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Purpose: Aging is associated with a reduction in brain modularity as well as

aspects of executive function, namely, updating, shifting, and inhibition. Previous

research has suggested that the aging brain exhibits plasticity. Further, it has been

hypothesized that broad-based intervention models may be more effective in

eliciting overall gains in executive function than interventions targeted at specific

executive skills (e.g., computer-based training). To this end, we designed a 4-

week theater-based acting intervention in older adults within an RCT framework.

We hypothesized that older adults would show improvements in brain modularity

and aspects of executive function, ascribed to the acting intervention.

Materials and methods: The participants were 179 adults from the community,

aged 60–89 years and on average, college educated. They completed a battery

of executive function tasks and resting state functional MRI scans to measure

brain network modularity pre- and post-intervention. Participants in the active

intervention group (n = 93) enacted scenes with a partner that involved

executive function, whereas the active control group (n = 86) learned about

the history and styles of acting. Both groups met two times/week for 75-min

for 4 weeks. A mixed model was used to evaluate intervention effects related

to brain modularity. Discriminant-analysis was used to determine the role of

seven executive functioning tasks in discriminating the two groups. These tasks

indexed subdomains of updating, switching, and inhibition. Discriminant tasks

were subject to a logistic regression analysis to determine how post-intervention

executive function performance interacted with changes in modularity to predict

group membership.

Results: We noted an increase in brain modularity in the acting group,

relative to pre-intervention and controls. Performance on updating tasks

were representative of the intervention group. However, post-intervention

performance on updating did not interact with the observed increase in brain

modularity to distinguish groups.
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Conclusion: An acting intervention can facilitate improvements in modularity and

updating, both of which are sensitive to aging and may confer benefits to daily

functioning and the ability to learn.

KEYWORDS

acting, executive function, modularity, aging, brain

Introduction

Aging is associated with alterations in macroscale brain
topography and topology which may be related to cognitive decline
(Iordan et al., 2018). Older adults show reduced modular brain
organization, consistent with the theory of age-related functional
de-differentiation (Betzel et al., 2014; Cao et al., 2014; Chan et al.,
2014; Geerligs et al., 2015; Sala-Llonch et al., 2015; Baniqued et al.,
2018; Iordan et al., 2018). Furthermore, aging is associated with
a decline in higher-order cognitive abilities known as executive
functions—these functions are critical to both simple and complex
tasks of daily living, including managing medications and driving
(Marshall et al., 2011; Park et al., 2014; Maldonado et al., 2020).
Thus, there is a need to identify preventative interventions that
might optimize brain organization and protect cognitive abilities
into advanced age. This study examined whether an intervention
paradigm based on theater acting would facilitate an increase in
modularity and executive function in older adults.

Recent advances in gerontological research have shown that
lifestyle factors can shape individual neural cognitive aging
trajectories. The potential for modifiable lifestyle factors to reduce
age-related cognitive decline has motivated the pursuit of lifestyle-
informed interventions. Such interventions are situated within
enriched environments, for example, exercise (e.g., Voss et al.,
2013; Baniqued et al., 2018) and theater acting (e.g., Noice and
Noice, 2013; Banducci et al., 2017). They are not targeted at
enhancing any single cognitive skill. Rather, they are targeted
to a diversity of inter-related skills, facilitating improvements in
multiple cognitive domains (e.g., Wilson et al., 2002; Wang et al.,
2013; Baniqued et al., 2018). These broad-based interventions
stand in contrast to performance-adaptive computerized cognitive
training that purportedly tap into specific aspects of executive
functions, but do not show transfer to general cognitive function
(e.g., Ball et al., 2002; Dahlin et al., 2008; Wilkinson and Yang, 2012;
Karbach and Verhaeghen, 2014; Grönholm-Nyman et al., 2017).

Assimilating these perspectives, it is evident that broad-
based interventions are more likely to demonstrate global gains
in executive functions. Preliminary evidence also suggests that
baseline brain modularity is predictive of improvements in
cognitive performance ascribed to such interventions (Baniqued
et al., 2018; Gallen and D’Esposito, 2019).

Acting is one such broad-based intervention strategy that
embeds individuals in complex social contexts. A particular
training model within acting is called “active experiencing.” Unlike
exercise, active experiencing involves a conscious and combined
recruitment of cognitive and related affective and physiological
processes. Thus, it likely involves integration among multiple
higher-order cognitive functions, particularly, aspects of executive
function. Executive functions are cognitive operations that involve

updating contents of working memory, cognitive flexibility, and
inhibitory control (Miyake et al., 2000).

Working memory is engaged in active experiencing when
actors repeat their performances several times in rehearsal without
making an active effort to memorize the dialogues. These
performances are continuously adjusted based on the “give-
and-take” from other actors, while maintaining goal-relevant
information in working memory. The repetition of performances
ensures constant updating of working memory that is richly
contextual and elaborate, including visuo-spatial awareness. By and
large, this updating “style” allows the actor to gradually absorb
the dialogue, leading to greater memory retention [(Noice and
Noice, 2013); see also “deep processing” as mentioned in Craik and
Lockhart (1972)]. Similarly, cognitive flexibility is fostered as actors
adapt to different character roles, change and adopt new tactics
that may seem more appropriate for obtaining a desired goal, and
respond to feedback and “on-the-fly” changes in scripts or actors
(Noice and Noice, 2013). Lastly, inhibitory control is exercised
when the actor utters a script line. At this time, various parameters
of the actor’s rendition that are representative of the script line
must be reflexively encoded, including vocal inflections, posture,
and affect. Concomitant to the actor’s goals of the present moment,
they must actively suppress any non-verbal parameters that are not
representative of the script line.

Preliminary results of active experiencing-based acting as an
intervention strategy have been promising. For instance, a 4-
week acting intervention in older adults produced improvements
on a wide array of cognitive measures including word recall,
working memory, problem-solving abilities, and participants’
perceived quality of life (Noice et al., 2004). These cognitive
gains remained 4 months after training stopped. Using a similar
intervention model but with a considerably larger sample of older
adults, we showed control-adjusted gains in episodic recall that
persisted up to 4 months post-intervention (Banducci et al., 2017).
Remarkably, these findings illustrate that even relatively short-term
interventions (i.e., 4-weeks) can facilitate enduring improvements
in cognitive performance across multiple domains.

Although there is promising evidence of cognitive gains,
the parallel changes in brain morphology associated with the
acting intervention have not been examined. A particularly
relevant brain measure in this regard is modularity (Newman
and Girvan, 2004; Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010). Modularity evaluates the presence of modules,
which consist of brain regions that are densely connected with
each other but sparsely connected with others (Power et al.,
2011). Greater modularity implies the presence of more distinct
modules defined by greater coherency and greater segregation
of functional networks. In this regard, modular organization
may represent the basic “building blocks” of the brain that
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inform network development and function as well as support
brain integrity. Furthermore, modularity has been shown to be
particularly sensitive to context, such that subtle changes in
cognitive functioning that might occur within very short time
periods are well-represented at the level of modular organization
(Stevens et al., 2012). Older adults tend to show reduced modular
brain organization (Betzel et al., 2014; Cao et al., 2014; Chan et al.,
2014; Geerligs et al., 2015). This observation falls in line with the
de-differentiation hypothesis, which posits that separate cognitive
abilities developed in childhood become more highly correlated
with age, resulting in “de-differentiation” (Goh, 2011).

Apropos the cognitive training literature, modularity has been
shown to be predictive of cognitive gains across diverse populations
and intervention models (Baniqued et al., 2018; Gallen and
D’Esposito, 2019). Emerging evidence suggests that modularity
may parallel cognitive gains when the training emphasizes flexible
learning of a higher-order cognitive function (Finc et al., 2020).
The present research built upon these observations and examined
brain-wide modularity benefits associated with acting training,
in the same large-scale study as Banducci et al. (2017). Further,
we sought to determine whether changes in brain modularity
were associated with changes in executive function attributed to
intervention effects.

To this end, we conducted a 4-week active experiencing-based
acting intervention in older adults. Participants were administered
a battery of cognitive tests and underwent MRI scans before they
were assigned to either the active control (n = 86) or the acting-
intervention condition (n = 93), depending on time of enrollment.
The active controls attended an Understanding the Art of Acting
(UAA) class, which was a course in theater appreciation. The
acting-intervention group trained in Active Experiencing (AE).
Specifically, participants in this group repeatedly performed short
scenes with a partner while making effortful attempts to embody
their character cognitively, affectively, and physiologically. Both
groups were led by professional actors/ theater professors and met
two times/week for 75-min for 4 weeks.

Within the randomized control framework employed in this
study, we tested three hypotheses. First, we anticipated increased
modularity in the intervention group and greater gains as
compared to the control group, reflecting flexible higher-order
learning and optimization of executive function (Finc et al., 2020).
Second, we hypothesized that post-intervention scores on executive
function tasks would clearly discriminate the acting group from the
active control group, ascribed to the active experiencing training
model. Tasks that were deemed discriminatory informed our
final hypothesis. Specifically, our third hypothesis was that post-
intervention performance on discriminant tasks would positively
interact with changes in modularity to predict group membership
to acting.

Materials and methods

Participants

This study was approved by the Institutional Review Board at
University of Illinois at Urbana-Champaign. Participants in this
study were 179 adults from the community, aged 60–89 years

(M = 69.46, SD = 6.59; 62% female). On average, they had a
college education (M = 16.80 years, SD = 3.48). Inclusion criteria
included right-handedness, a score of at least 23 on the Mini
Mental State Examination (MMSE; M = 28.69, SD = 1.39; Folstein
et al., 1975), no contraindication to MRI, and written consent
to participate. For the CONSORT flow diagram of participant
recruitment, enrollment, and attrition, see Banducci et al. (2017).
The 179 participants were pseudo-randomly assigned to one of two
groups depending on time of enrollment. One group was an active
control group that attended an Understanding the Art of Acting
class (the “UAA” group; n = 86). The other group was the active-
experiencing based intervention group (the “AE” group, n = 93)
that attended an acting class. The two groups were similar in age
(t(176) = –0.79, p = 0.43), MMSE (t(176) = 0.22, p = 0.82) and years
of education (t(176) = 0.86, p = 0.39), as well as representation of sex
(χ2

(1) ≤ 0.15, p ≥ 0.70).

Intervention

Both control and intervention groups met two times per week
for 75-minute sessions. These sessions also included a 15-min coffee
break to facilitate social interaction.

The active control was designed as a theater appreciation class
and included talks, demonstrations and video clips of stage and film
performances (“Understanding the Art of Acting” or UAA group).
Participants learned about different styles of acting, in addition to
the history of theater. The UAA-control condition was designed to
rule out the possibility that learning about a popular art form like
acting, along with the social interaction of being engaged in a class,
are sufficient to produce the significant improvement in cognitive
functioning observed in the previous theater interventions.

Participants in the AE group trained by performing acting
exercises and short scenes with a partner (with large print scripts 1–
3 pages in length). Emphasis was given to “becoming” the character
through the process of proactively and continuously investigating
their character’s motivations. Concomitantly, participants were
encouraged to embody their character cognitively, emotionally, and
physically [for a more detailed review, see Noice et al. (1999)].
All participants were in the same room during classes, and active
feedback was provided to the acting partners.

Neuroimaging protocol

Image acquisition and pre-processing
All images were collected on a Siemens Trio 3 Tesla full

body magnet, using a 12-channel birdcage head coil. Functional
blood oxygenation level–dependent (BOLD) images were acquired
parallel to the anterior commissure–posterior commissure (AC-
PC) line with a T2∗-weighted echo-planar imaging sequence of 35
contiguous axial slices collected in ascending order [repetition time
(TR) = 2,000 msec; echo time (TE) = 25 ms; BOLD volumes = 180;
flip angle = 80◦; field of view [FOV] = 220mm × 220 mm; voxel
size = 3.4 mm × 3.4 mm × 4.0 mm]. During this 6-min resting
state scan, participants were instructed to keep their eyes closed.

Structural images were acquired with a T1-weighted three-
dimensional (3D) magnetization prepared rapid gradient
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echo imaging (MPRAGE) protocol of 192 contiguous
sagittal slices collected in an ascending manner parallel
to the AC-PC line (TR = 1,900 ms; TE = 2.32 ms;
flip angle = 9◦; FOV = 230 mm × 230 mm; voxel
size = 0.9 mm × 0.9 mm × 0.9 mm).

Image-processing was carried out with FSL version 5.0.4
(Functional Magnetic Resonance Imaging of the Brain’s Software
Library1), AFNI, and MATLAB (The MathWorks, Natick, MA).

Functional pre-processing steps were as follows. First, raw
DICOM images were converted to NIfTI format using FreeSurfer’s
mri_convert tool and reoriented to RPI orientation with FSL’s
fslorient. FSL’s BET (Brain Extraction Technique) algorithm was
then used to strip voxels containing non-brain tissue from the high-
resolution T1 structural images. Next, echo-planar imaging (EPI)
data were motion corrected using AFNI’s 3dvolreg function, which
produced six parameters of head motion. The motion-corrected
EPI data were spatially smoothed using a full width at half
maximum 6.0 mm Gaussian kernel.

Resting state
Following the rigid-body motion correction and spatial

smoothing procedures above, we sought to remove as much
remaining structured noise as possible. We used single-subject
independent components analysis (ICA) as an additional denoising
procedure. Specifically, we used an automated ICA procedure
called MELODIC (FSL), which generates a set of spatial
independent component maps (ICs), and associated time-courses
for each participant. The resulting components are thought to
represent brain activity (signal component), and/or structured
noise (noise component).

The gold standard for classification of components as signal or
noise remains the visual inspection of the components (Griffanti
et al., 2017). To this end, we followed guidelines from Kelly et al.
(2010). A component was labeled as noise when it showed clear
evidence of a spotty or diffuse distribution of signal particularly in
peripheral areas, and when such signal covered more than a quarter
of the brain. When unclear, we used abrupt changes in time course,
high power in high frequencies (>50% power above 0.1 Hz), and
concentration of signal in the superior sagittal sinus to validate
our labeling of a component as noise. Alternatively, a component
was labeled as signal when clusters of brain activity were clearly
evident in gray-matter regions (Kelly et al., 2010). Components
representing noise were regressed out from the data, thus allowing
us to retain as much signal as possible, while removing as much
structured noise as possible through this ICA-artifact removal
process.

To further remove confounding signals, such as those due to
cardiac pulse or low frequency scanner drift, the images corrected
for noise were bandpass filtered for frequencies above 0.008 Hz
and below 0.1 Hz, using AFNI’s 3dBandpass tool. This band-pass
filter also was applied to the six motion parameters mentioned
previously. The mean time series was then extracted from specific
regions in deep white matter (retro-lenticular portion of the left
internal capsule) and cerebrospinal fluid (left ventricle) and entered
into the general linear model (GLM) as nuisance regressors.

The residual time series from this nuisance regression was
then evaluated for any motion-contaminated volumes, given

1 www.fmrib.ox.ac.uk/fsl

that motion-related artifacts can persist even after the extensive
processing steps described above (Power et al., 2012). Briefly, for
each participant, a temporal mask was generated for successive
volumes with frame-wise (head) displacement that exceeded
0.5 mm and for successive volumes with changes in BOLD that
exceeded a spatial standard deviation of 0.5% between them. These
temporal masks were enhanced by also marking the frames 1 back
and 2 forward from any marked frames to account for temporal
smoothing of the BOLD data. The intersection of these two masks
was used to create a final temporal mask for each participant,
which eliminated their marked frames from further data analysis.
This procedure affected three participants (one participant pre-
intervention with five marked frames, two participants post-
intervention with three and five marked frames). We did not
account for within-volumes displacement. The resulting functional
image was registered to MNI space before extracting timeseries for
modularity analysis.

Behavioral measures

Participants completed tasks that pre-dominantly characterize
specific aspects of executive function (i.e., updating, shifting,
inhibition), as well as generalized executive functions that tap
into all three components and may overlap with other higher-
order cognitive functions. Individuals who administered these tasks
were blind to intervention assignment. The executive function
tasks included the Spatial working Memory task, the 2-back task,
Task Switching, the DKEFS Trail Making test, the Flanker task,
the Digit Symbol Substitution task, and the Means-Ends Problem
Solving task. On these tasks, we opted for performance measures
that showed greatest variability across participants and across
time. Within this context, when a task evaluated both reaction
time and accuracy, we chose reaction time as the performance
measure of interest. Reaction time on such tasks was computed
only for accurate trials. These tasks and performance measures are
described in greater detail in Table 1.

Analyses

Hypothesis 1: brain modularity increases
attributed to the intervention

For each participant and for each intervention time point (pre-
and post-intervention), we used the 264 regions (“nodes”) from
Power et al. (2011) to generate resting state functional-connectivity
matrices. The nodes will henceforth be referred to as “Power
nodes.”

For the modularity analyses, we used a generalization of the
Louvain algorithm (GenLouvain, Blondel et al., 2008; Jutla et al.,
2011) to obtain communities from the functional-connectivity
matrices of each subject (at each time point, pre- and post-
intervention) while varying the structural resolution parameter
gamma from 0.5 to 3 in increments of 0.5. Gamma is an
optimization parameter that scales the relative importance of
observed connections between nodes within a community and the
weights of those connections expected under a random null model.
Here, we used a null model in nodes to have the same number of
connections (their degree), but where those connections were made
randomly.
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TABLE 1 Qualitative descriptions for tasks.

Task measure Type
(C = Computerized,

W = Written)

Brief description Measure used for
present study

Updating

Spatial Working
Memory (Banducci
et al., 2017)

C It is administered at variable difficulty memory loads of two, three
and four target dots. These dots are randomly arranged and are
visible for a very short duration. After this presentation of dots, a
red dot appears. Participants indicate whether the red dot appears in
the same location as one of the black dots that was just presented.

Reaction time for the highest cognitive
load condition was used (i.e., 4-dot
condition).

2-Back
(Gajewski et al.,
2018)

C Participants indicate whether a presented letter is the same as or
different from the letter presented prior to the immediately
preceding one.

Reaction time across all 2-back trials.

Switching

Task Switching
(Pashler et al., 2001)

C Participants must rapidly decide whether a number is high or low
(one task set), or odd or even (another task set), depending on the
color of the screen.

Reaction time-based global task-switch
cost (difference in reaction time between
non-switch trials in a two-task set block
and single-task set block).

DKEFS Trail
Making (Salthouse,
2011)

W In condition B of this trail making test (used in this analysis), the
participant draws lines to connect circled numbers and letters in an
alternating numeric and alphabetic sequence (i.e., 1-A-2-B, etc.) as
rapidly as possible.

Time on Trails B. This condition shows
the highest sensitivity to aging.

Inhibition

Flanker
(Papadopoulos
et al., 2015)

C The stimulus is a row of five horizontal arrows, and the participant’s
task is to report the direction (left or right) in which the center target
arrow points by pressing one key for left and a different key for
right. The flankers are the two arrows on each side. In the congruent
condition, they point in the same direction as the central arrow
(<<<<< or >>>>>). In the incongruent condition, they point
in the opposite direction as the target arrow (>><>>, <<><<)

Reaction time for incongruent
condition. This condition is particularly
sensitive to response efficiency.

Generalized (updating, shifting, and inhibition)

Digit Symbol
Substitution
(Jaeger, 2018)

W Participants match symbols to numbers referencing a key located at
the top of the page.

The number of correct symbols within
the allowed time (120 s).

Means-End
Problem-Solving
(Vandermorris
et al., 2013)

W Participants read story stems in which a problem is stated at the
beginning and an outcome at the end. The task is to fill in events
that might have taken place between the discovery of the problem
and its eventual solution. Participants are given two stories during
each untimed test.

Number of relevant steps to reach
solution

At each gamma level, the GenLouvain algorithm generates two
output variables. One output refers to the community that each
“Power node” is assigned to; a community is defined as a sub-
network of nodes that are more tightly connected to each other
than expected by chance. Mathematically, community assignment
is represented by the variable “Ci” where “i” indexes the “Power
node” that belongs to a community “C.” The second output is
“modularity,” which measures the quality of the complete set
of communities, known as a partition (Newman and Girvan,
2004; Reichardt and Bornholdt, 2006; Fasino and Tudisco, 2014).
Mathematically, modularity is represented by the variable “Q.”

Although fast and accurate, the GenLouvain algorithm is
stochastic (the Ci and related Q-value can vary from run to run).
To account for this, we ran the algorithm 100 times. It generated
100 sets of community assignments. For each run of the algorithm,
the median Q-value was recorded. This process of generating
the median Q-value was conducted for every gamma-threshold
parameter. Following this step, we tested for Group × Time

interaction effects in the median Q-value across different gamma-
thresholds. We evaluated these effects using a generalized linear
mixed model (GLMMs; see Lo and Andrews, 2015) with maximal
random effects estimation (Barr, 2013). Our final model was
represented as median Q ∼ Group + Time + Group∗Time + random
intercept for participant. We used a “Gaussian” distribution with log
link (a log link exponentiates the predictors in the model). Analyses
were completed in R studio (version 1.1.4, package “lme4,” function
glmer). See here for the detailed analyses.2

Hypothesis 2: post-executive function scores are
representative of the acting group

A partial least squares regression-discriminant analysis (PLS-
DA, Barker and Rayens, 2003) approach was used to examine
the role of post-test scores on the tasks in group discrimination
adjusted for pre-timepoint contributions of these same scores in

2 https://rpubs.com/saraswatiSattva/407764
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the absence of intervention effects (i.e., the absence of effects due to
active experiencing). Specifically, for each task, we derived the beta
estimates of the post-on-pre-regression model for the active control
condition. From these beta estimates, we got residuals for both the
acting intervention group and the control group. In this manner,
we were able to obtain a realization of the unobserved outcome
for people in the acting intervention had they been assigned to the
active control condition. These residuals were studentized and then
included in the PLS-DA as predictors.

There are several advantages of using PLS-DA for the current
study. First, it relates the predictor variables (i.e., the studentized
task scores) to group membership (i.e., intervention or control
group) as well as models the common covariance structure
between all (studentized) task scores and class membership. This is
achieved by finding a set of latent variables that describe maximum
covariance between the task scores and group data. Relatedly,
and second, PLS-DA is well-suited when there are likely to be
moderate-to-strong correlations among the predictor variables, as
is typically the case with executive functioning tasks. Third, it
has been suggested that there is less value in isolating executive
function subcomponents (i.e., updating, shifting, and inhibition)
in neuropsychological analyses, particularly in the case of older

adults (McAlister and Schmitter-Edgecombe, 2016). Thus, PLS-
DA allowed us to model the joint contribution of all executive
function subcomponents, rather than evaluating them separately.
In our prior report, we examined control-adjusted gains using a
latent change score model for each cognitive domain (Banducci
et al., 2017). Here we apply a PLS-DA framework to simultaneously
examine correlated indices of executive function (consistent with
the operationalization of this construct by Miyake et al., 2000) and
brain modularity, specifically, to differentiate groups. Our primary
performance measure of executive function in the present study
was reaction time, given greater inter- and intra-variability in this
measure, compared to accuracy. Any bias due to factors such as
processing speed would be accounted for by the studentization
of scores, since studentization was done relative to the control
group (controlling for processing speed and other confounds
between groups) and involved normalization by standard deviation
(controlling for processing speed and other confounds within
individuals).

A list of all tasks with a Variable Importance in Projection
(VIP) >1 were deemed as “discriminant tasks.” A VIP is used
to summarize the contribution a measure makes to the PLS-DA
model, based on the percentage of the explained residual sum of

FIGURE 1

Median Q (modularity) pre- and post-intervention. Using a mixed-model analysis, we found an increase in modularity in the intervention group,
relative to controls and the pre-intervention timepoint (estimate: 0.04, p-value = 0.01 at a significance level alpha ≤0.05).
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TABLE 2 Descriptive statistics for tasks.

Task
(measure)

Time Statistic Acting Control Boxplot T-value
(p-value)

Spatial Working
Memory (RT)

Pre N

Mean (SD)

83

1,021.4 (183.7)

81

998.9 (163.2) −0.83 (0.41)

Post N

Mean (SD)

81

1,036.4 (187.2)

79

992.5 (171.8) −1.55 (0.12)

2-Back (RT) Pre N

Mean (SD)

84

911.5 (199.6)

81

859.5 (197.0) −1.68 (0.09)

Post N

Mean (SD)

81

902.6 (162.7)

79

858.2 (169.2) −1.69 (0.09)

Task Switch (RT) Pre N

Mean (SD)

83

478.6 (271.8)

77

504.5 (280.3) 0.59 (0.55)

Post N

Mean (SD)

75

406.2 (283.6)

77

467.7 (282.4) 1.34 (0.18)

DKEFS Trail B
(Time)

Pre N

Mean (SD)

84

85.99 (35.1)

80

76.68 (36.6) −1.66 (0.10)

Post N

Mean (SD)

75

79.2 (33.6)

77

75.0 (29.1) −0.84 (0.40)

Flanker Incongruent
(RT)

Pre N

Mean (SD)

75

866.6 (124.7)

73

813.0 (111.7) −2.76 (0.01)

Post N

Mean (SD)

79

838.8 (119.1)

73

792.1 (99.1) −2.63 (0.01)

Digit Symbol Subst.
(Number of correct
symbols)

Pre N

Mean (SD)

83

60.9 (13.3)

81

64.5 (12.8) 1.78 (0.08)

Post N

Mean (SD)

81

64.0 (13.4)

80

68.1 (14.2) 1.89 (0.06)

(Continued)
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TABLE 2 (Continued)

Task
(measure)

Time Statistic Acting Control Boxplot T-value
(p-value)

Means-End Problem
Solving (Number of
effective solutions)

Pre N

Mean (SD)

84

8.4 (4.0)

81

9.8 (4.9) 2.06 (0.04)

Post N

Mean (SD)

77

11.3 (4.6)

80

10.3 (4.3) −1.42 (0.16)

T-values are based on two-sample t-tests of mean(acting)-mean(control) evaluated separately for pre- and post- timepoints. P-values in bold suggest significant difference in the means
of the two groups.

squares. Analyses were completed in R studio (version 1.2.5042;
plsda function from the mixOmics package).

Hypothesis 3: post-intervention performance on
discriminant tasks positively interacts with brain
modularity to predict assignment to acting group

We developed separate logistic regression models to evaluate
whether scores on each discriminant task determined group
membership to acting, based on the contribution of modularity.
Analyses were completed in R studio (version 1.2.5042; glm
function from the stats package).

Results

Consistent with our first hypothesis, our mixed-model analysis
suggested a significant increase in modularity in the intervention
group, relative to controls and the pre-intervention timepoint (̂β
estimate: 0.04, p-value = 0.01 at the significance level α 0.05; see
Figure 1).

Descriptive statistics related to the tasks are presented in
Table 2. The PLS-DA analysis showed that three tasks were found
to carry group-separating information (Variable Importance in
Projection >1). These discriminant tasks were Spatial Working
Memory, 2-back, and Means-End Problem-Solving. Component
loadings on these task measures suggest that post-intervention
reaction time performance in these tasks were representative of the
intervention group, not the control group. The amount of variance
explained by this model was 19%. The error rate was 36%. Please
see Table 3 and Figure 2 for the related results.

Based on the logistic regression analysis, we did not find any
evidence of an interaction effect for modularity with any of the
task performance scores. The related logistic regression results are
presented in Table 4.

Discussion

Prior research has suggested that theater acting can facilitate
improvements in cognitive performance. We designed a 4-week
theater-acting intervention in older adults to characterize the
cognitive and brain changes associated with such an intervention.

Our mixed model analysis revealed greater increase in modular
organization in the AE intervention as compared to an active
control, suggesting a possible conferral of flexible learning and
optimization of brain functions (Sporns and Betzel, 2016).

Using a PLS-DA framework, we found a significant post-
intervention contribution of tasks that uniquely indexed the
updating component of executive function. These tasks were Spatial
Working Memory, 2-back, and Means-End Problem-Solving, and
they were representative of the intervention group (Table 3). In
older adults, updating has been identified as a key predictor of lab-
based assessments of functional status—defined as the ability to
perform tasks of everyday living—including the ability to manage
finances and medication (McAlister and Schmitter-Edgecombe,
2016; McDougall et al., 2019). Furthermore, updating as well as
episodic memory processes appear to specifically benefit from
broad-based engagement interventions that are targeted at this
population (Park et al., 2014; Banducci et al., 2017; Myhre et al.,
2017). Within this context, it is worth noting that the Means-End
Problem Solving task captures both updating as well as episodic
memory processes (Vandermorris et al., 2013). Integrating these
points, it appears plausible that when contributions of all executive
functioning tasks are considered, performance gains ascribed to
acting are related to the updating aspects of executive function and
potentially, episodic memory.

Using a logistic regression approach, we did not find any
significant interactions between modularity and task performance
that could clearly discriminate the two groups. Thus, across

TABLE 3 Loadings on projected components.

Variable Loading VIP*

Spatial Working Memory 0.47 1.24

2-Back 0.58 1.55

Task Switching −0.17 0.45

Trails B −0.04 0.12

Flanker Incongruent 0.00 0.00

Digital Symbol Substitution −0.21 0.56

Means-End Problem-Solving 0.60 1.59

VIP*, Variable Importance in Projection. All tasks with VIP >1 are in bold. These results
suggest that post-test scores in Spatial Working Memory, 2-Back, and Means-End Problem
Solving were representative of the intervention group, not the control group. The amount of
variance explained by this model is 19%. The error rate is 36%.
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FIGURE 2

Component loadings for cognitive tasks. A partial least squares regression-discriminant analysis (PLS-DA) approach was used to examine the role of
post-test cognitive scores in group discrimination adjusted for pre-timepoint contributions of these same scores in the absence of intervention
effects. These results suggest that post-test scores in Spatial Working Memory, 2-Back, and Means-End Problem Solving were more likely to be
associated with the intervention group, not the control group.

all analyses, our results suggest parallel increases in modularity
and updating, but not interacting relationships in these two
variables that could sufficiently differentiate group membership. Of
interest, the only study that has directly demonstrated changes in
modularity corresponding with changes in cognitive training, used
an adaptive version of the n-back task (Finc et al., 2020). However,
this study did not determine how groups differed based on the
interaction between modularity and adaptive n-back performance.
Within the experimental group, the authors found that an increase
of modularity observed during the 2-back condition of this task
was not correlated with behavioral performance after training.
They theorized that an increase in modular organization reflected
a general consequence of training and may not interact with
behavioral improvement. Our study provided evidence in support
of this speculation. That said, we did not use the adaptive version
of the n-back task, which may better index flexible learning, and
therefore, modularity.

There is considerable evidence that brain modularity, as
well as the updating component of executive function, and
episodic memory, are particularly sensitive to and decline with
the aging process (McAlister and Schmitter-Edgecombe, 2016;

TABLE 4 Logistic regression models for the interaction between
modularity (Q) and discriminant task performance scores.

Model Interaction estimate
(p-value)

Q + Spatial Working Memory +
Q × Spatial Working Memory

−0.25 (0.23)

Q + 2-back + Q × 2-back 0.12 (0.70)

Q + Means-End Problem-Solving +
Q × Means-End Problem-Solving

0.20 (0.43)

These results suggest that none of the interactions between modularity (q) and discriminant
task scores were significant at a significance level α ≤ 0.05. All estimates are relative to
the control group.

Sporns and Betzel, 2016; Banducci et al., 2017; Maldonado
et al., 2020). Our results suggest that an active experiencing
acting intervention can facilitate improvements in brain-wide
organization and these aspects of higher-order cognitive functions.

We recognize that there are limitations to our study. From a
neuroimaging standpoint, our instruction to participants to keep
their eyes closed may have led to their sleepiness, which we did
not explicitly follow-up on. Our instruction was guided by the
observation that the resting state scan was sandwiched between
two visually demanding scanner tasks (tasks not presented in this
study). Notwithstanding, we note that all participants were alert
and responsive to instructions that followed immediately after the
scan and their performance on the task that followed did not
indicate drowsiness.

From a behavioral methods standpoint, we found an error rate
of 36% when classifying both groups using PLS-DA. This error
rate may signal reduced sensitivity to executive function measures
due to education effects (McAlister and Schmitter-Edgecombe,
2016), as our sample was highly educated. We also lacked a
diversity of executive function tasks that uniquely mapped onto
each subcomponent as well as other higher order functions. For
instance, the Wisconsin Card Sorting Test measures the ability
for flexible learning—a characteristic of executive function and
modularity—but was not included in our battery of tests.

We acknowledge that the time of day when cognitive tests
and MRI scans were conducted may have exerted an influence
on the magnitude of performance on executive function tasks as
well as whole-brain modularity measures (Schmidt et al., 2007;
Farahani et al., 2022). We did not explicitly track participants’
habitual sleep-wake patterns to account for such individual-
level presentations. Nonetheless, we surmise that the random
assignment of participants into the two groups may control for
time-of-day effects. Future studies should be explicit in their
declaration of testing and scanning times.
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We also note that while both groups were designed to be
internally rewarding, we did not explicitly measure participants’
motivation, which can affect behavioral engagement. Thus, we
cannot definitively say the extent to which our results are influenced
by group differences in motivation.

Finally, the acting-theater researchers who supervised the two
groups were also co-authors of this study (TN and HN) and
the extent to which this factor may have influenced the research
outcomes is difficult to determine.

Conclusion

We conducted a 4-week active experiencing-based acting
intervention in older adults, within a randomized control trial
framework. We anticipated enhancements in modularity and
executive functioning, attributed to the intervention. We also
investigated how changes in modularity were related to identified
changes in executive function. These analyses were primarily
conducted in a discriminant analysis framework. We found that the
intervention group was characterized by higher post-intervention
scores on tasks indexing the updating component of executive
function. These tasks were termed “discriminant tasks.” None
of the discriminant tasks significantly interacted with change in
modularity to predict group assignment (i.e., intervention group or
control group). We suggest that some attributes of modularity—
such as flexible learning—were not effectively captured by
our executive function measures. Nonetheless, our findings are
promising since they suggest that an active experiencing based
acting intervention can facilitate improvements in aspects of
higher-order cognitive functions and brain-wide organization.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found below: https://osf.io/pr4kt/
?view_only=2caec53f73df48178fe0b53d1d19a003, identifier: DOI
10.17605/OSF.IO/PR4KT.

Ethics statement

The studies involving human participants were reviewed and
approved by the University of Illinois Institutional Review Board.
The patients/participants provided their written informed consent
to participate in this study.

Author contributions

TN, HN, and AK designed and directed the project. AR
conceived of the presented idea and developed the conceptual
framework. RB assisted in performing all analyses. AD aided
in interpreting the results. PB and MV verified the analytical
methods. All authors provided critical feedback and helped shape
the research, analysis, and manuscript.

Funding

This research was funded by the National Institute on Aging
(grant number: 1 R01 AG036682-01A1).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske,
M., et al. (2002). Effects of cognitive training interventions with older adults:
a randomized controlled trial. JAMA 288, 2271–2281. doi: 10.1001/jama.288.18.
2271

Banducci, S. E., Daugherty, A. M., Biggan, J. R., Cooke, G. E., Voss, M., Noice, T.,
et al. (2017). Active experiencing training improves episodic memory recall in older
adults. Front. Aging Neurosci. 9:133. doi: 10.3389/fnagi.2017.00133

Baniqued, P. L., Gallen, C. L., Voss, M. W., Burzynska, A. Z., Wong, C. N., Cooke,
G. E., et al. (2018). Brain network modularity predicts exercise-related executive
function gains in older adults. Front. Aging Neurosci. 9:426. doi: 10.3389/fnagi.2017.
00426

Barker, M., and Rayens, W. (2003). Partial least squares for discrimination.
J. Chemometr. 17, 166–173. doi: 10.1002/cem.785

Barr, D. J. (2013). Random effects structure for testing interactions in linear
mixed-effects models. Front. Psychol. 4:328. doi: 10.3389/fpsyg.2013.00328

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X. N., and Sporns, O. (2014). Changes in
structural and functional connectivity among resting-state networks across the human
lifespan. Neuroimage 102, 345–357. doi: 10.1016/j.neuroimage.2014.07.067

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. 2008:10008. doi: 10.1103/
PhysRevE.83.036103

Bullmore, E., and Sporns, O. (2009). Complex brain networks: Graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198. doi:
10.1038/nrn2575

Cao, M., Wang, J. H., Dai, Z. J., Cao, X. Y., Jiang, L. L., Fan, F. M., et al.
(2014). Topological organization of the human brain functional connectome across
the lifespan. Dev. Cogn. Neurosci. 7, 76–93.

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., and Wig, G. S. (2014).
Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl.
Acad. Sci. U.S.A. 111, E4997–E5006. doi: 10.1073/pnas.1415122111

Frontiers in Human Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1114804
https://osf.io/pr4kt/?view_only=2caec53f73df48178fe0b53d1d19a003
https://osf.io/pr4kt/?view_only=2caec53f73df48178fe0b53d1d19a003
https://doi.org/10.17605/OSF.IO/PR4KT
https://doi.org/10.17605/OSF.IO/PR4KT
https://doi.org/10.1001/jama.288.18.2271
https://doi.org/10.1001/jama.288.18.2271
https://doi.org/10.3389/fnagi.2017.00133
https://doi.org/10.3389/fnagi.2017.00426
https://doi.org/10.3389/fnagi.2017.00426
https://doi.org/10.1002/cem.785
https://doi.org/10.3389/fpsyg.2013.00328
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1103/PhysRevE.83.036103
https://doi.org/10.1103/PhysRevE.83.036103
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1073/pnas.1415122111
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1114804 April 27, 2023 Time: 14:59 # 11

Rajesh et al. 10.3389/fnhum.2023.1114804

Craik, F. I., and Lockhart, R. S. (1972). Levels of processing: A framework for
memory research. J. Verbal Learn. Verbal Behav. 11, 671–684.

Dahlin, E., Nyberg, L., Bäckman, L., and Neely, A. S. (2008). Plasticity of executive
functioning in young and older adults: immediate training gains, transfer, and long-
term maintenance. Psychol. Aging 23, 720–730. doi: 10.1037/a0014296

Farahani, F. V., Karwowski, W., D’Esposito, M., Betzel, R. F., Douglas, P. K.,
Sobczak, A. M., et al. (2022). Diurnal variations of resting-state fMRI data: A graph-
based analysis. Neuroimage 256:119246. doi: 10.1016/j.neuroimage.2022.119246

Fasino, D., and Tudisco, F. (2014). An algebraic analysis of the graph
modularity. SIAM J. Matrix Anal. Appl. 35, 997–1018. doi: 10.1137/13094
3455

Finc, K., Bonna, K., He, X., Lydon-Staley, D. M., Kühn, S., Duch, W.,
et al. (2020). Dynamic reconfiguration of functional brain networks during
working memory training. Nat. Commun. 11, 1–15. doi: 10.1038/s41467-020-
15631-z

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental state”:
A practical method for grading the cognitive state of patients for the clinician.
J. Psychiatr. Res. 12, 189–198.

Gajewski, P. D., Hanisch, E., Falkenstein, M., Thönes, S., and Wascher, E. (2018).
What does the n-back task measure as we get older? Relations between working-
memory measures and other cognitive functions across the lifespan. Front. Psychol.
9:2208. doi: 10.3389/fpsyg.2018.02208

Gallen, C. L., and D’Esposito, M. (2019). Brain modularity: A biomarker of
intervention-related plasticity. Trends Cogn. Sci. 23, 293–304. doi: 10.1016/j.tics.2019.
01.014

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., and Lorist, M. M. (2015). A
brain-wide study of age-related changes in functional connectivity. Cereb. Cortex 25,
1987–1999. doi: 10.1093/cercor/bhu012

Goh, J. O. (2011). Functional dedifferentiation and altered connectivity in older
adults: Neural accounts of cognitive aging. Aging Dis. 2, 30–48.

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser,
M. F., et al. (2017). Hand classification of fMRI ICA noise components. Neuroimage
154, 188–205. doi: 10.1016/j.neuroimage.2016.12.036

Grönholm-Nyman, P., Soveri, A., Rinne, J. O., Ek, E., Nyholm, A., Stigsdotter Neely,
A., et al. (2017). Limited effects of set shifting training in healthy older adults. Front.
Aging Neurosci. 9:69. doi: 10.3389/fnagi.2017.00069

Iordan, A. D., Cooke, K. A., Moored, K. D., Katz, B., Buschkuehl, M., Jaeggi, S. M.,
et al. (2018). Aging and network properties: Stability over time and links with learning
during working memory training. Front. Aging Neurosci. 9:419. doi: 10.3389/fnagi.
2017.00419

Jaeger, J. (2018). Digit symbol substitution test: The case for sensitivity over
specificity in neuropsychological testing. J. Clin. Psychopharmacol. 38:513. doi: 10.
1097/JCP.0000000000000941

Jutla, I. S., Jeub, L. G., and Mucha, P. J. (2011). A generalized Louvain method for
community detection implemented in MATLAB. Available online at: http://netwiki.
amath.unc.edu/GenLouvain/GenLouvain (accessed April 9, 2017).

Karbach, J., and Verhaeghen, P. (2014). Making working memory work: A meta-
analysis of executive-control and working memory training in older adults. Psychol.
Sci. 25, 2027–2037. doi: 10.1177/0956797614548725

Kelly, R. E. Jr., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F.,
Morimoto, S. S., et al. (2010). Visual inspection of independent components: Defining
a procedure for artifact removal from fMRI data. J. Neurosci. Methods 189, 233–245.
doi: 10.1016/j.jneumeth.2010.03.028

Lo, S., and Andrews, S. (2015). To transform or not to transform: Using generalized
linear mixed models to analyse reaction time data. Front. Psychol. 6:1171. doi: 10.3389/
fpsyg.2015.01171

Maldonado, T., Orr, J. M., Goen, J. R., and Bernard, J. A. (2020). Age differences
in the subcomponents of executive functioning. J. Gerontol. Series B 75, e31–e55.
doi: 10.1093/geronb/gbaa005

Marshall, G. A., Rentz, D. M., Frey, M. T., Locascio, J. J., Johnson, K. A., Sperling,
R. A., et al. (2011). Executive function and instrumental activities of daily living in
mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 7, 300–308.
doi: 10.1016/j.jalz.2010.04.005

McAlister, C., and Schmitter-Edgecombe, M. (2016). Executive function
subcomponents and their relations to everyday functioning in healthy older
adults. J. Clin. Exp. Neuropsychol. 38, 925–940. doi: 10.1080/13803395.2016.1177490

McDougall, G. J., Han, A., Staggs, V. S., Johnson, D. K., and McDowd, J. M.
(2019). Predictors of instrumental activities of daily living in community-dwelling
older adults. Arch. Psychiatr. Nurs. 33, 43–50. doi: 10.1016/j.apnu.2019.08.006

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and Wager,
T. D. (2000). The unity and diversity of executive functions and their contributions
to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 41, 49–100.
doi: 10.1006/cogp.1999.0734

Myhre, J. W., Mehl, M. R., and Glisky, E. L. (2017). Cognitive benefits of online
social networking for healthy older adults. J. Gerontol. Ser. B 72, 752–760. doi: 10.
1093/geronb/gbw025

Newman, M. E., and Girvan, M. (2004). Finding and evaluating community
structure in networks. Phys. Rev. E 69:026113. doi: 10.1103/PhysRevE.69.026113

Noice, T., and Noice, H. (2013). “Practice and talent in acting,” in The complexity
of greatness: Beyond talent or practice, ed. S. B. Kaufman (Oxford: Oxford
University Press), 309–331. Available online at: https://doi.org/10.1093/acprof:oso/
9780199794003.003.0015

Noice, H., Noice, T., Perrig-Chiello, P., and Perrig, W. (1999). Improving memory in
older adults by instructing them in professional actors’ learning strategies. Appl. Cogn.
Psychol. Off. J. Soc. Appl. Res. Mem. Cogn. 13, 315–328.

Noice, H., Noice, T., and Staines, G. (2004). A short-term intervention to enhance
cognitive and affective functioning in older adults. J. Aging Health 16, 562–585. doi:
10.1177/0898264304265819

Papadopoulos, T. C., Parrila, R. K., and Kirby, J. R. (2015). “Cognition, intelligence,
and achievement: A tribute to JP Das,” in Cognition, intelligence, and achievement eds
T. C. Papadopoulos, R. K. Parrila, and J. R. Kirby (Cambridge, MA: Academic Press),
3–12. doi: 10.1016/B978-0-12-410388-7.00001-4

Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., et al.
(2014). The impact of sustained engagement on cognitive function in older adults:
The Synapse Project. Psychol. Sci. 25, 103–112. doi: 10.1177/0956797613499592

Pashler, H., Johnston, J. C., and Ruthruff, E. (2001). Attention and performance.
Annu. Rev. Psychol. 52, 629–651. doi: 10.1146/annurev.psych.52.1.629

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., et al.
(2011). Functional network organization of the human brain. Neuron 72, 665–678.

Power, J., Barnes, K., Snyder, A., Schlaggar, B., and Petersen, S. (2012). Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. Neuroimage 59, 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018

Reichardt, J., and Bornholdt, S. (2006). Statistical mechanics of community
detection. Phys. Rev. E 74:016110. doi: 10.1103/PhysRevE.74.016110

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: Uses and interpretations. Neuroimage 52, 1059–1069. doi: 10.1016/j.
neuroimage.2009.10.003

Sala-Llonch, R., Bartrés-Faz, D., and Junqué, C. (2015). Reorganization of brain
networks in aging: A review of functional connectivity studies. Front. Psychol. 6:663.
doi: 10.3389/fpsyg.2015.00663

Salthouse, T. A. (2011). What cognitive abilities are involved in trail-
making performance? Intelligence 39, 222–232. doi: 10.1016/j.intell.2011.
03.001

Schmidt, C., Collette, F., Cajochen, C., and Peigneux, P. (2007). A time to think:
Circadian rhythms in human cognition. Cogn. Neuropsychol. 24, 755–789. doi: 10.
1080/02643290701754158

Sporns, O., and Betzel, R. F. (2016). Modular brain networks. Annu. Rev. Psychol.
67, 613–640. doi: 10.1146/annurev-psych-122414-033634

Stevens, A. A., Tappon, S. C., Garg, A., and Fair, D. A. (2012). Functional brain
network modularity captures inter-and intra-individual variation in working memory
capacity. PLoS One 7:e30468. doi: 10.1371/journal.pone.0030468

Vandermorris, S., Sheldon, S., Winocur, G., and Moscovitch, M. (2013). Differential
contributions of executive and episodic memory functions to problem solving in
younger and older adults. J. Int. Neuropsychol. Soc. 19, 1087–1096. doi: 10.1017/
S1355617713000982

Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chaddock, L., et al.
(2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive
function in older adults: Results of a one-year exercise intervention. Hum. Brain Mapp.
34, 2972–2985. doi: 10.1002/hbm.22119

Wang, H. X., Jin, Y., Hendrie, H. C., Liang, C., Yang, L., Cheng, Y., et al. (2013). Late
life leisure activities and risk of cognitive decline. J. Gerontol. A Biol. Sci. Med. Sci. 68,
205–213. doi: 10.1093/gerona/gls153

Wilkinson, A. J., and Yang, L. (2012). Plasticity of inhibition in older adults: retest
practice and transfer effects. Psychol. Aging 27, 606–615. doi: 10.1037/a0025926

Wilson, R. S., Beckett, L. A., Barnes, L. L., Schneider, J. A., Bach, J., Evans, D. A., et al.
(2002). Individual differences in rates of change in cognitive abilities of older persons.
Psychol. Aging 17:179.

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1114804
https://doi.org/10.1037/a0014296
https://doi.org/10.1016/j.neuroimage.2022.119246
https://doi.org/10.1137/130943455
https://doi.org/10.1137/130943455
https://doi.org/10.1038/s41467-020-15631-z
https://doi.org/10.1038/s41467-020-15631-z
https://doi.org/10.3389/fpsyg.2018.02208
https://doi.org/10.1016/j.tics.2019.01.014
https://doi.org/10.1016/j.tics.2019.01.014
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1016/j.neuroimage.2016.12.036
https://doi.org/10.3389/fnagi.2017.00069
https://doi.org/10.3389/fnagi.2017.00419
https://doi.org/10.3389/fnagi.2017.00419
https://doi.org/10.1097/JCP.0000000000000941
https://doi.org/10.1097/JCP.0000000000000941
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
https://doi.org/10.1177/0956797614548725
https://doi.org/10.1016/j.jneumeth.2010.03.028
https://doi.org/10.3389/fpsyg.2015.01171
https://doi.org/10.3389/fpsyg.2015.01171
https://doi.org/10.1093/geronb/gbaa005
https://doi.org/10.1016/j.jalz.2010.04.005
https://doi.org/10.1080/13803395.2016.1177490
https://doi.org/10.1016/j.apnu.2019.08.006
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1093/geronb/gbw025
https://doi.org/10.1093/geronb/gbw025
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1093/acprof:oso/9780199794003.003.0015
https://doi.org/10.1093/acprof:oso/9780199794003.003.0015
https://doi.org/10.1177/0898264304265819
https://doi.org/10.1177/0898264304265819
https://doi.org/10.1016/B978-0-12-410388-7.00001-4
https://doi.org/10.1177/0956797613499592
https://doi.org/10.1146/annurev.psych.52.1.629
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.3389/fpsyg.2015.00663
https://doi.org/10.1016/j.intell.2011.03.001
https://doi.org/10.1016/j.intell.2011.03.001
https://doi.org/10.1080/02643290701754158
https://doi.org/10.1080/02643290701754158
https://doi.org/10.1146/annurev-psych-122414-033634
https://doi.org/10.1371/journal.pone.0030468
https://doi.org/10.1017/S1355617713000982
https://doi.org/10.1017/S1355617713000982
https://doi.org/10.1002/hbm.22119
https://doi.org/10.1093/gerona/gls153
https://doi.org/10.1037/a0025926
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	Evaluating brain modularity benefits of an acting intervention: a discriminant-analysis framework
	Introduction
	Materials and methods
	Participants
	Intervention
	Neuroimaging protocol
	Image acquisition and pre-processing
	Resting state

	Behavioral measures
	Analyses
	Hypothesis 1: brain modularity increases attributed to the intervention
	Hypothesis 2: post-executive function scores are representative of the acting group
	Hypothesis 3: post-intervention performance on discriminant tasks positively interacts with brain modularity to predict assignment to acting group


	Results
	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


