special occupation group of
seafarers as the research object, and compared the functional
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FIGURE 3

Results of two-sample t-test of functional connectivity of
Wernicke's region (the seafarer group > the non-seafarer group;
p 0.005, cluster size >200 voxels, corresponding to corrected
prwe 0.05). R: right hemisphere, L: left hemisphere.

language network seafarers with non-seafarers. Regarding the
seafarers, the functional connectivity related to functional language
networks showed a negative connection with Broca’s area, though
strongly left-lateralized, including in the left SFG/MFG (BA 6)
and the precentral gyrus (BA 6 and 4), which may be involved
due to the extended length of time spent in a relatively closed
environment and the lack of spoken interaction. Cerri et al. (2015)
suggested the mirror neuron system (MNS), including BA 6, is
similar to monkey premotor area F5 (Gallese et al., 1996) and
closely involved in articulatory rather than semantic speech. Hence,
seafarers likely weakened motor control of speech production
may be caused by a lack of opportunity to talk with each other
randomly and frequently, under strict management with strong
self-discipline consciousness. In contrast, the significant positive
functional connections in the seafarers’ Wernicke’s area and the
precuneus (including the posterior cingulate gyrus and the parietal)
are the areas that are preferentially involved during the recall of
real episodic memories rather than fictitious memories (Hassabis
and Maguire, 2007). These findings probably indicate that seafarers
have powerful cognitive functions which are able to recollect past
professional experiences and predict future occurrences to make
decisions for the future, including spatial navigation and use of the
imagination that can contribute to seafarers’ career performance.

4.2. Language network’s lateralization
and its relation to occupation

We examined the functional language networks’ lateralization
of RSFC using Broca’s and Wernicke’s areas as independent seeds.
According to the results of the language networks’ lateralization,
functional language lateralization is related to some measures of
Al asymmetry in seafarers and non-seafarers. We found slightly
rightward lateralization in the Broca’s seed of seafarers with left
IFG, and almost leftward asymmetric distribution in the non-
seafarers (see Figure 4 and Table 2). Recently, studies have
examined the lateralization of language networks with various
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TABLE 2 The cerebral regions involving significant functional lateralization with Broca’s and Wernicke's areas in the seafarer group and non-seafarer

group (p 0.005, cluster size >200 voxels, corresponding to corrected prye 0.05).

O Anato 3 BA oordinate ea alue
e€gI10
X Y z
Non-seafarer
Broca’'s area
1 RIFG 45 57 27 27 10.839
2 LIFG 45 —57 27 21 —16.882
3 RSOG 18 15 —90 18 5.1994
4 B precuneus 7 3 —57 51 —5.0739
Wernicke's area
1 LSTG 6 —57 —15 54 9.0572
2 L cuneus/precuneus 23 —21 —54 24 —10.3471
3 L SFG 10 —-18 63 9 —5.9298
4 RIFG 47 45 30 -3 6.042
5 R SMG 40 63 —54 36 8.331
6 L MFG/ SFG 8/9 —27 18 63 —14.023
Seafarer
Broca's area
1 LIFG 45 —57 27 18 —14.4288

Wernicke's area

There is no cluster!

BA, Brodmann area; L, left; R, right; B, bilateral; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; STG, superior temporal gyrus; SMG, supramarginal gyrus;

SOG, superior occipital gyrus.

Wernicke

Seafarers

Non-seafarers

FIGURE 4

Al maps with regard to functional lateralization of language network in the seafarer and non-seafarer groups, respectively (p 0.005, cluster size

>200 voxels, corresponding to corrected prye 0.05). R: right hemisphere; L: left hemisphere.
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TABLE 3 The cerebral regions involved significant functional lateralization with regard to Broca’s and Wernicke's areas (the seafarer group > the
non-seafarer group; p 0.005, cluster size >200 voxels, corresponding to corrected prye 0.05).

\[o} Anatomical BA MNI coordinates Peak value
regions

| | I T A
Broca's area
1 B precuneus 7 —13 —54 46 3.937
2 B paracentral lobule 31 6 —34 45 4.016
3 B middle cingulum 24 6 —18 40 3.189
Wernicke's area
1 B precuneus 7 -9 —72 42 3.858
2 L SFG 8 —-23 22 56 4.764
3 L MFG 6 —-23 20 59 5.551

BA, Brodmann area; L, left; B, bilateral; SFG, superior frontal gyrus; MFG, middle frontal gyrus.

elements (Nielsen et al., 2013; Chou et al., 2017; Schmitz et al.,
2017). Schmitz et al. (2017) raised a novel perspective that
genes related to language networks’ lateralization were specifically
engaged in mental and neurological diseases. Moreover, while
Bishop (2013) figured out that weak language lateralization may
be the result of impaired language learning, other studies have
suggested minimal involvement between the degree of language
lateralization and performance (van Ettinger-Veenstra et al,
2010). The right-hemispheric activation might indicate additional
resources are required for the process of integrating phonological
input (van Ettinger-Veenstra et al.,, 2010). The precentral gyrus
is related to exercise, and the cuneus and precuneus are involved
in advanced cognitive functions. Here, seafarers have atypical
language dominance, although a higher rate of atypical right
hemispheric language lateralization was found in left-/mixed-
handed people, and Packheiser et al. (2020) suggested that the
assumptions related to language lateralization and dominant
handedness need to be more deliberate. Furthermore, the atypia
indicated that sentence processing was supported by the left and

FIGURE 5

Results of two-sample t-test of language lateralization in terms of
Broca's area (the seafarer group > the non-seafarer group; p 0.005,
cluster size >200 voxels, corresponding to corrected prye 0.05).

R: right hemisphere, L: left hemisphere.
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right networks (Labache et al, 2020), and semantic language
performance was better (Bartha-Doering et al., 2018). Meanwhile,
the lateralization of the left IFG was declared when processing
iconic gestures with or without speech, overlapping with those
brain regions that are also involved in advanced semantic
information processing of speech (Ozyiirek, 2014). This may be a
consequence of occupational skill-related requests: in the working
environment of seafarers, it is necessary to communicate with
foreigners and obey commands in various languages.

We also examined the occupational differences of functional
language networks’ lateralization between two groups. The
functional network of seafarers had ipsilateral and contralateral
asymmetry located in the precuneus for both seeds. Furthermore,
there was ipsilateral and contralateral asymmetry in the paracentral
lobule and middle cingulum with Brocas area as the seed,
and also Wernicke’s ipsilateral asymmetry in the left SFG/MFG
(see Figures 5, 6). Interestingly, a study on structural plasticity
suggested that the left precuneus and paracentral lobule are
closely related to spatial navigation training (Wenger et al,
2012), especially in young adults. Thus, the increased asymmetry
of seafarers reflects the increased demand for professional
competencies such as spatial navigation. Also, the right middle
cingulate gyrus showed evidence that it is associated with general
executive function in language conversion tests (Wang et al., 2007).
Moreover, rsfMRI has shown the MFG is comparable with Broca’s
area in its ability to determine hemispheric dominance for language
(Gohel et al., 2019). Also, seafarers showed a significant increase
in the left SFG and left MFG, which might relate to both gestures
and spoken language used during voyages, as a few studies have
found left MFG sensitivity to hand movements with unambiguous
meanings (Willems et al., 2009). In summary, occupational factors
have an impact on the functional language network of the brain.

4.3. Limitations and future works

This study is limited by sample size; studies in this area
have yet to be conducted with larger datasets, and the robustness
of the results should be treated with more caution due to the
alternative steps in fMRI data processing (Murphy et al., 2009;
Chai et al, 2012). In future, we are planning to recruit more
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FIGURE 6
Results of two-sample t-test of language lateralization in terms of Wernicke's area (the seafarer group > the non-seafarer group; p 0.005, cluster
size >200 voxels, corresponding to corrected prye 0.05). R: right hemisphere, L: left hemisphere.

subjects to explore and validate the findings regarding language
networks and occupations. Due to the lack of behavioral data,
such as detailed working years, we cannot clarify the relationship
between language network and working years. More occupational
research is needed, because occupation is a lifelong daily activity,
and different occupations may have different effects on the
brain language network; further research is needed in the future.
Obviously, occupational effects on language networks occurs across
the lifespan, and changes in the language network could be
associated with various jobs. As a result, further work should be
done on these points.

5. Conclusion

This study provides new findings that professional seafarers
as a special occupation group elicited a weaker connection in
the left SFG/MFG and left precentral gyrus with Broca seed-
based RSFC, and a greater connection of Wernicke’s area with the
cingulate and precuneus. Moreover, the slightly right-lateralized
feature of functional language networks was observed in the
Broca’s area of seafarers, but no significant voxels were observed
in Wernicke’s area as seed; on the contrary, non-seafarers showed
an almost leftward lateralization with Broca’s area as the seed,
and rightward lateralization with Wernicke’s area. Interestingly,
regarding the differences in language lateralization, the seafarers
revealed greater connection with left Brocas and left Wernicke’s
areas. Overall, according to our findings, the seafarer’s occupation
showed potential effects on brain language networks and their
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lateralization, which provides new evidence regarding occupational
neuroplasticity and language.
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