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Introduction: Decoding brain states from subcortical local field potentials (LFPs)

indicative of activities such as voluntary movement, tremor, or sleep stages,

holds significant potential in treating neurodegenerative disorders and offers

new paradigms in brain-computer interface (BCI). Identified states can serve as

control signals in coupled human-machine systems, e.g., to regulate deep brain

stimulation (DBS) therapy or control prosthetic limbs. However, the behavior,

performance, and efficiency of LFP decoders depend on an array of design

and calibration settings encapsulated into a single set of hyper-parameters.

Although methods exist to tune hyper-parameters automatically, decoders are

typically found through exhaustive trial-and-error, manual search, and intuitive

experience.

Methods: This study introduces a Bayesian optimization (BO) approach to

hyper-parameter tuning, applicable through feature extraction, channel selection,

classification, and stage transition stages of the entire decoding pipeline. The

optimization method is compared with five real-time feature extraction methods

paired with four classifiers to decode voluntary movement asynchronously based

on LFPs recorded with DBS electrodes implanted in the subthalamic nucleus of

Parkinson’s disease patients.

Results: Detection performance, measured as the geometric mean between

classifier specificity and sensitivity, is automatically optimized. BO demonstrates

improved decoding performance from initial parameter setting across all

methods. The best decoders achieve a maximum performance of 0.74 ± 0.06

(mean ± SD across all participants) sensitivity-specificity geometric mean. In

addition, parameter relevance is determined using the BO surrogate models.

Discussion: Hyper-parameters tend to be sub-optimally fixed across different

users rather than individually adjusted or even specifically set for a decoding

task. The relevance of each parameter to the optimization problem and

comparisons between algorithms can also be difficult to track with the evolution

of the decoding problem. We believe that the proposed decoding pipeline and
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BO approach is a promising solution to such challenges surrounding hyper-

parameter tuning and that the study’s findings can inform future design iterations

of neural decoders for adaptive DBS and BCI.

KEYWORDS

Bayesian optimization (BO), deep brain stimulation (DBS), time-frequency analysis, local
field potentials (LFPs), brain-computer interface (BCI)

1. Introduction

The successful adoption of deep brain stimulation (DBS) in
the treatment of neurological disorders has prompted interest in
subcortical brain regions as alternative invasive recording sites
for brain-computer interface (BCI). Pathways through the basal
ganglia and thalamus are heavily involved in the preparation and
regularization of movement. These motor-control mechanisms
are, in part, described by an asymmetry between anti-kinetic
beta (12–32 Hz) and pro-kinetic gamma (32–90 Hz) waves
measured in local field potentials (LFPs) (Cassidy et al., 2002;
Brown, 2003; Anzak et al., 2012; Tan et al., 2013, 2016). These
waves are useful biomarkers for neural decoding. Stimulation
triggered during hyper-synchronous beta rhythms of LFPs in
the subthalamic nucleus (STN) can help alleviate Parkinsonian
rigidity and bradykinesia symptoms (Little et al., 2013). Since, other
pathological and physiological states have been identified from
subcortical LFPs, including tremor (Bakstein et al., 2012; Camara
et al., 2015; Hirschmann et al., 2017; Tan et al., 2019; Yao et al.,
2020; Zhu et al., 2020; He et al., 2021), dopamine medication effects
(Sand et al., 2021), pain (Zhang et al., 2013; Luo et al., 2018), sleep
stages (Chen et al., 2019), finger pressing (Mamun et al., 2015;
Golshan et al., 2018, 2020; Niketeghad et al., 2018), reaching actions
(Golshan et al., 2018, 2020), left- or right-hand selection (Mamun
et al., 2015), speech (Golshan et al., 2018, 2020), behavioral tasks
(Zaker et al., 2016; Golshan et al., 2018, 2020), isometric force (Shah
et al., 2016, 2018; Tan et al., 2016), body orientation (Mace et al.,
2014), and gait stages (Tan et al., 2018). Deep brain LFPs decoding
supports adaptive DBS treatment (He et al., 2021) and could foster
the development of new BCI applications, especially aimed at DBS
patients. These can, for instance, aim at neurofeedback therapy
through gamification (He et al., 2019) or drive wearable devices to
assist patients with impaired mobility (Benabid et al., 2019).

This article investigates a hyper-parameter automated tuning
approach for STN-LFPs decoders. A hyper-parameter is a
parameter space that cannot be directly found through a fitting
algorithm (the most common being regularization constants). For
simplicity, these will be referred to simply as a parameter from
thenceforward. For decoding based real-time BCI or adaptive
DBS, the pipeline tends to be separated into several stages,

Abbreviations: PD, Parkinson’s disease; LFPs, local field potentials; DBS,
deep brain stimulation; BCI, brain-computer interface; STN, subthalamic
nucleus; BO, Bayesian optimization; RD, random search; IIR, infinite
impulse response; STFT, short-time Fourier transform; CWT, continuous
wavelet transform; RWT, recursive wavelet transform; DWT, discrete
wavelet transform; ARMA, auto-regressive moving average; HJ, Hjorth
parameters; MI, mutual information; LDA, linear-discriminant analysis; NB,
Naïve Bayesian; LR, logistic regression; SVM, support vector machine; PCA,
principal component analysis; ROC, receiver operating characteristic; TPR,
true-positive rate; FPR, false-negative rate; ANOVA, analysis of variance.

such as extracting relevant features, selecting channels, classifying,
and stage transition. The impact of individual parameters in
different stages of the processing pipeline has typically been gauged
independently from one another (Shah et al., 2018; Yao et al., 2020).
As algorithms evolve toward practical applications, increased
complexity almost always results in larger parameter spaces (Mace
et al., 2014). Manual tuning can become tedious when assuming
no prior knowledge of the relevance of each parameter. Therefore,
parameters are often sub-optimally selected based on preliminary
assessments and maintained constant across all testing participants.
When assuming limited computational resources, grid searching
becomes impractical in large search hyper-volumes (Bergstra
and Bengio, 2012). Gradient-based optimization constrains the
problem to the differentiable functions and is not well suited for
small-size datasets (Martineau et al., 2020). Other methods, such as
genetic algorithms, have also been proposed. However, this more
complex optimization approach necessitates expert knowledge in
selecting the necessary genetic operators and correctly interpreting
the optimization process (Mace et al., 2014), which may discourage
its adoption.

In this study, Bayesian optimization (BO) was initially chosen
for its ease of implementation. It employs predictive Bayesian
modeling to iteratively sample the parameter space of a “black-
box” objective function (Shahriari et al., 2016). Unlike random
search (RD), BO uses past samples to make the best-informed
sampling decision and guarantees better outcomes within a limited
sampling budget (Shahriari et al., 2016). In BCI research, BO has
been principally dedicated to the tuning parameters related to the
machine learning stages (Ahmadi et al., 2019; Nandy et al., 2019).
However, Bashashati et al. (2016) have shown that BO can be used
to fine-tune feature extraction and spatial filtering parameters. The
foreseen advantages of BO are threefold. First, it could completely
automate and unify the tuning process. Secondly, it could improve
decoding performance over what is achieved with a set of known
parameters (drawn from what is typically used in other past studies)
fixed for different users. Thirdly, as a model-driven approach, BO
intrinsically builds a representation of the tuning process mapping
parameters to the optimization objective. Parameter importance
can thus be determined, and the BO model can also be iteratively
updated for sequential tuning (Grado et al., 2018). As pointed out
by Grado et al. (2018), a BO algorithm would not be deployed
alongside the decoder algorithm on a device firmware (e.g., a
DBS micro-controller unit). Instead, it would operate remotely
and intermittently suggest parameter changes to said device based
on transmitted LFP data, thus providing a secondary outer and
long-time-scale adjustment loop tuning.

Moreover, asynchronous decoding detects a state change based
on temporal events present within a small analysis window
extracted from a continuous data stream (Nicolas-Alonso and
Gomez-Gil, 2012). Although it is required for many practical
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applications, such as adaptive DBS, asynchronous decoding from
STN-LFPs remains challenging, especially for the detection of
sustained actions in time (Mace et al., 2014; Zaker et al., 2016;
Niketeghad et al., 2018; Martineau et al., 2020). Reasons include
poor signal-to-noise ratio and non-stationary behaviors of the
feature signals (Niketeghad et al., 2018; Yao et al., 2020), high
focality of the signal source in space across the electrode contacts
(Anzak et al., 2012; Tan et al., 2013; Zhang et al., 2018), and
significant inter-subject and inter-trial variances (Tan et al., 2013;
Niketeghad et al., 2018). Therefore, several parameters must be set
for asynchronous decoding, including feature extraction window
length, selected recording channels, or the number of past feature
samples considered for classification. An action [isometrical power
gripping actions, as defined in Martineau et al. (2020)] detection
task was chosen in this study to assess the feasibility of STN-LFP
asynchronous decoding further.

Finally, although the offline correlation of movement with LFPs
can be significant, in most previous studies, those correlations
are based on average across multiple trials. As emphasized in
Mace et al. (2014), Niketeghad et al. (2018), and Shah et al.
(2018), the restrictions imposed by a real-time system (those
being limited computational resources and memory allocation,
causal operation on the data) are intrinsically linked to those
of asynchronous decoding and often omitted, notably in the
feature extraction stage. Estimated performances made offline
for investigative purposes or parameter tuning need to represent
online performance. The last requirement was thus to ensure
that the decoder could be deployed in real-time, i.e., be refreshed
online using streaming data. Many time-frequency decomposition
techniques have been proposed to extract information about
neural oscillations (Nicolas-Alonso and Gomez-Gil, 2012). Each
technique relies on different interpretations of the signal (e.g.,
signal partitioning in both the time and frequency domain)
and hence on different parameterizations. The influence of these
parameters could be assessed here using BO. In total, five different
real-time extraction methods were tested and compared. Causality
in the extraction stage and throughout the pipeline was maintained,
i.e., every operation used the current input state or past states stored
in memory.

2. Materials and methods

The overall decoder architecture is shown in Figure 1. The
STN-LFPs signals were first recorded and pre-processed. Feature
extraction was performed, followed by channel selection, feature
preparation, and state estimation. Figure 2 presents the BO-based
tuning process, and it repeatedly fitted and evaluated the decoder
pipeline to select optimal parameters. The decoders and the BO
procedure were implemented in python using the SciPy (Virtanen
et al., 2019), NumPy (Harris et al., 2020), Scikit-learn (Pedregosa
et al., 2011), Imbalanced-learn (Lemaître et al., 2017), and Scikit-
optimization (Head et al., 2021) libraries.

2.1. DBS recording dataset

Recordings collected from six test participants, previously
reported in Tan et al. (2016) and Shah et al. (2018), were used

in this study. Three participants were tested using their left and
right hands, adding up to nine individuals’ datasets (Table 1).
For practicality, recording across different hemispheres will be
assumed to be independent, granted that factors, such as electrode
type, physiology or medication may cause some dependencies.
The participants were patients with Parkinson’s disease undergoing
DBS surgery targeting the STN. Each gave informed consent to
participate in the study, which was approved by the local ethics
committee board. The participants were asked to apply a given
amount of grip force for a given period following the presentation
of a visual or auditory queue. Precise details on the data recording
procedure can be found in Tan et al. (2013, 2016). Table 1
presents the number of trials and channels recorded. On average,
a recording was 402 ± 105 s long and contained 40 ± 9 trials.
Each grip was held for 4.1 ± 1.4 s. The ratio of grip against
rest was 31 ± 7%, and the average holding force was 47 ± 27%
of the maximum voluntary contraction. In each dataset, multiple
channels of LFPs were recorded from lateral and contra-lateral
electrodes (Table 1). The LFP signals were pre-processed following
the same method outlined in Martineau et al. (2020). In summary,
the prep-processing steps include detrending the recordings using
a low-pass filter, removing main artifacts using notch filters, scaling
the signals based on their standard deviation and resampling at
the desired frequency. The dataset obtained was the following: an
LFPs array x with time and electrode channel dimensions (for
both hemispheres) such that x ∈ RNk × Nch , where Nk is the total
number of samples and Nch, the total number of channels. x was
re-sampled at a rate of 512 Hz, which was defined as the decoder
input sampling frequency fi. The decoder output ỹ matched the
detection target y at a rate of 16 Hz, defined as the decoder output
sampling frequency fo. Decoders typically operate in the range of
10–20 Hz (Shah et al., 2018; He et al., 2021). A base 2 number
was chosen to facilitate downsampling, especially for implementing
the discrete wavelet transform-based feature extractor. As shown
in Figure 3, a sampling step-down R = fi/fo was performed such
that ỹ

[
k
]
, y
[
k
]
∈ {0, 1} ∀ k ∈

{
0, 1, . . . Nk

R − 1
}

with 0 marking
a rest state and 1 an action state. A target lead of 125 ms was
also introduced (Benabid et al., 2019). It is common practice to
predict the target a few decoder update steps (in this case, two
update steps) in advance to compensate for potential latencies
introduced by processing, communication or even stimulator
ramp-up (Tarvainen et al., 2004; Gruenwald et al., 2017; Benabid
et al., 2019). Finally, 10% of the length of each recording was set
aside for testing after tuning.

2.2. Feature extraction

Five different frequency-domain and real-time extraction
methods, including a bank of infinite impulse response (IIR) band-
pass filters, a short-time Fourier transform (STFT), a recursive
wavelet transform (RWT), a parameterized discrete wavelet
transform (DWT), an adaptive auto-regressive moving average
(ARMA) filter, based method, were implemented.

Filter banks have been proposed as a computationally efficient
solution to extract standard electrophysiological sub-bands (Zhu
et al., 2020). The method proposed by Gruenwald et al. (2017) was
followed to construct a bank of fourth-order IIR Butterworth filters.
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FIGURE 1

Flow diagram summarizing the sequence of processes for decoding and the different parameters assigned to them. Pre-processing was done prior
to decoder pipeline fitting and tuning. A decoder pipeline had three main stages: a feature extraction (using either the ARMA, DWT, HJ, IIR, RWT,
STFT method), a feature preparation stage including channel selection based on mutual information (MI) ranking, and a classifier (using either the
NB, LR, LDA, SVM-PCA) stage including thresholding. Parameters in each of these three stages were tuned using BO.

FIGURE 2

Flow diagram summarizing the Bayesian optimization and decoder fitting procedures, with associated evaluation criteria. Data is prepared in a pair
(x, y) of neural signal and detection target and passed on to the optimizer. Ten percent of the recording is set aside for testing. The optimizer
iteratively fits the pipeline presented in Figure 1 to yield a score g. The first parameter vector ρ evaluated is the default vector ρ0. After what the
optimizer fits a surrogate model mapping ρ to g. An acquisition function uses the surrogate model to predict the next ρ. After a fixed number of
iterations, the tuned parameters, optimal score, and improvement on default performance are recorded. Parameter importance is obtained through
a sensitivity analysis of the surrogate model.

The frequency band were defined as θ (1–8 Hz), α (8–12 Hz), β (12–
32 Hz), γ1 (32–50 Hz), γ2 (50–100 Hz), γ3 (100–256 Hz), leading
to a total of Nb frequency bands. The power of each sub-band

xp ∈ R
Nk
R × Nch × Nb was estimated from the signal by measuring

the variance of the sub-signals on a window length L and strides
R. L was defined as a multiple of R such that:

L = R (no + 1) (1)

where no is the window overlap number. A maximum L of 250 ms
was allowed as in Flint et al. (2012), such that no ∈ [[0; 3]].

Secondly, the STFT is a reference time-frequency estimation
method used in previous STN-LFP decoding studies (Bakstein
et al., 2012; Hirschmann et al., 2017; Shah et al., 2018). The
same epoching parameterization was used and the Kaiser window
was chosen to parameterize the window shape through a single
parameter βK ∈ [0; 15]. The STFT yielded a complete time-

frequency transformation χ ∈ C
Nk
R × Nch ×

( L
2+1

)
of x. The same Nb

sub-bands were extracted by averaging the correct frequency bins
following the power operator χ

[
k, l, n

]
χ∗[k, l, n] to obtain xp.

A drawback of the STFT is that the resolution of the transform
is directly dependent on L. With a small number of or no
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TABLE 1 Participant details, including DBS electrode channels available for recording and laterality.

Participant ID PD01R PD02L PD02R PD03L PD04L PD05L PD05R PD06L PD06R Mean ± SD

Contralateral channels 4 4 3 4 4 4 4 4 2 4

Ipsilateral channels 4 3 4 0 4 4 4 2 4 3

Number of trials 26 22 24 21 20 34 34 49 40 30± 9

Recording duration (s) 383 337 335 240 257 512 453 553 530 402± 105

Grip duration
(mean± SD, s)

2.95± 0.64 5.37± 0.19 5.28± 0.67 5.95± 1.54 3.25± 0.16 5.10± 1.33 3.61± 0.91 3.30± 1.72 3.79± 1.34 4.1± 1.4

Ratio of grip to rest (%) 20 35 33 49 25 34 27 29 30 31± 7

Grip level ratio
(mean± SD, %)

33± 19 0.82± 12 68± 15 69± 17 55± 28 37± 26 29± 21 39± 24 44± 28 47± 27

PD denominates Parkinson’s disease, L indicates that participant used their left hand to execute an isometric grip action. R indicates their right hand. A trial consists of a single isometric grip
action including onset, holding, and relaxation stages. Grip duration is the time from the beginning of the action to its end averaged across trials. Grip ratio indicates the class balance of action
vs. rest time points for every dataset. Grip level ratio is the trial peak force relative to the maximum force exerted in the recording averaged across trials.

overlaps, narrower lower bands are thus not properly represented
(in particular α) and not included as features.

This problem is typically addressed by opting for the
continuous wavelet transform (CWT) instead. In addition to better
capturing non-stationary signal behaviors, the CWT allows for
multi-resolution signal analysis. The Morlet wavelet in particular
is predominantly used in the field and thus is also regularly
employed in decoder architectures (Bashashati et al., 2016; Tan
et al., 2019; Golshan et al., 2020). To reduce the computational cost
and latency of the CWT, Ren and Kezunovic (2010) proposed a
complex sinusoid wavelet function, ψ, shaped with an asymmetric
fifth-order polynomial envelope:

ψ (t) =
(
−

8
9
√

3
(πt)3

−
8

27
(πt)4

−
32

135
√

3
(πt)5

)
e2π

(
1
√

3
+j
)
t

(2)
Ren and Kezunovic (2010) demonstrated that the CWT with ψ can
be recursively expressed. This RWT approach was implemented
as a complex IIR filter bank. Each filter projected the signal
on a wavelet basis. Four wavelets were used per octave between
1 and 256 Hz, or a total of 32 filters, yielding a time-
frequency transformation χ ∈ CNk × Nch × 32. The power array

xp ∈ R
Nk
R × Nch × Nb was obtained after a power operation and

application of epoch averages on χ.
Moreover, the more common alternative to the CWT is the

DWT (Bakstein et al., 2012; Mamun et al., 2015; Luo et al., 2018).
The DWT is implemented using small and efficient filter bank
which samples discrete points in the CWT. The main design
difficulty associated with the DWT is the choice of a mother
wavelet ψ (Mamun et al., 2015; Luo et al., 2018). Farina et al.
(2007) proposed using the parameterized lattice realization of the
quadrature mirror filter to shape the mother wavelet to neural
signals which in turn helped increase decoding performance. Each
node in the DWT decomposition tree was constructed using
a three-tap filter. The quadrature mirror filter split a signal x
into low xg and high xh components through two rotations
θ1, θ2 ∈

]
π
2 ;−

π
2
[

(Vaidyanathan, 1993; Farina et al., 2007). To
match fo, Nl = log2(R) levels were required. The decomposition
tree recursively filtered xg at each level l, resulting in a set of wavelet

coefficients Sc =
{
x1
h, x

2
h, . . . x

l
h, . . . x

Nl
h , xNl

g

}
. The power array

xp ∈ R
Nk
R × Nch × (N l+1) was assembled by epoching each coefficient

of Sc with a matching stride Rl = R
2l , length Ll, and computing the

sum of squares.

Last, a parametric modeling and spectral estimation methods
have been regularly used in STN-LFP (Foffani et al., 2005; Mamun
et al., 2015; Shah et al., 2018) and other neural decoders (Chisci
et al., 2010). The recursive-least-square ARMA scheme proposed
by Tarvainen et al. (2004) was here investigated. The algorithm
extracted the ARMA coefficients xc ∈ RNk × Nch × (NAR+NMA) from
x. NAR ∈ [[1, 12]], NMA ∈ [[0, 6]] are the number of auto-regressive
and moving average coefficients, respectively (Tarvainen et al.,
2004). xc was updated using a forgetting factor λ ∈]0, 1[. Epoching
served to average and downsample xc before estimating of the

FIGURE 3

Flow diagram illustrating the feature extraction and detection
processes in time, using, in this instance, 250 ms long extraction
and feature epoch windows. The target label y is first shifted
forward by a lead time of 125 ms. The classifier is thus trained to
make prediction two update steps ahead. Features are extracted
from x using a first moving window. They then accumulate in a
feature vector X using a second moving window The classifier
produces a probability signal p. The predicted state ỹ alters when p
triggers the double threshold scheme.
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power spectrum (Tarvainen et al., 2004). The spectrum was
partitioned into Nb bands to obtain xp.

In addition, the usage of Hjorth (HJ) parameters (activity,
mobility, and complexity) (Shah et al., 2018; Zhu et al., 2020;
He et al., 2021) was investigated. The signal first, xd, and
second derivatives were estimated using discrete differences. The
parameters, h1, h2, and h3, were then computed by taking the
following the signal variance on epochs of length L and stride R:

h1(x) = VarLR(x) (3)

h2(x) =

√
VarLR (x)
VarLR (xd)

(4)

h3(x) =
h2 (xd)
h2 (x)

(5)

where VarLR is the epoch-variance operator. Hjorth parameters
indirectly capture some characteristics of the signal spectrum
through the time domain (Hjorth, 1970). Compared to most
other time-frequency methods, HJ parameters are inexpensive to
compute, making them desirable for real-time applications (Zhu
et al., 2020; He et al., 2021).

A computational benchmark was conducted for every feature
extraction method by measuring the time taken to extract features
from a fix length (100 s) random signal and estimating the
time taken to process a signal block of size R. Under real-time
constraints, such a block is needed to update the decoder at a
rate fo. The computational time, thus, needs to be inferior to
1/fo (or 62.5 ms). The SciPy implementation (Virtanen et al.,
2019) of the STFT algorithm was used partly to serve as a
reference, partly because it is well-optimized and uses the fast-
Fourier transform algorithm. Given the relatively large size of the
extraction windows, a direct filter implementation would have been
inefficient. Aside from the STFT, all extractors were implemented
using the NumPy library (Harris et al., 2020). In every extractor,
every filter was recursively updated at each time step to imitate
real-time conditions. When implementing the step update, the
well-optimized multi-dimensional array operation capabilities of
NumPy (Harris et al., 2020) were carefully considered.

2.3. Channel selection and feature
window

From a real-time deployment perspective, it could be costly
to carry signal acquisition on all channels, extract all features and
only select a sub-set for decoding. Instead, a channel selection
approach was chosen whereby channels can be de-activated if non-
selected. Channels were selected based on the cumulated mutual
information (MI) of their extracted features in relation to the
decoded target. Given xp and y, the average information content
MI of the lth channel was defined as:

MI
[
l
]
=

1
Ni

Ni−1∑
i = 0

MI(xp[k, l, i],y) (6)

where MI is the mutual information operator (Pedregosa et al.,
2011; Ross, 2014), Ni is the total number of features for each
channel, so either Nb, Nl + 1 (if DWT is used) or 3 (if HJ is used),

TABLE 2 Summary of search space S and default vector ρ0.

Pipeline no Nc Nw T rt

S [[0; 3]] [[1, Nch ]] [[0; 15]] [0, 1] [0, 1]

ρo 3 2 0 0.5 0

Extractor STFT DWT ARMA

βk θ1, θ2 λ NAR NMA

S [0; 15]
]

π
2 ;−

π
2
[

]0, 1[ [[1, 12]] [[0, 6]]

ρo 5 (0.50, −0.105) 0.99 6 2

Classifier LR LDA SVM

C γc rc C γc

S ]0, 5] [0, 1] ]0, 1]. ]0, 5] ]0, 1]

ρo 1 0 0.1 1 0.1

no is the number of overlaps between feature extraction windows (with a maximum window
of 250 ms). Nc is the number of channels selected amongst Nch after ranking based on MI. Nw

controls the length of the feature window (for a maximum of 1 s). T is the upper threshold
placed on the output of the classifier. rt controls the placement of the lower-threshold relative
to T. βk is the shape factor of the STFT window function. θ1, θ2 are the lattice parameters for
the DWT. λ is the decay rate for the ARMA filter. NAR,NMA control the coefficient settings
for the ARMA filter. C are regularization constants for the LR and SVM. γc is respectively
the shrinkage coefficient for the LDA and a kernel parameter for the SVM. rC is the PCA
ratio for the SVM.

and l is the channel index. MI was sorted in descending order.
Nc ∈ [[1,Nch]] top ranked channels were selected. Features of the
selected channels were further processed by applying a logarithm
transform, normalization, and further smoothing using the feature-
wise Kalman filter proposed by Gruenwald et al. (2017) (except for
the ARMA extractor, where it could be adjusted through λ). The

feature matrix X ∈ R
Nk
R × Nf , with Nf = NcNwNi, was assembled

by flattening all the channels and bands (or coefficients in the DWT
case, or parameters in the HJ case) dimensions and concatenating
Nw ∈ [[0; 15]] past time points to form a moving window of features
(or a maximum length of 1 s) (Flint et al., 2012; Shah et al.,
2018; Tan et al., 2019; He et al., 2021). The feature and label pair
(X, y) were under-sampled according to repeated-edited-nearest-
neighbors method to create a more balanced training set before
classifier fitting (Tomek, 1976; Lemaître et al., 2017).

Furthermore, the parameters no, Nc and Nw controlled the total
decoder window τd (Figure 3) and the total number of features
Nf . These two metrics were used to evaluate the complexity of the
resulting decoder. A decoder with a smaller τd established more
temporally located relationships between neural features and the
decoded state. Practically, decoder with longer τd required more
memory to store past signal epochs for extraction and past feature
epochs for state estimation. Likewise, Nf also directly influenced
memory storage and, more importantly, the computational cost of
updating the state estimator. Tuning Nc and Nw also acted as a form
of feature selection, which could help reduce model complexity.

2.4. State estimator and objective
function for detection

Four different classifiers retained from He et al. (2021) were
tested to estimate y from X: (1) the Gaussian Naïve Bayes (NB)
classifier was chosen for its lack of tuning parameters (Mamun
et al., 2015). The NB served as a special case to evaluated if decoder
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FIGURE 4

Comparison between BO and RD searches for three different
participant recordings during the tuning of a STFT-LR decoder. The
lines indicate the average convergence and cumulative regret
trends. The shaded areas indicate 1 SD above and below the
average. The average and SD at each iteration were taken by
repeating the search 5 times. Convergence trends suggested that
the RD made good initial guesses but was eventually overtaken by
the BO. Regret trends showed that BO could make informed
decisions compared to the RD.

parameters (e.g., no, Nc, or Nw) other than fitting regularization
constants could be leveraged to increase performance. (2) The
linear-discriminant analysis (LDA) classifier has been shown to
deliver good decoding performance (Flint et al., 2012; Gruenwald
et al., 2019). A shrinkage parameter γc ∈ [0, 1] was used to
regularize the covariance estimation of X. (3) Logistic regression
(LR) has successfully been applied to STN-LFPs decoding (Shah
et al., 2016; Tan et al., 2019; He et al., 2021), particularly for sparse
model fitting usingL1-norm regularization. The regularization was
set through a parameter C ∈]0, 5]. Its setting acted in part as
a form of feature selector. (4) Thanks to their versatile non-
linear kernels, support vector machine (SVM) classifiers have
been regularly employed for high-performance decoding (Mamun
et al., 2015; Golshan et al., 2016, 2018; Nandy et al., 2019; He
et al., 2021). The radial-basis variant was chosen. It required
a regulation and kernel parameter C, γc ∈]0, 5] (Nandy et al.,
2019). Given the expandable nature of the feature space (of size
NF), the computational demand of the SVM fitting algorithm
and the fact that decoder fitting occurred across full-length time-
series at each BO iteration, principal component analysis (PCA)
dimensionality reduction had to be introduced to compress X by
a factor rc ∈]0, 1] (Golshan et al., 2018). The maximum number of
selected components was as well capped at 64. Once deployed, the
computational cost of operating the NB, LDA, and LR scales with
Nf . For the SVM, it also scales with the number of support vectors
used by the classifier. Other non-linear methods such as simple

decision trees and nearest-neighbor algorithm were not considered
as they were found to be less performant (He et al., 2021). In all,
a range of incrementally more sophisticated, and arguably more
complicated to tune, classifiers was chosen.

Moreover, to denoise the output prediction of the classifier,
a pair of thresholds operated as a transition trigger. Given the
classifier probability p(y = 1)[k], the predicted state ỹ[k]was given
by:

ỹ
[
k
]
=

{
1 if
0 if

p
[
k
]

> T
p
[
k
]

< (1− rT)T
and ỹ

[
k− 1

]
= 0

and ỹ[k− 1] = 1
(7)

where T ∈ [0, 1] is the upper threshold, and rT ∈ [0, 1] is the
position of the lower threshold relative to T. Thresholds are
typically set at the optimal point of the receiver operating
characteristic (ROC) curves, balancing the sensitivity and
specificity of a classifier. Unfortunately, this curve cannot be drawn
for a dual-threshold system. Instead, the geometric mean g between
sensitivity and specificity was chosen to estimate an optimal trade-
off (Cai et al., 2010). Given the detection true-positive rate (TPR)
and false-positive rate (FPR), g was given by:

g =
√
TPR

(
y, ỹ

)
× (1− FPR

(
y, ỹ

)
) (8)

If TPR = 0, then g = 0. Likewise, if FPR = 1, then g = 0.
Consequently, g only leans toward 1 if both objectives are balanced,
thus avoiding the extreme situation where, for instance, the state-
estimator only detects true positives or negatives. On a traditional
ROC diagram, g would indicate a curve point sticking furthest
toward TPR = 1 and FPR = 0. An eightfold cross-validation was
employed to evaluate the average detection performance g. The
number of folds was chosen to be double that of the number of
cores available on the processor (Intel R© Core i7-7700K 4.20 GHz)
to accelerate the evaluation of the folds through parallelization.

2.5. Decoder parameter tuning

Figure 1 illustrates different parameters introduced in the
different processing stages and, Figure 2 the BO procedure. BO
was implemented to optimize g using the scikit-optimize library
(Head et al., 2021). The parameters formed a bounded search space
S from which a parameter vector ρ ∈ S was sampled. To quantify
the performance increase resulting from tuning, initial quantities,
reflecting values typically found in other studies, formed a default
parameter vector ρ0. A 3-tap Daubechies wavelet was used for the
DWT by default (Rieder et al., 1998). A summary of all tuned
parameter, search intervals and default values is given in Table 2.
Given g as a function of x, y, and ρ, the best parameters ρ∗were
defined as:

ρ∗ = arg max
ρ ∈ S

g
(
ρ, x, y

)
(9)

The corresponding maximum cross-validation performance was
noted as g∗(ρ∗, x, y). The BO scheme repeatedly fitted and
evaluated the pipeline at each iteration (until 90 iterations were
reached). The algorithm was seeded by first evaluating ρo. In a “tell”
step, the optimizer fitted a surrogate model which mapped S to
g. In an “ask” step, the optimizer, following the policy of a given
acquisition function, suggested a new ρ (Shahriari et al., 2016).
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FIGURE 5

Maximal performance distribution across distributions and participants resulting from cross-validation averages after BO tuning for every extractor
and classifier combination. (A) For the TPR and FPR geometric mean g. Significant differences (∗, Tukey test, p < 0.05) were found between decoders
using the NB and those using other classifiers. Significant differences were also found between decoders using the HJ and those using other
extractors. (B) For the TPR. Significant differences (∗, Tukey test, p < 0.05) were found between decoders using the HJ and those using other
extractors. (C) For the FPR. A significant difference was found between decoders using the NB and those using the LR classifier (∗, Tukey test,
p < 0.05).

A Gaussian-process with Matern Kernel (Bashashati et al., 2016)
was chosen for the surrogate model alongside the Gaussian-process
hedge acquisition function (Shahriari et al., 2016; Head et al., 2021).

Before optimizing every feature extractor and classifier pair, a
preliminary comparison between BO and RD was conducted by
optimizing the STFT-LR decoder for three participant recordings

(PD01R, PD05R, and PD06L), which represent well different
optimized performance levels within the population sample. The
optimization procedure was, in this case, repeated five times with
different random seeds to produce average convergence trends.
Individual trends were obtained by noting for every i-th iteration
of the maximum performance obtained on or before said iteration
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FIGURE 6

Distribution of performance improvement across participants when using BO tuned parameters over default parameters for every extractor and
classifier combination. Significant differences (∗, Tukey test, p < 0.05) were found between decoders using the NB, SVM-PCA on the one hand and
those using the LDA, LR classifier on the other. Significant differences (∗, Tukey test, p < 0.05) were found between decoders using the ARMA or IIR
and those using other extractors.

g∗i . Average cumulated regret trends were also produced for both
algorithms (Shahriari et al., 2016). A regret trend ri was defined as:{

ri = ri−1 + (g∗i − gi) ∀ i = 1, . . . ,Ni

ro = 0
(10)

where gi is the score obtained on the i-th iteration and Ni, the
total number of iterations. An initial 60 iterations were set. g∗i − gi
measures the quality of every decision the optimizer takes. Perfect
decision-making would find a new optimum point at every step
such that g∗i − gi = 0. Both convergence and regret trends gave
insight into the progression of the optimization sequence.

2.6. Decoder evaluation and statistical
analysis

Following the preliminary comparison, the gathered evaluation
criteria summarized in Figure 2 were collected for every
feature-extractor-classifier pair. The maximum cross-validation
performance g∗, TPR and FPR and the optimal parameter vector ρ∗

were recorded. The significance of the absolute improvement g∗ −
g(ρ0, x, y) was evaluated using a Wilcoxon paired test. A Mood
test was also performed between g∗ and g(ρ0, x, y) to measure
any reduction in inter-subject variance. Performance evaluation
also included plotting the decoder output prediction on a test
segment. Sensitivity analysis of the BO models was used to
relate the contribution of each parameter to g∗ using the SALib
library (Herman and Usher, 2017). S was sampled using the
Saltelli method (Saltelli, 2002), and the BO surrogate model
was analyzed using the Sobol method (Sobol, 2001). The Sobol
indexes measured the ratio of individual parameter input variances
to surrogate model output variance (Sobol, 2001). Total order
indexes for every parameter were recorded to capture both first-
order and higher-order interactions (Herman and Usher, 2017).
Analysis of variance (ANOVA) and post-hoc Tukey pairwise tests

were applied to measure the dependence of g
(
ρ∗, x, y

)
, TPR,

FPR, improvement, ρ∗, τd, Nf and parameter sensitivity indexes
on the choice of extractor and classifier. Statistical testing was
conducted using the SciPy (Virtanen et al., 2019) and Statsmodel
(Seabold and Perktold, 2010) toolboxes. Figures were produced
using the Seaborn (Waskom, 2021) and Matplotlib (Hunter,
2007) toolboxes.

3. Results

3.1. Preliminary comparison between
random search and Bayesian
optimization

Figure 4 presents averaged convergence and cumulated regret
trends computed for three representative participant recordings.
The trends indicated that the RD scheme was very effective at
uncovering good initial parameter vectors, whilst BO had a rather
slower convergence rate starting from ρo. Nonetheless, after a few
iterations, the convergence rate and plateau of the BO algorithm
overtook that of the RD scheme. The cumulated regret trends
confirmed that BO mapped sufficiently well the parameter space
with each iteration, thus decreasing the g∗i − gi through informed
decision-making. As expected, since RD is memoryless, that gap
remained constant, leading to a linear cumulation of decision
errors.

Thus, for the presented decoder tuning problem, BO was better
at ordering good solutions (i.e., gi is more likely to be superior to
gi−1, which is important for sequential learning) and at fine-tuning
in later iterations. Consequently, for the remainder of the tuning
runs, to bootstrap the BO search starting at ρo, five additional
random samples were drawn to seed the initial fit of the BO
surrogate model. Thirty more iterations (adding to a total of Ni = 90
iterations) were added to allow for further fine-tuning.
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FIGURE 7

Best decoded test segment (10% of each recording length) for every
participant with associated test score and extractor, classifier pair.
Thresholds were set in an attempt to optimize detection rate based
on the dynamics (range, latency, noisiness, or sudden changes) of
the decoder output probability, where possible larger deadband
helped avoid spurious transitions. The decoder had the option to
remove the deadband by setting rT to 0.

3.2. Decoding performance

Figure 5 reports the optimal cross-fold average g
(
ρ∗, x, y

)
,

TPR and FPR achieved after BO tuning for every extractor
and classifier pair. Medians laid within 0.6–0.75 for the g and
TPR, and within 0.20–0.35 for the FPR. Combinations of ARMA
STFT extractors with LDA and LR classifiers achieved the highest
average g performance of 0.74 ± 0.06 (mean ± SD). ANOVA
testing on g suggested that the choice of classifier and extractor
impacted performance (p < 0.01). Post-hoc testing showed that
all classifiers and extractors performed comparatively well except
for the NB (p < 0.05) and the HJ (p < 0.05). The TPR depended
only on the selected extractor (ANOVA, p < 0.01), with the HJ
underperforming relative to the ARMA, IIR, and STFT (post-hoc

tests, p < 0.05). Conversely, the FPR depended on the choice
of classifier (ANOVA, p < 0.05), with the NB underperforming
relative to the LR (post-hoc tests, p < 0.05).

Figure 6 reports the improvement in the overall decoding
performance with the BO-based parameter optimization compared
to that with default often used parameters fixed across all
participants [g

(
ρ∗, x, y

)
− g(ρ0, x, y)]. Paired testing showed that

this gap was significant in every case (Wilcoxon, p< 0.05). ANOVA
testing showed that the improvement gap depended again on the
classifier and extractor pair (p < 0.01). Post-hoc testing indicated
that improvement margins were tighter for the LR and LDA
classifiers (p < 0.05). Default parameter solutions for the SVM-
PCA and NB led to poorer decoding solutions. Lastly, no significant
reduction in inter-subject variance was measured between default
and optimized parameter performance (Mood, p > 0.05).

Figure 7 presents the best-decoded test performance for
every user. The classifier output signal p[k] varied noticeably in
terms of quality and temporal dynamics throughout the cohort.
Effective detection occurred with high and sufficiently sustained
p throughout the action with manageable levels of baseline noise
(when y

[
k
]
= 0) and action noise (when y

[
k
]
= 1), such

as observed in PD03L, PD04L, PD02L, and PD01R. In other
instances, p adopted a more impulsive behavior, such as in PD02R
or PD02L, making a full capture of the action difficult. Although
the upper threshold prevented high baseline noise from triggering
the detection, such as in PD03L, PD04L, or PD01R, it could not
contend with very large spurious impulses outside of the action
(when y

[
k
]
= 0) as those found in PD04L, PD05R, PD06R, and

PD06L. Conversely, spurious drops would also occur within the
action (when y

[
k
]
= 1) such as in PD05L, triggering the lower

threshold.

3.3. Decoder parameterization

Optimal parameter distributions were tested using ANOVA.
The test results suggested that the thresholds (T and rT) did not
depend on either the classifier or the extractor (p > 0.01) but
rather on the intrinsic signal properties of individual recordings.
The number of channels (Nc) depended on the choice of classifier
(ANOVA, p < 0.01) but not of the extractor. Post-hoc testing
suggested that fewer channels were selected using the NB classifier
rather than the LR or LDA (p < 0.05). The number of overlaps
between windows (no) was dependent on both estimator and
extractor choices (ANOVA, p < 0.01). The STFT adopted a
significantly larger extraction window length (L) than the ARMA,
IIR, and HJ extractors; the LR, than the LDA and NB classifiers
(post-hoc tests, p < 0.05). Likewise, the choice of feature window
length (Nw) depended on the extractor (ANOVA, p < 0.01) but
not on the classifier selection. Notably, the STFT, IIR, and HJ
required significantly larger Nw than the ARMA extractor (post-
hoc tests, p < 0.05). Figure 8 presents distributions for the decoder
analysis window (τd) and the total number of features employed for
decoding (NF , section 2.3). τd and Nf depended on the choice of
extractor and classifier (ANOVA, p < 0.01). Because of the smaller
optimum Nw and no, the ARMA extractor and the NB classifier
required significantly smaller windows than the STFT extractor and
LR classifier (post-hoc tests, p < 0.05). Likewise, because of smaller
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FIGURE 8

(A) Distributions across participants of the total decoder analysis window τd using optimal parameters. Significant reductions (∗, Tukey test, p < 0.05)
were found between decoders using the ARMA, RWT, or DWT extractors and those using the IIR, HJ, or the STFT extractors. Significant differences
(∗, Tukey test, p < 0.05) were also found between decoders using the NB or LR and those using other classifiers. (B) Distributions of the total number
of features Nf used for decoding. Significant reduction (∗, Tukey test, p < 0.05) were found between decoders using the ARMA or HJ and those using
the STFT or IIR extractors. Setting aside the SVM-PCA, significant reduction (∗, Tukey test, p < 0.05) were also found between decoders using the NB
and those using the LDA or LR classifiers.

Nw, Nc or Ni, the decoders using the ARMA and HJ extractors or
the NB classifier required significantly fewer features than the STFT
extractor or LR classifier (post-hoc tests, p < 0.05). Lastly, there
was no dependence between optimal extractor parameters and
classifier choice and no dependence between classifier parameters
and extractor choice.

The index distributions yielded from the sensitivity analysis
are presented in Figure 9 for each parameter. Considering the
subset of common parameters (no,Nc,Nw, rT,T), ANOVA testing
suggested that the importance indexes varied depending on the
parameter type and the classifier selected (p < 0.01), but not on
the extractor (p > 0.05). Post-hoc testing showed that the upper
and lower thresholds in the final decoding stage (T and rT) were
significantly more important than all other parameters (p < 0.05).
The window overlap (no) was significantly more important than
the number of channels selected (Nc) and the window length (Nw)
(p < 0.05), despite clear preferential settings depending on the
selected classifier or extractor. Post-hoc tests also showed that the
NB and the LDA attributed more importance to those parameters
than the LR classifier (p < 0.05). Post-hoc tests were performed
for extractor combinations with the LR classifier with all available
parameters. Aside from T, rT , the regularization constant, C,

was the most important parameter (p < 0.05), with the unique
exception of the ARMA λ parameter. In contrast, with the NB
classifier, all parameters had shared similar levels of importance
(p > 0.05), except for no, which was more important with
ARMA and IIR pairing (p < 0.05). The remaining parameters had
comparable importance with the LDA and SVM-PCA classifiers.
Regularization parameters did not hold as much importance as
they did with LR classifiers. Lastly, extractor-specific parameters
other than λ (the model order, NAR, NMA, for ARMA, the lattice
parameters, θ1, θ2 for DWT and the window shape factor, βK ,
for the STFT) were never significantly more important than other
parameters (omitted some exceptions, Figure 9).

3.4. Computational benchmark for
feature extraction

Figure 10 presents a benchmark to evaluate the computational
time taken to process features for a single decoder step for each
method. All of them were sufficiently fast to operate in real-
time. A large overhead was observed when features were extracted
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FIGURE 9

Distributions of sensitivity index for every tuned parameter across participants. Index resulted from a Sobol sensitivity analysis of each BO surrogate
model. (A) Index distribution for decoders using the HJ; (B) DWT; (C) IIR; (D) RWT; (E) ARMA; and (F) STFT extractors. Significant decoder reduction
(∗, Tukey test, p < 0.05) in importance were found between T, rT,no and lastly Nc,Nw. In most extractor pairing, significant differences (∗, Tukey test,
p < 0.05) were found between most parameters and the regularization constant C of the LR classifier (showed in C). Significant differences (∗, Tukey
test, p < 0.05) were also found between the importance of λ when using the LR and LDA classifier and other parameter (B). When paired with the
NB, significant differences (∗, Tukey test, p < 0.05) were found between lattice parameter θ1, θ2, and other parameters (E).

Frontiers in Human Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1111590
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1111590 May 23, 2023 Time: 11:50 # 13

Martineau et al. 10.3389/fnhum.2023.1111590

FIGURE 10

Computational time benchmark for every feature extraction method (using an Intel R© CoreTM i7-7700K 4.20 GHz); each method was evaluated using
a 100 s long, 512 Hz (fi), Gaussian random noise signal. (A) The extraction was repeated 30 times using default setting parameters and a single
channel signal. The average time taken to complete a single computational step (process a block of R = 32 signal points) at 16 Hz (fo) was estimated.
(B) The benchmark was reproduced by incrementally adding channels to a total of 8. Each method benchmark is significantly inferior to the
refreshing time (62.5 ms) between decoder output updates. All methods were custom implemented using the NumPy library, except the STFT which
used a specialized function from the SciPy library. Error-bars indicate the SD taken across the 30 extractions.

from a single channel, most likely associated with slow array
manipulation in python at each time-step. More complex methods
such as ARMA and DWT were more penalized than others (more
linear transformation for the ARMA and multi-level processing for
the DWT extractor). The DWT should be, in practice, far more
efficient (Farina et al., 2007). Nonetheless, extraction processing
time was found to scale favorably as multi-dimensional signals
were introduced. More demanding processes, such as the RWT,
ARMA and, to an extent, the IIR extractors, had a notable increase
in computational time with every added channel. Other methods,
such as the DWT and HJ were more computationally efficient. The
benchmark proposed in this study is specific to the programming
language, operating system and processor. Different hardware and
software optimization considerations should ultimately be made
based on the target deployment device and the selected method.

4. Discussion

This investigation demonstrates the benefits of automatic
parameter tuning using BO for STN-LFPs asynchronous decoding.
The parameterization of a relatively complex decoding pipeline
optimized a task-relevant objective function, and BO significantly
increased task performance from default parameter settings and
substituted part of the expert knowledge required for calibration.
In addition, BO allowed us to systematically evaluate and compare
different combinations of feature extraction and classification
methods for decoding. It also helped to uncover the parameters
that had the most impact on the decoding performance, such as
the classifier thresholds and the window overlaps. In particular, the
classifier thresholds were configured differently depending on the
individual properties of the STN-LFPs signals.

4.1. Performance comparison and study
limitations

The optimum performance obtained in this study is
comparable to the results of past studies that have employed

similar asynchronous and real-time constraints to decode
STN-LFPs (Mace et al., 2014; Niketeghad et al., 2018). The
limitation remains that stable detection can vary significantly
across participants. We note, however, that BO did not reduce
inter-subject variance, indicating that lower-performing cases may
be due to a lack of information related to the decoding target in
the recorded signals. Moreover, the performance increase can
be achieved from the simultaneous optimization of the extractor
and classifier, indicating that default parameters may not capture
a priori expertise knowledge. A clear benefit of this approach was
observed principally in the NB classifier. Nonetheless, end-to-
end decoder optimization may not have been the most efficient
approach in the proposed architecture and decoding task context.
The tuning problem could potentially be broken down into several
stages, e.g., one for feature extraction (optimizing some desirable
attributes of X) and another for state estimation (optimizing
g). Separating these two stages would also be more practical
to implement estimators with more computational intensive
fitting such as the kernel SVM (and avoid resorting to PCA to
compress X).

Furthermore, the decoding of movement in this investigation
provides a basis to apply the method to other DBS targets, state
types (e.g., tremor, gait, etc.), and BCI tasks to further gauge the
impact of tuning. Online testing is needed to perform decoding
sequentially with stimulation in an adaptive configuration (He
et al., 2021), continuous tuning (Grado et al., 2018), and for
deployment, accounting for the fixed computational and memory
budget of an embedded device (Zhu et al., 2020). Finally, findings in
this study can further guide algorithm selection, and a BO approach
could help ease deployment by rethinking the task objective with
these budgeting constraints in mind.

4.2. Improving the tuning method

The optimization process involved a range of parameterization
trade-offs. For instance, channel ranking or other decomposition
strategies are not a strict guarantee of improved performance
through a reduction in classifier overfitting (Shah et al., 2018).

Frontiers in Human Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1111590
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1111590 May 23, 2023 Time: 11:50 # 14

Martineau et al. 10.3389/fnhum.2023.1111590

Except for the NB, the BO algorithm kept adding channels
despite diminishing returns in performance gain (Flint et al.,
2012). A multi-objective approach or optimization constraints
could narrow the set of reasonable tuning solutions. Penalty for
delayed detection, output chattering, or model complexity could
be introduced (Mace et al., 2014). Parameters such as the number
of channels selected (Nc) and the window length (Nw) could then
become more relevant. Further practical improvements could also
be made to the BO algorithm implementation by introducing
robust convergence criteria (Bashashati et al., 2016) and more
adaptive acquisition functions (Grado et al., 2018).

4.3. Tuning and usage of the proposed
feature extractors

For feature extraction, parameters influencing the temporal
smoothness of the feature signals, such as the number of overlaps
between feature extraction windows no and the ARMA forgetting
factor λ were important to decoding. A second-order Kalman
filter (Chisci et al., 2010; Yao et al., 2020) could be tuned using
BO and applied either in the feature space for further smoothing
or at the classifier output to help stabilize the state transition.
Reducing the decoder output frequency fo could also help reduce
higher-frequency noise at the cost of a slower refreshing rate. An
intermediate cost-function measuring signal-to-noise ratio could
be employed to tune extractor parameters in the first optimization
stage. Feature extractors overall delivered comparable levels of
performance. With hindsight, testing other signal features that were
not purely spectral-based (Bakstein et al., 2012; Wang et al., 2018)
or different combinations of feature bands might have been more
intriguing (Tan et al., 2016). The BO algorithm could have been
used to select the combination of features better suited to decoding.

Although the extractor was not critically associated with the
detection performance, this work suggests that the choice of
extractor still influences extraction and feature window lengths and
the number of features used for classification, elements important
to the decoder design. Some extractors may thus be better suited
to some decoding tasks than others. For instance, the ARMA
extractor was among the more performant and instantaneous
methods. It can also be helpful if connectivity features (Mamun
et al., 2015) or instantaneous phase estimation (Foffani et al., 2005)
are of interest. However, it comes at the cost of a specialized
implementation and a more computationally intensive process.
The STFT, in comparison, is a practical, efficient and versatile
extractor. Since the window shape only had a limited influence
on decoding, using, for instance, a recursive formulation of the
exponential window (Grado et al., 2017) could help minimize
windowing lag. Although, the performance with the RWT did
not supersede that of the STFT, it has the benefit of combining
a narrow-band filter in a compact IIR form with a complex
phase estimator, which could be useful to isolate a single or few
specific sub-band phase and power. Otherwise, the additional
computational burden of a large number of relatively long complex
filters associated with a full-signal decomposition does not seem
justify. Smaller filter banks, such as the IIR extractor, are relevant to
embedded applications (Zhu et al., 2020). The mutual information-
based channel selection scheme could be extended to incorporate

only informative power bands. Selected individual features across
contacts is here more practical as only the relevant filters can be
activated on a given channel greatly reducing the computational
burden. Given the comparatively short τd for the DWT and its
computational efficiency, BO could permit the optimization of
longer wavelets which could help match the performance of other
extractors. The packet transform could introduce a sparser and
more adaptive signal representation (Mamun et al., 2015; Luo et al.,
2018). Lastly, the HJ parameters were not sufficiently informative
and should only be used as complementary features for movement
decoding (Shah et al., 2018).

4.4. Tuning and selecting state estimators
for decoding

The double-thresholds system played an important role in
providing stable state transitions. It was observed that the upper
threshold was generally set above spurious events to prevent false-
positive triggering. A higher triggering level delayed detection,
especially if the transient response of the feature extractor and
classifier combination was slow. A lower second threshold, close
to the baseline activity of the classifier output, was preferable. It
aligned the detection and the action ending better and prevented
a spurious transition if the classifier output suddenly dipped
during an action. BO could thus help calibrate more complex state
machines required for adaptive DBS (He et al., 2021).

Aside from the NB classifier, there was no substantial difference
between the classifier types in terms of performance. However,
not every classifier was best suited for the proposed detection
task. Fitting the SVM-PCA classifier was more computationally
demanding, given the temporal longitudinal aspect of the dataset.
Adjusting fo could help in this regard (Golshan et al., 2016,
2018, 2020). In addition, the SVM algorithm does not yield
prediction probabilities. Given the importance of thresholding
for state transition, those cannot be omitted and thus have to
be estimated in an additional post hoc process (Platt, 1999). LR
and the LDA classifiers may be thus preferable with the LR was
more easily calibrated through regularization. Ensemble methods,
using a set of classifiers rather than a single unit (in particular
decision trees), have proven to outperform other machine-learning
methods when deployed on small size, complex, and noisy BCI
datasets (Gruenwald et al., 2019; Zhu et al., 2020) and could
be easily implemented using the proposed method. The method
could also be applicable to neural-network based decoders (Ahmadi
et al., 2019; Golshan et al., 2020) specifically tuning of decoder
specific parameters such as selected channels, thresholds or window
convolution size.

5. Conclusion

We have introduced a decoding architecture based on
BO to tune different parameters in the feature extraction,
channel selection, classification and state-transition stages of an
asynchronous decoder to identify movement signatures from
STN-LFPs signals recorded in the deep brain. This architecture
allows self-tuning in a computationally efficient implementation

Frontiers in Human Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1111590
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1111590 May 23, 2023 Time: 11:50 # 15

Martineau et al. 10.3389/fnhum.2023.1111590

for real-time deployment. Although asynchronous decoding from
STN-LFPs remains highly subject-specific, we demonstrate that BO
improves decoding performance across participants. In addition,
BO provided in-depth details regarding the tuning process and
the relevance of each parameter which could help inform future
decoder design iterations. For asynchronous decoding, time-
frequency signal extraction (regardless of the chosen approach)
should render smoother feature signals, and state estimators
should be robust to spurious activity change. An increased
number of features or decoding channels should be budgeted
relative to incremental performance gains and model complexity.
Optimal individual parameters are essential, especially where
substantial inter-subject variability is present, to best adapt to the
characteristics of the neural signals. The method presented in this
study could also be applied to decoding other bulkier movements,
arousal, and pathological states to construct feedback mechanisms
for adaptive DBS systems and serve other BCI applications. Future
work should include further investigation of other DBS-recorded
LFPs signals and further online testing.
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