
TYPE Original Research
PUBLISHED 08 March 2023
DOI 10.3389/fnhum.2023.1101938

OPEN ACCESS

EDITED BY

Cristiano Maria Verrelli,
University of Rome Tor Vergata, Italy

REVIEWED BY

Chao Chen,
Tianjin University of Technology, China
Mengfan Li,
Hebei University of Technology, China
Qiang Zhang,
University of North Carolina at Chapel Hill,
United States

*CORRESPONDENCE

Min Li
min.li@mail.xjtu.edu.cn

†These authors have contributed equally to this
work and share first authorship

SPECIALTY SECTION

This article was submitted to
Motor Neuroscience,
a section of the journal
Frontiers in Human Neuroscience

RECEIVED 18 November 2022
ACCEPTED 14 February 2023
PUBLISHED 08 March 2023

CITATION

Li M, Wang J, Yang S, Xie J, Xu G and Luo S
(2023) A CNN-LSTM model for six human ankle
movements classification on different loads.
Front. Hum. Neurosci. 17:1101938.
doi: 10.3389/fnhum.2023.1101938

COPYRIGHT

© 2023 Li, Wang, Yang, Xie, Xu and Luo. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A CNN-LSTM model for six
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This study aims to address three problems in current studies in decoding the

ankle movement intention for robot-assisted bilateral rehabilitation using surface

electromyogram (sEMG) signals: (1) only up to four ankle movements could

be identified while six ankle movements should be classified to provide better

training; (2) feeding the raw sEMG signals directly into the neural network

leads to high computational cost; and (3) load variation has large influence

on classification accuracy. To achieve this, a convolutional neural network

(CNN)—long short-term memory (LSTM) model, a time-domain feature selection

method of the sEMG, and a two-step method are proposed. For the first time, the

Boruta algorithm is used to select time-domain features of sEMG. The selected

features, rather than raw sEMG signals are fed into the CNN-LSTM model. Hence,

the number of model’s parameters is reduced from 331,938 to 155,042, by

half. Experiments are conducted to validate the proposed method. The results

show that our method could classify six ankle movements with relatively good

accuracy (95.73%). The accuracy of CNN-LSTM, CNN, and LSTM models with

sEMG features as input are all higher than that of corresponding models with raw

sEMG as input. The overall accuracy is improved from 73.23% to 93.50% using

our two-step method for identifying the ankle movements with different loads.

Our proposed CNN-LSTM model have the highest accuracy for ankle movements

classification compared with CNN, LSTM, and Support Vector Machine (SVM).
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SEMG signal, ankle movement classification, load variation, CNN, LSTM

1. Introduction

In the World Health Organization report on aging and health, it is noted that
the proportion of older people in the world will exceed 25% by 2029 (World Health
Organization, 2015). Stroke is one of the most common diseases among older people, and
motor impairments of limbs, such as foot drop and spastic equinovarus foot deformity
are one of the most common outcomes after stroke (Leardini et al., 2019). The ankle joint
has many important functions including assisting people walking, supporting the body’s
weight, maintaining balance, and changing posture (from sitting to standing or from lying
to sitting; Jung, 2016; Zhang et al., 2022). Normal functioning in people’s daily lives needs a
normal ankle joint; mobility deficits on the ankle joint can lead to difficulties in walking and
other activities of daily life (Dettwyler et al., 2004; Jamwal et al., 2014). The ability to control
the body is inversely proportional to the distance between the brains and limbs, implying
that the greater the distance, the lower the ability (Gwin and Ferris, 2012). Therefore, the
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recovery of the motor function of ankles is more difficult than
that of other joints with a similar disability (Zeng et al., 2017). For
stroke survivors, ankle joints can gradually stiffen without adequate
exercises and eventually develop foot drop (McCrimmon et al.,
2015). Ankle muscle stretching and joint rotation training may be
beneficial for early-stage stroke survivors who are not yet capable of
performing multi-joint training exercises.

Bilateral training, which involves using both limbs/sides of
the body simultaneously, is a commonly used stroke rehabilitation
method (Cauraugh et al., 2010). Most stroke patients have unilateral
motor dysfunction or hemiplegia (Yue et al., 2017). One side
of the patient’s ankle is intact, which is called the unaffected
limb. The other side of the ankle has different degrees of
motor dysfunction, which is called the affected limb. Bilateral
training applies interneural coordination assumptions to activate
the motor synergy between limbs. In other words, when performing
symmetrical movements, activating the primary motor cortex and
supplementary motor areas of the unaffected limb increases the
likelihood of spontaneous muscle contractions (i.e., motor synergy)
in the affected limb (Stewart et al., 2006). Bilateral training can
effectively activate the brain areas of the human body, such as
auxiliary motor area and sensory motor cortex (Waller et al.,
2006; Cauraugh et al., 2010). Evidence shows that the simultaneous
movement of both limbs can help the neuromuscular system regain
certain stability and improve the use of affected limbs (Waller et al.,
2006). Therefore, it has a better rehabilitation effect (Oujamaa et al.,
2009; Zhu et al., 2021).

Many studies have shown that robot-assisted training can
restore the motor functions of patients (Jamwal et al., 2014; Zhang
et al., 2017; Akbari et al., 2021). Passive and active robot-assisted
training has been used for stroke rehabilitation (Ang et al., 2014).
During active robot-assisted rehabilitation, patients are motivated.
Therefore, active robot-assisted training can accelerate the recovery
of the central nervous system compared with passive robot-
assisted training (Stewart et al., 2006; Miao et al., 2018). Robot-
assisted bilateral training combines the concept of bilateral training
with active robot-assisted training (Ueki et al., 2012; Leonardis
et al., 2015). In robot-assisted bilateral training, the robot-assisted
movements of the affected limb are often controlled by sensing
the voluntary movements of the unaffected limb (Ueki et al., 2012;
Leonardis et al., 2015). Robot-assisted bilateral training has shown
promising results as an effective limb rehabilitation strategy for
stroke patients (Leonardis et al., 2015). To achieve this type of robot-
assisted bilateral training, decoding the movement intention of the
unaffected limb is necessary to control the robot placed on the
affected side. Surface electromyography (sEMG) signals are widely
used to decode human movement intentions during rehabilitation
training (Varol et al., 2010; Joshi et al., 2013; Liu et al., 2019;
Gautam et al., 2020; Zhang et al., 2021, 2022) For lower-limb
rehabilitation training, the current literature mainly focuses on
gait recognition rather than ankle movement classification (Varol
et al., 2010; Joshi et al., 2013; Liu et al., 2019; Gautam et al., 2020;
Zhang et al., 2021, 2022). However, gait recognition is applicable
to individuals with sufficient walking ability, whereas platform-
based ankle rehabilitation robots are more suitable for early stroke
patients. Therefore, classifying the ankle movements through sEMG
signals is necessary to achieve bilateral training for individuals
with weak motor ability who can only use platform-based ankle

rehabilitation rather than gait rehabilitation robots (Zhang, 2016;
Zeng et al., 2017).

Only a few studies have classified ankle movements from sEMG
signals (Chen et al., 2019; Cheng et al., 2020; Hooda and Kumar,
2021). Among these studies, Chen et al. (2019) classified two
ankle movements using their method, including inversion (IV) and
eversion (EV). Studies have shown that the plantarflexion (PF) and
dorsiflexion (DF) of the ankle joint play an essential role in human
walking (Huang et al., 2015). Therefore, Hooda and Kumar (2021),
as well as Cheng et al. (2020), classified four ankle movements:
PF, DF, EV, and IV. Apart from PF, DF, EV, and IV, the ankle
joint can also perform internal rotation (IR) and external rotation
(ER) movements (Meng et al., 2014; Brockett and Chapman, 2016).
According to the research by Meng et al. (2014), there are two
peaks of IR torque and one peak of external rotation torque in
the ankle joint during normal walking. In other words, IR and ER
movements occur in normal human walking. Moreover, during a
DF movement, an IR movement also occurs while during a PF
movement, an ER movement also occurs (Brockett and Chapman,
2016). Therefore, all six ankle movements should be classified to
provide better ankle rehabilitation training. To the best of our
knowledge, no studies have reported using sEMG signals to classify
all these six ankle movements.

The introduction of deep learning methods in motion intention
recognition using sEMG signals has led to good classification
results (Huang et al., 2019; Gautam et al., 2020; Lai et al., 2021;
Nguyen-Trong et al., 2021; Tripathi et al., 2022; Yang et al., 2022).
Regarding ankle movement classification, Chen et al. (2019) used
a cerebellar model neural network (CMNN) to classify two ankle
movements (IV and EV). They achieved a high classification
accuracy of 96.90%. Cheng et al. (2020) proposed a convolutional
neural network (CNN)—long short-term memory (LSTM) hybrid
model to classify four ankle movements (DF, PF, IV, and EV). They
tested this model on three healthy subjects with an average accuracy
of 97.55%, which is a great improvement over traditional machine
learning classifiers. However, many previous studies mainly focused
on improving the accuracy of classification rather than the real-time
performance of online classification (Cheng et al., 2020; Gautam
et al., 2020; Lai et al., 2021; Nguyen-Trong et al., 2021; Tripathi et al.,
2022; Yang et al., 2022), which is extremely important for bilateral
training. The original signals are often directly fed into the deep
learning models (Cheng et al., 2020; Gautam et al., 2020; Lai et al.,
2021; Nguyen-Trong et al., 2021; Tripathi et al., 2022; Yang et al.,
2022); therefore, even a slightly large amount of data can seriously
affect the real-time performance (Joshi et al., 2013). Moreover, these
deep learning models have a large number of parameters when raw
sEMG signals are used, which leads to high computational costs,
making their application difficult for occasions requiring real-time
performance (Xia et al., 2020). For example, Atzori et al. (2016)
proposed a CNN to classify hand movements by sEMG. They
fed the preprocessed sEMG directly into CNN. The average time
required to train CNN was 1 h and 42 min, and the average time
required to test the network was 21.5 s using an Nvidia Titan-x GPU
(Atzori et al., 2016). Liu et al. (2019) used CNN to continuously
estimate the knee joint angle by sEMG. Two neural networks were
trained on a system with Intel (R) Core (TM) i7-8700K CPU (Intel,
Santa Clara, CA, USA), a 3.70 GHz processor and 31.3 GB of RAM:
original data-based CNN and feature-based CNN. The training
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time for original data-based CNN was 5,400± 25 s, and for feature-
based CNN was 31.7± 3.6 s, which meant that the training time of
using features as CNN input was greatly reduced (Liu et al., 2019).
Fewer studies have tried to use extracted features instead of original
sEMG signals as the input of deep learning models in motion
classification. Chen et al. (2019) tried to extract the root mean
square (RMS) feature of the EMG signal as the input of CMNN
and realized the classification of two movements of the ankle joint.
Using RMS had the advantages of high real-time performance and
low computational complexity (Chen et al., 2019). Unfortunately,
they only considered the feature of RMS, namely, they ignored the
information other than RMS in sEMG signals. Moreover, they failed
to compare their method with the traditional methods to verify
the advantages of their method. To the best of our knowledge, no
study has attempted to use feature selection algorithms for selecting
appropriate features to form a feature set as the input of deep
learning models so as to improve the real-time performance in
ankle movement classification.

Moreover, the load variation greatly influences the classification
accuracy in motion recognition using sEMG signals (Al-Timemy
et al., 2013; Tang et al., 2016). When the same movement is
performed with different loads, the features such as RMS of sEMG
are different. At this point, if we continue to use the trained classifier
under a single load, the accuracy will be much lower. Studies have
shown that the load variation may lead to a decrease in the accuracy
of sEMG recognition by up to 60% (Al-Timemy et al., 2013) and also
an increase in Root Mean Square Error (RMSE) for the joint angle
from 7.86◦ to 20.44◦ (Tang et al., 2016). Moreover, Tang et al. (2016)
found that only putting EMG signals under all loads together into
the model could not achieve an ideal performance when decoding
elbow movements. To the best of our knowledge, no study has
provided solutions to reduce the influence of load variation on the
classification accuracy in ankle movement classification.

In summary, three problems exist in decoding the ankle
movement intention for robot-assisted bilateral rehabilitation using
surface electromyogram (sEMG) signals: only up to four ankle
movements can be identified, whereas six ankle movements should
be classified to provide better training; feeding the raw sEMG
signals directly into the neural network leads to high computational
cost; and load variation has a great influence on classification
accuracy. To solve the aforementioned problems, a time-domain
feature selection method of the sEMG, a CNN-LSTM model,
and a two-step method are proposed in this study to decode
the movement intention of the ankle joint for bilateral ankle
rehabilitation training. First, the Boruta algorithm is used to
select relevant features, and the corresponding feature matrix is
calculated. Then, the feature matrix instead of the original signal
is fed into the deep learning model, which greatly reduces the
computational cost. In addition, a two-step method is adopted.
We first identify the load on the ankle joint and then identify
the movement, which greatly reduces the impact of the load
variation on accuracy. Compared with previous studies, our major
contributions are as follows: (a) the classified ankle movements
are expanded from four to six; and (b) the influence of the load
variation on movement recognition is reduced.

The structure of the remainder of this article is as follows.
Section “1 Introduction” introduces the methodology of our
proposed methods. Section “2 Materials and methods” describes

the validation experiments. Section “3 Experiment and results”
discusses the experiment results, and Section “4 Discussion” draws
a conclusion.

2. Materials and methods

The framework of the ankle movement classification method
proposed in this article is shown in Figure 1. First, four channels
of raw sEMG signals were collected. Then, the raw sEMG signals
were preprocessed through notch filtering, bandpass filtering, and
normalization (Rajapriya et al., 2021). Next, a two-step method was
adopted to improve the accuracy of ankle movement classification
with different loads. In the first step, the RMS of sEMG was
calculated and classified using a Random Forest classifier to obtain
the specific load including low, medium, and high. In the second
step, seven most relevant time-domain features were selected using
the Boruta algorithm (Kursa and Rudnicki, 2010) and fed into the
corresponding CNN-LSTM model to classify the ankle movement
with the aim of reducing the computation cost and improve
the accuracy. The detailed process is described in the following
paragraphs.

2.1. Data acquisition

The target movements of the ankle joint in this study include:
PF, DF, IV, EV, IR, and ER. Four muscles, including tibialis
anterior muscle (TA), lateral gastrocnemius muscle (LG), medial
gastrocnemius muscle (MG), and soleus muscle (SOL) play an
important role in these target ankle joint movements. Therefore,
these four muscles were selected to collect sEMG signals (Al-
Quraishi et al., 2015). The bipolar sEMG electrodes on the left shank
were positioned according to the Surface EMG for Non-Invasive
Muscle Evaluation (SENIAM, seniam.org) criteria. As shown in
Figure 2, the electrodes of 1–4 were attached to the TA, LG, MG,
and SOL of each subject, respectively.

The physiological space of the ankle joint can be divided into
the frontal axis, the sagittal axis, and the vertical axis to facilitate
the analysis of the ankle joint (Dettwyler et al., 2004). PF and DF
movements rotate around the frontal axis; IV and EV movements
rotate around the sagittal axis; and IR and ER movements rotate
around the vertical axis. Therefore, two test benches were designed
to simulate the load variation on the ankle, as shown in Figure 3.
The test bench was composed of a static platform and a moving
platform, which could rotate relative to the static platform. The
test bench shown in Figure 3B could rotate around the frontal
and sagittal axes, and therefore PF/DF and IV/EV movements
could be simulated with this test bench. The test bench shown
in Figure 3C could rotate around the vertical axis, and therefore
IR/ER movements could be simulated with it. Four tension springs
with the same stiffness were used to connect the static and the
moving platforms. They were placed at the same distance and angles
as their neighbors. When the moving platform rotated relative
to the static platform, the tension of the spring needed to be
overcome. Three kinds of tension springs with different stiffness
values (0.04 N/mm, 0.15 N/mm, and 0.41 N/mm) were used to
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FIGURE 1

Framework of the ankle movement classification method.

simulate the low, medium, and high loads on the ankle joint,
respectively. Regarding the tension spring stiffness, the higher load
was roughly three times of the lower load. The torque generated
by the tension spring with the largest stiffness (0.41 N/mm) when
performing PF, DF, IV, EV, IR, and ER was 3.05, 3.39, 3.39, 3.33,
2.38, and 3.44 Nm, respectively. The torque of normal people
when performing PF, DF, IV, EV, and IR/ER, tested in a seated
posture task, is 6.11, 11.59, 3.62, 4.18, and 4–8 Nm, respectively
(Lu, 2016; Chen, 2018). For hemiplegics, the torques performing
these movements will be reduced to about 20.40%–30.60% (Kim
and Eng, 2003). Therefore, our device is suitable for simulating the
ankle movements of patients with hemiplegia.

2.2. Data pre-processing

In general, the sEMG signals need to be segmented into smaller
sections before signal processing. A sliding window is applied. The

control delay should be less than 300 ms to realize an effective
real-time control for the rehabilitation robot (Hudgins et al., 1993).
Moreover, some studies suggested that the sliding window using
100–300 ms window length with 20%–60% overlapping is suitable
for real-time control for the rehabilitation robot (Rajapriya et al.,
2021; Teng et al., 2021). Therefore, the window length was set to be
210 ms and the sliding length was 120 ms.

The power-line interference was removed by applying a 50 Hz
notch filter on the raw sEMG signals (Rajapriya et al., 2021). The
frequency of sEMG is concentrated at 20−450 Hz, and the voltage
amplitude of sEMG is low and varies weakly, making it easily
submerged by noise signals (Al-Quraishi et al., 2015). To avoid
this, a 4th Butterworth bandpass filter with a cut-off frequency of
20−450 Hz was used to filter and reduce the noise. Finally, in order,
the filtered sEMG was normalized into zero mean and unit variance
to accelerate the convergence of neural network (Sola and Sevilla,
1997).
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FIGURE 2

EMG electrodes positions.

FIGURE 3

Test benches. (A) Experimental setup. (B) Test bench of DF, PF, IV,
and EV, the moving platform could rotate around the x-axis and y-
axis. (C) Test bench of IR and ER, the moving platform could rotate
around the z-axis.

2.3. Feature extraction

Previous studies explored 37 time-domain and frequency-
domain features (Phinyomark et al., 2012). They evaluated these
features through the scatter plot of features, statistical analysis, and
classifier methods. They found that all frequency-domain features
were calculated based on the statistical parameters of EMG power
spectral density and were not suitable for EMG recognition systems.
The time-domain features have a higher correlation with movement
and are considered to have better performance than frequency-
domain and time-frequency-domain features (Phinyomark et al.,
2012; Al-Quraishi et al., 2015). Therefore, time-domain features
were selected to form the feature vector in this study. Time-domain
features commonly include the following: (a) RMS; (b) Mean
Absolute Value (MAV); (c) Waveform Length (WL); (d) Zero
Crossing points (ZC); (e) number of Slope Sign Change (SSC);

(f) Variance (VAR); (g) Logarithmic Detection value (LogD); and
(h) Willison Amplitude (WA). It is worth mentioning that each of
these features used in our study is a one-dimensional feature, which
implying that it is calculated as a one-dimensional rather than a
multi-dimensional vector. For the given EMG sampled signal xi of
length M, the features were calculated using the equations shown in
Table 1 (Hudgins et al., 1993; Reaz et al., 2006; Tkach et al., 2010;
Kim et al., 2011; Phinyomark et al., 2012, 2013; Al-Timemy et al.,
2016). There, the value of the threshold is chosen as 50 µv to avoid
background noise (Phinyomark et al., 2012).

As mentioned in the introduction, a two-step method is
adopted in our study to reduce the impact of load variation on
classification accuracy. RMS is usually used for force estimation,
which can reflect the level of muscle contraction (Harrach et al.,
2017). Therefore, in the first step, RMS was selected as the input of
the Random Forest classifier to identify the load levels. The Random
Forest classifier was selected to recognize the load level in this article
because of its remarkable robustness and good resistance to over
fitting (Zhou et al., 2019). In this study, the loads were classified into
three load levels (low, medium, and high). The details of the load
levels are provided in Section “2.1 Data acquisition”. In the second
step, the ankle movements were classified using the feature vector
constructed by multiple features as the input of the CNN-LSTM
model. Selecting all the aforementioned features will cause a large
dimension of the feature vector and a high computation cost. As a
result, the training process of the neural network may take a longer
time. Meanwhile, redundant features may reduce the accuracy and
the performance of classification (Chen et al., 2020). Therefore,
selecting several most relevant features from these commonly used
time-domain features is necessary. Boruta algorithm is a feature
selection algorithm, which is a package based on the Random Forest
classification algorithm (Kursa and Rudnicki, 2010; Ahmadizadeh
et al., 2019). It provides an unbiased and stable selection of
important and unimportant features (Kursa and Rudnicki, 2010).
Its main steps are shown in Figure 4.

1. Shuffling the feature matrix, and splicing the shuffled features
recorded as shadow features and the raw features recorded as
real features into a new feature matrix (Kursa and Rudnicki,
2010).

2. Randomly shuffling the added features to eliminate their
relevance with the response.

3. Running a Random Forest classifier on the new feature matrix
and calculating the Z-Score. The Z-Score can represent the
relative position of feature importance in the distribution. It
is equal to the average feature importance minus the feature
importance and then divided by the standard deviation of the
feature importance. There, the feature importance is returned
by the Random Forest algorithm.

4. Finding the largest Z-Score in the shadow features and record
it as Zmax.

5. Marking the real feature as important if the Z-Score is
significantly greater than the Zmax, and marking the real
feature as unimportant and permanently eliminating it from
the feature set if the Z-Score is significantly less than Zmax.

6. Removing all shadow features.
7. Repeating the procedure until all features are marked as

important or unimportant.
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TABLE 1 Time-domain features with a mathematical formulation.

Name Mathematical formulation

Root Mean Square (RMS; Al-Timemy et al., 2016) RMS =

√
1
M

M∑
i = 1

x2
i

Mean Absolute Value (MAV; Kim et al., 2011) MAV = 1
M

M∑
i = 1
|xi|

Waveform Length (WL; Phinyomark et al., 2013) WL =
M − 1∑
i = 1
|xi+1 − xi|

Zero Crossing Points (ZC; Hudgins et al., 1993) ZC =
M − 1∑
i = 1

[
sgn (xi × xi+1) ∩ |xi − xi+1| ≥ threshold

]
sgn (x) =

 1, if x ≥ threshold

0, otherwise

Number of Slope Sign Shange (SSC; Hudgins et al., 1993) SSC =
M−1∑
i = 2

[
f [(xi − xi−1)× (xi − xi+1)]

]
f (i) =

 1, if x ≥ threshold

0, othrewise

Variance (VAR; Reaz et al., 2006) VAR = 1
M−1

M∑
i = 1

(
xi −

1
M

M∑
i = 1

xi
)2

Logarithmic Detection Value (LogD; Tkach et al., 2010) Log D = e
1
M
∑M

i = 1 log|xi |

Willison Amplitude (WA; Phinyomark et al., 2012) WA =
M−1∑
i = 1

[
f (|xn − xn+1|)

]
f (i) =

 1, if x ≥ threshold

0, otherwise

In this study, the Boruta algorithm was used to select the
time-domain features of the sEMG signals. As mentioned earlier,
the window length was 210 ms. Unlike using raw sEMG as
input directly, each large window (210 ms) was sectioned into
20 small windows with a window length of 20 ms and a sliding
length of 10 ms. The features were then calculated in each 20 ms
window. In other words, the large window (210 ms) could be
sectioned into 20 small windows (20 ms). The specific window
segmentation method is shown in Figure 5. Finally, for each
channel, a feature matrix with the size of 20 × N was then
obtained. N represents the number of features selected using the
Boruta algorithm.

2.4. Network architecture

Figure 1 shows the network architecture of the movement
classifier proposed in this article. The features learned by the
neural network were referred as deep learning features in this study
to avoid confusion with the hand-crafted time-domain features
mentioned earlier. The network structure adopted the combination
of CNN and LSTM. CNN can extract the deep learning features
of sEMG signals (Bao et al., 2021; Zhu et al., 2021), but it cannot
extract the temporal correlations. Since sEMG signals have a certain
coherence in the time domain, a layer of LSTM, which is a recurrent
neural network (RNN) that can extract the deep learning features
of the time sequence of sEMG (Xia et al., 2020), was added to the
network. In this way, the temporal-spatial correlations of sEMG can
be exploited.

The inputs of the network were the feature vectors converted
from the feature matrices of the four channels. After the
preprocessing, a feature matrix with the size of 20×N was obtained
for each channel, but the input of CNN-LSTM is 10 × N. This was
because the time step of LSTM was set to be 2 and half of the 20×N
feature matrix was used as the input in each step. The output of the

network is the movement category of the ankle joint, implying that
the network is a six-class classifier.

In general, the network comprises a deep feature extraction
block and a movement classification block. The deep feature
extraction block is composed of a two-layer convolution layer, a
maximum pooling layer, and an LSTM layer. Each convolution layer
follows a Relu activation function. Then, the outputs of the four
channels are concatenated. The concatenated deep learning features
are sent to the LSTM layer, followed by the dropout layer. In the
next stage, the output of the LSTM layer is fed into the dense layer,
followed by a dropout layer and another dense layer that outputs
the probabilities of six ankle movements. The movement can be
predicted by:

ŷ =


arg max p

(
y |X;∅l

)
if in low load

arg max p
(
y |X;∅m

)
if in mid load

arg max p
(
y |X;∅n

)
if in high load

(1)

where Øl, Øm, and Øh are the parameters of our CNN-LSTM model
in specific load, X represents the feature matrix of model input, and
y∈Y= {0, 1, 2, 3, 4, 5} denotes the corresponding label set.

Not only does the architecture of the neural network affect its
performance, but the selection of hyperparameters is also important
(Joshi et al., 2013). For the network architecture proposed in this
article, the hyperparameters that needed to be considered included
the following: (a) the number of layers of the network, (b) filters
size, (c) kernel size, (d) pooling size, (e) stride rate, and (f) time
step. At the same time, the training parameters that we needed to
adjust included the following: (a) number of epochs, (b) learning
rate, (c) activation function, (d) loss function, (e) batch size,
and (f) dropout. The hyperparameters of our model were mainly
determined with reference to previous studies and then manually
tuned via experience (Gautam et al., 2020). In the deep feature
extraction block, the first convolution layer used 32 filters of size
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FIGURE 4

Boruta algorithm procedures.

FIGURE 5

Window splitting method.

3 and a stride rate of 1. The second convolution layer also used
32 filters of size 3 and a stride rate of 1. The pool size of the
max-pooling layer was 2. A size of 50 memory units was used
for the LSTM layer. Meanwhile, the time step of the LSTM layer
was set to be 2. The number of neurons in the first dense layer
was 100. The number of neurons in the second dense layer is the
types of ankle movements, which was set as 6 in this article. The
probability of dropout was set to 60%. The purpose of setting the
dropout layer was to prevent overfitting. Adam optimizer was used
with a learning rate of 0.001. The purpose of this network is to

classify ankle movements; therefore, we use a cross entropy loss
function L:

L =
1
N

∑
i

Li = −
1
N

∑
i

M∑
c = 1

yic log
(
pic
)

(2)

where N is the sample size in the current batch, M is the number
of categories, yic indicates whether the category is the same as the
category of sample i (the same is 1 and the different is 0), and
pic indicates the prediction probability that the observed sample i
belongs to category c.

According to the relevant literature (Gautam et al., 2020; Bao
et al., 2021), the batch size was set to be 256 and the number
of epochs was set to be 100 in the training process. The specific
parameters of the network model and the size of the deep learning
feature vector of each layer are shown in Table 2. The model
training and testing were performed on a PC that had AMD Ryzen
7 5800H CPU with 3.20 GHz, 16 GB RAM, and an NVDIA GeForce
RTX 3050 Ti graphics card with 4 GB memory.

3. Experiment and results

3.1. Experimental protocol

Six male able-bodied subjects (age: 22–25 years old; height:
170–179 cm; weight: 60–75 kg) participated in this study. The
subjects were asked to sit in a chair with their shanks dropping
naturally and their whole body relaxed. This study was reviewed
and approved by the Institutional Review Board of Xi’an Jiaotong
University (Approval No. 2019-584).

During the experiment, the subjects were asked to place their
“unaffected side foot” (left foot) on the moving platform. The
experimental procedure is shown in Figure 6. At the beginning
of the experiment, the subjects were asked to relax and stare at
a screen. A NeuSen WM (Neuracle Co., Ltd., China) was used
as the sEMG acquisition equipment. The sampling frequency was
1,000 Hz, and the EMG electrodes were Ag/Cl electrodes. Before
the experiment, the skin surface was wiped with alcohol to remove
stains from the skin surface so as to reduce the impedance between
the electrodes and the skin. After the experiments began, the
subjects were asked to perform the movements to the maximum
range shown on the screen. The specific process was as follows: (a)
remaining relaxed for 4 s; (b) performing the ankle joint motion
shown on the screen with a rotational speed as constant as possible
until the rotation limit was reached, and this process should be
finished within 1 s; (c) maintaining the rotational angle for 3 s; and
(d) resting for 4 s and starting the next motion. A set of experiments
contained six ankle movements. The subjects had a 5-min break
between each two sets of experiments to prevent muscle fatigue. The
screenshot of the guidance interface of the experiment is shown in
Figure 7. Each subject was asked to repeat the experiment 12 times
under each load. In total, 216 (3 loads × 6 movements × 12 times)
trials of experiments were completed by each subject. As a result,
6× 216 = 1,296 trials were completed. All participants were trained
to do the isokinetic contraction by watching an animation of a 1-s
constant rotation of the ankle joint on the computer monitor before
the experiment to improve the consistency of the ankle rotation
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TABLE 2 Our model parameters details.

Block Our Model (With sEMG features as input) Our Model (With raw sEMG as input)

Output Shape Parameters Output Shape Parameters

Deep Feature Extraction
Block

Conv1D_1 (10, 32) 704 (25, 32) 128

Conv1D_2 (10, 32) 704 (25, 32) 128

Conv1D_3 (10, 32) 704 (25, 32) 128

Conv1D_4 (10, 32) 704 (25, 32) 128

Conv1D_5 (10, 32) 2,080 (25, 32) 2,080

Conv1D_6 (10, 32) 2,080 (25, 32) 2,080

Conv1D_7 (10, 32) 2,080 (25, 32) 2,080

Conv1D_8 (10, 32) 2,080 (25, 32) 2,080

Maxpooling1D_1 (5, 32) 0 (12, 32) 0

Maxpooling1D_2 (5, 32) 0 (12, 32) 0

Maxpooling1D_3 (5, 32) 0 (12, 32) 0

Maxpooling1D_4 (5, 32) 0 (12, 32) 0

Flatten_1 160 0 384 0

Flatten_2 160 0 384 0

Flatten_3 160 0 384 0

Flatten_4 160 0 384 0

Concatenate (640) 0 1536 0

LSTM 50 138,200 50 317,400

Dropout_2 50 0 50 0

Movement Classification
Block

Dense_1 100 5,100 100 5,100

Dropout_3 100 0 100 0

Dense_2 6 606 6 606

Total Parameters 155,042 331,938

FIGURE 6

Experimental procedure.

speed during the experiment. At the same time, the subjects moved
their ankles along with the animation. During the experiment, the
same animation also appeared on the computer monitor to help the
subjects move at a constant speed.

FIGURE 7

Screenshot of the guidance interface of the experiment.

The result of the Boruta algorithm is shown in Figure 8.
The feature marked in blue is the shadow feature represented by
Max_Shadow, Median_Shadow, Mean_Shadow, and Min_Shadow.
The Z-Score of Max_Shadow was recorded as Zmax, which was
the criterion for judging the importance of features. Based on the
Z-Score results, the feature suggested to be excluded was marked
in red and seven features more related to ankle joint movements
were marked in green. Therefore, seven features, including RMS,
MAV, WL, ZC, SSC, VAR, and LogD, were selected to form the
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FIGURE 8

Result of the Boruta algorithm: Z-Score was used to represent the feature importance. The features suggested to be excluded are marked in red,
features more related to the dependent variables are marked in green, and the shadow features are marked in blue.

feature vector. In contrast, WA was not correlated with ankle joint
movements and was excluded. Therefore, the number of selected
features using the Boruta algorithm was 7.

Therefore, according to the division of the window, a small
window of 20 ms could achieve a feature vector with a size of 7× 4.
Also, a large window of 210 ms could obtain a feature matrix with
a size of 20 × 7 × 4. Since the time step of LSTM was 2, the input
size of the CNN-LSTM model was 10 × 7 × 4. We evaluated the
performance of several models (CNN-LSTM, CNN, and LSTM)
commonly used in sEMG recognition, with the raw sEMG and
the features of sEMG as the inputs, to demonstrate the superiority
of our model and the superiority of using the features of sEMG
as the input (Atzori et al., 2016; Gautam et al., 2020; Ma et al.,
2020).

3.2. Experimental results

3.2.1. Effect of load variation on the accuracy of
movement classification

As mentioned in the Introduction section, the load variation
has a great influence on the classification accuracy in motion
recognition using sEMG signals (Al-Timemy et al., 2013; Tang
et al., 2016). However, most recent studies did not take the
load variation into account when they trained their movement
classification model. In other words, their models were trained
without distinguishing the load levels, which was referred in this
study as a one-step method. The purpose of the experiment

discussed in this section was to demonstrate the effect of load
variation on the accuracy of movement classification and provide
a comparison object for our proposed two-step method discussed
in the next section. Three CNN-LSTM models with the same
architecture were trained under each load and then tested using
data from all three loads. The classification results for all subjects
represented using a confusion matrix are shown in Figure 9. The
horizontal coordinate of the confusion matrix represents the load
of the testing set, and the vertical coordinate represents the load of
the training set. Each element in the confusion matrix represents the
accuracy (in percentage) of all subjects for corresponding training
and testing loads. Among these, the main diagonal elements
represent the accuracy values in percentage where loads of the
training and testing sets are the same [intraload (Tang et al., 2016)],
and the off-diagonal elements represent the accuracy values in
percentage where loads of the training and testing sets are different
[interload (Tang et al., 2016)]. For example, 94.15 shows that the
accuracy of classifying ankle movements under the low load by
the trained CNN-LSTM classifier under the low load was 94.15%.
Further, 69.96 represents that the accuracy of classifying ankle
movements under the medium load by the trained CNN-LSTM
classifier under the low load was 69.96%. Also, 60.23 represents
that the accuracy of classifying ankle movements under the low
load by the trained CNN-LSTM classifier under the medium load
was 60.23%. The average value and variance of accuracy under
intraload, interload, and all loads are shown in Table 3. The overall
accuracy in Table 3 represents the average accuracy of all subjects
under intraload and interload when using the one-step method. The
two-sample t-test was then conducted. Based on the test result (data
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FIGURE 9

Confusion matrix of classification results for all subjects under every
single load using a one-step method. Each element represents the
accuracy of all subjects for corresponding training and testing loads.
Darker color indicates higher accuracy. The main diagonal elements
represent the accuracies where the load of training and testing sets
are the same. The off-diagonal elements represent the accuracies
where the load of training and the testing sets are different.

were normal distribution using the Shapiro-Wilk test, P = 1.34E-
18 < 0.001), it was suggested that a significant difference existed
in the accuracy between intraload and interload. It indicated that
the load variation had a substantial influence on the accuracy of
movement classification. This revealed that the robustness of the
one-step method was not good enough regarding the load variation.

3.2.2. Comparison between the proposed
two-step method and other conventional
methods

In this study, we proposed a two-step method with a
CNN-LSTM model to classify ankle movements. The first step
was to calculate the RMS of sEMG and feed it into the Random
Forest classifier for load classification. The Random Forest classifier
was selected to recognize a specific load in this article because
of its remarkable robustness and good resistance to overfitting
(Zhou et al., 2019). Each subject performed six movements under
a single load. Each movement was performed 12 times and lasted
for 4 s. In order to reduce the influence of the movement process
on the sEMG signals, 200 ms signals before and after each
movement were removed. Therefore, each movement lasted for
3.6 s. The total length of sEMG signals recorded for each subject
was 6 × 12 × 3.6 = 259.2 s. The number of samples per subject
under a single load can be then calculated using equation (3).

Ns =
T − window length

sliding length
(3)

where Ns is the number of samples per subject under a single load,
and T is the effective time of sEMG signals from each subject under
a single load. Since the sliding length was 120 ms and the window
length was 210 ms, the number of samples per subject under a single
load was calculated to be 2,158.

Therefore, the number of samples per subject under all loads
was 6,474. Since these samples were randomly divided into a
training set and a testing set using a ratio of 8:2, the number
of training and testing samples per subject under all loads was
5,179 and 1,295, respectively. Therefore, the number of training and
testing samples for six subjects under three loads was 5,179× 6, and
1,295 × 6, respectively. The total number of samples was 38,844,
comprising six subjects under three load levels. In the training
phase, a five-fold cross-validation strategy (where four-folds were
used for training and one-fold was used for validation) was used
to improve the consistency of the classification results. As a result,
the number of samples for the training set under the low load
recognized by the Random Forest classifier was 10,325 and the
number of samples for the testing set was 2,623. The number of
samples for the training set under the medium load recognized by
the Random Forest classifier was 10,375, and the number of samples
for the testing set was 2,573. The number of samples for the training
set under the high load recognized by the Random Forest classifier
was 10,374, and the number of samples for the testing set was 2,574.
The training and testing sets were not of exactly the same size
under each load level because of the randomness when dividing the
datasets.

The classification results of the Random Forest classifier were
then obtained (Table 4). The data in Table 4 represent the number
of samples predicted to the corresponding load of the column. The
average accuracy of the Random Forest classifier for all three loads
was 92.81%, which could fulfill our requirements. In the second
step, according to the identified load category, the features of sEMG
were sent to the trained CNN-LSTM model with the same load
category for movement classification.

The results of movement classification are shown in Table 5.
The first three columns of data in Table 5 show the number
of samples in the classified load category that the movements
are correctly identified, and the last column is the accuracy of
movement classification. Using Table 3 as a reference, we could
clearly see the advantages of the two-step method. The accuracy
under low, medium, and high loads increased from 70.72%, 76.99%,
and 71.98% to 91.42%, 95.22%, and 93.90%, respectively. The
overall accuracy of movement classification increased from 73.23%
to 93.50%. In addition, a two-sample t-test was conducted. The P-
value of overall accuracy between the two-step and conventional
methods was 7.90E-4. It was suggested that a significant difference
existed in the accuracy between these two methods. Therefore,
it was concluded that the proposed two-step method could
greatly improve the accuracy of classification compared with the
conventional one-step method.

3.2.3. Comparison among different models
Several model architectures with the sEMG features and the

raw sEMG as inputs were compared to verify the performance
of the proposed CNN-LSTM model with sEMG features as the
input, as shown in Figure 10. It was obvious that the accuracy
with sEMG features as the input was higher than that with raw
sEMG as the input when using the CNN-LSTM, CNN, and LSTM
models. The accuracy of the CNN-LSTM, CNN, and LSTM models
with sEMG features as the input was 6.85%, 1.33%, and 9.00%
higher than that of the corresponding models with raw sEMG
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TABLE 3 Average value and variance of accuracy under intraload, interload, and all loads using a one-step method.

Low Medium High Average

Intraload (mean± sd) 94.15± 1.89 96.74± 2.05 96.39± 1.96 95.76± 1.96

Interload (mean± sd) 59.01± 11.46 67.11± 7.32 59.77± 6.57 61.96± 8.45

Overall (mean± sd) 70.72± 8.27 76.99± 5.56 71.98± 5.03 73.23± 6.29

TABLE 4 Results of load classification.

Predicted Load

Low Medium High Acc

Real Load Low 2,430 150 43 92.64%

Medium 61 2,407 105 93.55%

High 62 138 2,374 92.23%

Overall 2,553 2,695 2,522 92.81%

TABLE 5 Results of movement classification using our proposed two-step method.

Predicted Load

Low Medium High Acc

Real Load Low 2,284 92 22 91.42%

Medium 45 2,330 75 95.22%

High 42 84 2,291 93.90%

Overall 2,371 2,506 2,388 93.50%

as the input, respectively. A statistical analysis was conducted to
explore the influence of different inputs on accuracy. According
to the two-sample t-test (data were normal distribution using the
Shapiro-Wilk test), the P-value of the CNN-LSTM, CNN, and
LSTM models was 1.16E-05, 0.17, and 8.50E-04, respectively. It
was suggested that a significant difference existed in the accuracy
between sEMG features and raw sEMG as the inputs when using
the CNN-LSTM and LSTM models. Meanwhile, we removed the
Boruta algorithm and tested the CNN–LSTM model using all eight
time-domain features to verify the significant improvement using
the Boruta algorithm. The results showed that the classification
accuracy of the CNN-LSTM model decreased from 95.73% to
92.84% after the Boruta algorithm was removed. A two-sample t-
test (P = 0.004 < 0.01) was conducted, which showed that the
performance of the model significantly improved when using the
Boruta algorithm. In addition, the parameters of the CNN-LSTM
model with sEMG features as the input was 155,042, while the
parameters of the CNN-LSTM model with raw sEMG as the input
was 331,938. Therefore, the computation cost of our method was
only 46.70% of that of the conventional method. In addition,
we calculated the time required to train these three models with
sEMG features and with sEMG as the inputs. The total time
required for each model with sEMG features as the input was
equal to the time required for feature extraction plus the time
required for training. The total time required by the CNN-LSTM,
CNN, and LSTM models with sEMG features as the input was
34.48 s, 19.95 s, and 20.63 s, which was 44.92 s, 27.54 s, and
82.192 s less than that of the corresponding models with raw sEMG
as the input, respectively. Moreover, the identification time of a
single sample was calculated. The average identification time of
a single sample required by the CNN-LSTM, CNN, and LSTM

models with sEMG features as the input was 8.03 ms, 3.09 ms,
and 3.20 ms, which was 16.57 ms, 11.62 ms, and 28.66 ms
less than that of the corresponding models with raw sEMG
as the input, respectively, guaranteeing the real-time control of
rehabilitation robots.

Our model was compared with CNN, LSTM, SVM models
used in the study by Hooda and Kumar (2021), the CNN-LSTM
model used in the study by Cheng et al. (2020), and the CMNN
model used in the study by Chen et al. (2019) to verify the
superior performance of the proposed model. Figure 10D, Tables 6
and 7 show the results of the aforementioned evaluation. It is
worth mentioning that the results of the CNN model, LSTM
model, and our proposed model were from the classification
performance with the same dataset collected in the present study,
whereas the results of the SVM (Hooda and Kumar, 2021),
CNN-LSTM (Cheng et al., 2020), and CMNN (Chen et al., 2019)
models were from the reported conclusions in the existing studies
(Chen et al., 2019; Cheng et al., 2020; Hooda and Kumar, 2021).
The accuracy of the CNN-LSTM model was 2.64% and 11.19%
higher than that of the CNN and LSTM models, respectively.
A two-sample t-test was conducted. According to the test result
(data were normal distribution using the Shapiro-Wilk test), the
P-value between the CNN-LSTM and CNN models was 0.002
(less than 0.01), and the P-value between the CNN-LSTM and
LSTM models was 5.07E-10 (less than 0.001). It was suggested
that a significant difference existed in the accuracy between the
CNN-LSTM, CNN, and LSTM models. It indicated that the
CNN-LSTM model had significant superiority over the CNN and
LSTM models. Compared with the SVM classifier proposed by
Hooda and Kumar (2021) the accuracy of the CNN-LSTM model
was 3.13% higher. Moreover, the CNN-LSTM model proposed in
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FIGURE 10

Classification accuracy for six movements using different models. (A) CNN-LSTM model with sEMG features and raw sEMG as the inputs. (B) CNN
model with sEMG features and raw sEMG as the inputs. (C) LSTM model with sEMG features and raw sEMG as the inputs. (D) Classification accuracy
for six movements using different network architectures with feature extraction (∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001).

this article could classify six movements including PF, DF, IV, EV,
IR, and ER, whereas the SVM classifier proposed by Hooda and
Kumar (2021) could only classify four movements, namely PF,
DF, IV, and EV. Compared with the CMNN classifier proposed by
Chen et al. (2019) and the CNN-LSTM hybrid model proposed
by Cheng et al. (2020), the accuracy of the CNN-LSTM model
was 1.17% and 1.82% lower, respectively. However, the CMNN
model can only classify two movements, including IV and EV,
and the model proposed by Cheng et al. (2020) can only classify
four movements, including PF, DF, IV, and EV. In addition, the
raw sEMG instead of features was fed into the model proposed
by Cheng et al. (2020), which involved huge computational
costs.

Please note that the differences between the proposed
CNN-LSTM and the CNN-LSTM proposed by Cheng et al. (2020)
are as follows. (1) The input processes for those two models were
different. In our proposed CNN-LSTM, the sEMG signals collected
from four channels were fed into CNN respectively. They were
flattened and concatenated after convolution. In the CNN-LSTM
proposed by Cheng et al. (2020), the sEMG signals of all channels
were fed together for convolution. (2) The outputs of these two
modes were different. The output of our model was six categories,
while that of the CNN-LSTM proposed by Chen et al. (2020) was
four categories; and (3) The convolution layer, LSTM layer, and
Dense layer of these two models had different number of layers and
parameters.

4. Discussion

4.1. Classified ankle movements

As mentioned earlier, the current literature mainly focused on
gait recognition rather than on ankle movement classification for
lower-limb rehabilitation training (Varol et al., 2010; Joshi et al.,
2013; Gautam et al., 2020). The reason might be that the ankle
joint could perform six movements, and it is more difficult to
accurately decode those six movements than gait recognition using
sEMG signals. Two ankle movements including IV and EV could be
classified with an accuracy of 96.90% by the method proposed by
Chen et al. (2019). The models proposed in the studies by Hooda
and Kumar (2021) and Cheng et al. (2020) could classify four ankle
movements (PF, DF, IV, and EV) with an accuracy of 92.60% and
97.55%, respectively. IR and ER movements could be recognized
incorrectly because the PF/DF of the ankle was always accompanied
by IR/ER (Chen, 2018). Whether applying the methods used in
these previous studies could classify these six movements and
maintain high accuracy remains to be explored.

In this study, our model can classify six ankle movements
with an accuracy of 95.70%. Compared with the models in
the aforementioned studies, our model can classify more ankle
movements with relatively good accuracy. Our target is to use the
decoded movements of the unaffected side to control the robot-
assisted motion on the affected side of stroke patients.
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TABLE 6 Performance of different network architecture and inputs.

Model Inputs Total Accuracy (%) Training Time (s) Identification Time of a Single
Sample (ms)

CNN-LSTM features 95.73± 3.92 34.48 8.03

CNN-LSTM raw sEMG signals 88.88± 9.13 79.40 24.60

CNN features 93.09± 4.01 19.95 3.09

CNN raw sEMG signals 91.76± 8.02 47.49 14.71

LSTM features 84.54± 10.22 20.63 3.20

LSTM raw sEMG signals 75.54± 17.88 102.82 31.86

4.2. Feature extraction

The timing of paired human movement intent and associated
feedback is critical to induce neuroplasticity (estimated to be within
300 ms) during rehabilitation training (Hudgins et al., 1993).
Therefore, reducing decoding time movement intent from sEMG
is an important task. Deep learning models such as CNN can be
used as classifiers to classify ankle movements. However, normally
raw sEMG signals are directly fed into the model, which brings
heavy calculation burden; thus, the real-time performance cannot
be guaranteed. In our study, seven time-domain features were
selected using the Boruta algorithm. Then, these features were fed
into our CNN-LSTM model. To our best knowledge, this is the
first time that the Boruta algorithm is used for feature selection of
sEMG, and it is also the first time that selected features rather than
raw sEMG are fed into a CNN-LSTM model. In addition, adding
more layers to the network might improve the accuracy. However,
the computational cost will increase, which will affect the real-time
performance. The aim of selecting time-domain features with the
Boruta algorithm and feeding them into the network is to find a
balance, which can not only obtain high accuracy but also meet the
requirements of real-time performance.

The distribution of model input with sEMG features and raw
sEMG is visualized in Figure 11 with t-Distributed Stochastic
Neighbor Embedding (t-SNE), where the dimension of model input
was reduced from high dimension to 2D. We could see that the
boundaries of each class with sEMG features as the input were
clearer than those with raw sEMG as the input. As a result, the
convergence speed of the model with sEMG features as the input
would be larger. The time required to train these three models
with sEMG features and raw sEMG as the inputs was calculated.
The total time required by these three models with sEMG features

FIGURE 11

Distribution of features. (A) CNN-LSTM model input with sEMG
features as the input. (B) CNN-LSTM model input with raw sEMG
as the input.

as the input is all less than that of the corresponding models
with raw sEMG as the input. Also, the time required by the
CNN-LSTM model was longer than that required by the CNN
and LSTM models. This might be because the CNN-LSTM model
is more complex and has more parameters. In the future study,
we should find ways to reduce the parameters of the CNN-LSTM
model and the training time while maintaining high accuracy.
On the contrary, using our proposed CNN-LSTM model, the
ankle movement classification time of a single sample was only
8.03 ms, which was about 5 ms longer than that using the CNN
or LSTM model. It would not be difficult to meet the real-time
requirement (300 ms) of rehabilitation even considering other time
delay factors in the rehabilitation system (Hudgins et al., 1993).
As shown in Table 6, the average accuracy of the CNN-LSTM,
CNN, and LSTM models with features of sEMG as the inputs
was higher than that with the raw sEMG signals as the input. In
addition, the statistical analysis results showed that the input of
the CNN-LSTM and LSTM models had a significant impact on the
accuracy whereas no significant difference on accuracy was found
between the CNN-LSTM and CNN models. This might be because
the CNN model has a good deep feature extraction performance. In
the future study, the specific reason should be found.

4.3. Load variation

Different load levels will lead to different levels of muscle
activity, and sEMG reflects the level of muscle activity (Kiguchi
and Hayashi, 2012). If the classifier trained under a single load is
used to classify the sEMG signals under other loads, the accuracy
will be greatly reduced (33.80%), as shown in Table 3. Tang et al.
(2016) found that putting EMG signals under all loads together into
the model could not achieve an ideal performance when decoding
the elbow joint angle. In this study, we used a two-step method
to reduce the effect of load variation on the classification results
of ankle movements. In the proposed two-step method, multiple
CNN-LSTM models were trained under different loads. In this
study, we trained three CNN-LSTM models under three loads
(low, medium, and high). When adopting the two-step method,
a random forest classifier was used to classify the load first, and
then the corresponding CNN-LSTM model was selected to classify
the movement. As shown in Tables 3 and 5, the overall accuracy
improved from 73.23% to 93.50% using the two-step method.
Unfortunately, errors existed (7.19%) when using the Random
Forest classifier to classify the load. In other words, some signals of
a specific load were fed into trained models under a different load
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level which it should not belong to. In future studies, improving the
accuracy of load level recognition is the direction of our efforts. In
addition, we only used three load levels (low, medium, and high) in
this study. However, in practical applications, the load may not be
within the training range. Expanding the training pool and dividing
the load levels more finely may be a solution. Another factor that
has a certain impact on accuracy is fatigue (Enoka et al., 2011). In
this study, the problem was addressed by giving the subjects plenty
of time to rest during the experiment. Our data were not collected
under fatigue. In future studies, fatigue should also be taken into
account.

4.4. Different models

In this study, we adopted the CNN-LSTM model to classify
ankle movements. The model consisted of two convolution layers,
one LSTM layer, and two dense layers. The hyperparameters of our
model were mainly determined with reference to previous studies
and then manually tuned via experience (Gautam et al., 2020). We
compared the performance of our model with that of other models
and performed the statistical analysis. As shown in Table 6, the
accuracy of our CNN-LSTM model was higher than that of the
CNN and LSTM models. The statistical analysis results indicated
that the CNN-LSTM model had significant superiority over CNN
and LSTM models. Furthermore, the validation of our model for
ankle movements classification is shown in Table 7 along with
a comparison with the CMNN (Chen et al., 2019), CNN-LSTM
(Cheng et al., 2020), and SVM (Hooda and Kumar, 2021) state-of-
the-art models. Unfortunately, since not many researchers focused
on classifying the ankle movements alone using sEMG signals,
finding any suitable public datasets to further verify the robustness
of our method was difficult. Please note that, since detailed
information about the computational costs of these three models
[SVM (Hooda and Kumar, 2021), CNN-LSTM (Cheng et al.,
2020), and CMNN (Chen et al., 2019) models] was not found,
only the classification accuracy was compared between these three
models and our proposed CNN-LSTM model. Further investigation
regarding the computation complexity or computation efficiency of
those models are desired in the future study.

As mentioned in Section “2.4 Network architecture”, after
the pre-processing, a feature matrix with the size of 20 × N
was obtained for each channel (four channels in total). The
feature matrix used in our proposed CNN–LSTM model, the
conventional CNN, and LSTM models was the same. However,
the input dimensions to these models were different because the
requirements of these three models were different. The input
dimension of CNN was 20 × N. The input of the traditional LSTM
model is required to be a one-dimensional vector. Therefore, in this

study, the feature matrix was flattened to become a one-dimensional
input vector before being fed into the LSTM model. The input
dimension for the proposed CNN-LSTM model is related to the
time step. Because the time step was set to 2, the 20 × N feature
matrix was divided into two 10 × N input matrices before being
fed into the CNN-LSTM model. Each 10 × N matrix was used as
the input for each step. Although the dimensions were different, the
feature matrix used in these three models was the same. Therefore,
in this study, we considered that the fairness of comparison could be
guaranteed. In future studies, the influence of the input dimensions
should be investigated in detail. Another possible direction is to find
a way to keep the input dimension the same when using different
models.

4.5. Limitations and future directions

This study had a few limitations. First, in our study, all the
subjects were healthy male subjects and the number of subjects was
not large enough. The age of the subjects was 22–25 years. In future
studies, the diversity of the subjects should be increased. Moreover,
the sEMG signals on the unaffected side of stroke patients may be
different from those of healthy people. Hence, in future studies, the
validation experiments should involve stroke patients.

The second limitation was the classification speed. Although
we adopted some methods such as feature extraction to improve
the classification speed, using the CNN-LSTM model still required
more parameters. Most of the parameters were in the LSTM layer.
However, the LSTM layer was critical in our model, which was used
to extract the correlation on the time sequence. Therefore, in future
studies, we should try to reduce the parameters of the LSTM layer
while ensuring accuracy.

In this study, we proposed a CNN-LSTM model for the first
time to classify ankle movement using sEMG signals. Compared
with the previous methods (Varol et al., 2010; Joshi et al., 2013;
Gautam et al., 2020), the performance of our method has been
already greatly improved. As we all know, deep learning develops
rapidly. In the last few years, some novel models have been
developed and used to classify the movements of the hand and
wrist joints, for example, CNN-BiLSTM (Nguyen-Trong et al., 2021;
Tripathi et al., 2022) and Graph Convolutional Network (GCN;
Lai et al., 2021; Yang et al., 2022). However, to the best of our
knowledge, they have not been used in studies to classify ankle
movements. In future studies, we will adopt these novel models and
compare them with our proposed ones.

The method we proposed in this study could accurately classify
these six ankle movements using sEMG signals. As we all know, the
movement of the human wrist is quite similar to that of the ankle
joint. Therefore, we can try to apply our method to the decoding of
human wrist movements in the future.

TABLE 7 Comparison with the state-of-the-art method.

Model Category Total Accuracy (%)

SVM (Hooda and Kumar, 2021) 4 movements (PF, DF, IV and EV) 92.60± 6.91

CMNN (Chen et al., 2019) 2 movements (IV and EV) 96.90

CNN-LSTM (Cheng et al., 2020) 4 movements (PF, DF, IV and EV) 97.55± 1.93

Our model 6 movements (PF, DF, IV, EV, IR, and ER) 95.73± 3.92
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In this study, we provided the basis of the ankle movement
classification for robot-assisted bilateral rehabilitation training.
Although some researchers have realized robot-assisted bilateral
rehabilitation training for patients based on sEMG signals for other
parts of the body, for example, the hands (Leonardis et al., 2015),
this concept has not been applied to ankle rehabilitation. Realizing
the concept of using the unaffected side for the robot-assisted
motion control on the affected side in ankle rehabilitation may
be challenging due to the different motion patterns or constraints
between the intact side and the affected side for stroke survivors.
These should be explored in future studies.

5. Conclusion

In this article, a time-domain feature selection method of the
sEMG, a CNN-LSTM model, and a two-step method were proposed
to decode the movement intention of the ankle joint for bilateral
ankle rehabilitation training to classify more ankle movements,
reduce the computational cost, and minimize the influence of load
variation on classification results. For the first time, the Boruta
algorithm was used in this study to select time-domain features
of sEMG. The selected features rather than raw sEMG were fed
into the CNN-LSTM model. Hence, the parameters of the model
were reduced from 331,938–155,042. Experiments were conducted
to verify the proposed method. The results showed that our method
could classify six ankle movements with relatively good accuracy
(95.70%). The total time required by the CNN-LSTM, CNN, and
LSTM models with sEMG features as the input was all less than
that of the corresponding models with raw sEMG as the input.
In addition, the accuracy of the CNN-LSTM, CNN, and LSTM
models with sEMG features as the input was all higher than that
of the corresponding models with raw sEMG as the input. The
overall accuracy was improved from 73.23% to 93.50% using our
two-step method for classifying the ankle movements with different
loads. Our proposed CNN-LSTM model had the highest accuracy
in ankle movements classification compared with the CNN, LSTM,
and SVM models.
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