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Connectivity studies with nuclear medicine systems are scarce in literature. They

mainly employ PET imaging and group level analyses due to the low temporal

resolution of PET and especially SPECT imaging. Our current study analyses

connectivity at an individual level using dynamic SPECT imaging, which has

been enabled by the improved temporal resolution performances provided by

the 360◦CZT cameras. We present the case of an 80-year-old man referred

for brain perfusion SPECT imaging for cognitive disorders for whom a dynamic

SPECT acquisition was performed utilizing a 360◦CZT camera (temporal sampling

of 15 frames × 3 s, 10 frames × 15 s, 14 frames × 30 s), followed by a

conventional static acquisition of 15 m. Functional SPECT connectivity (fSPECT)

was assessed through a seed correlation analysis and 5 well-known resting-state

networks were identified: the executive, the default mode, the sensory motor,

the salience, and the visual networks. This case report supports the feasibility of

fSPECT imaging to identify well known resting-state networks, thanks to the novel

properties of a 360◦CZT camera, and opens the way to the development of more

dedicated functional connectivity studies using brain perfusion SPECT imaging.
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Introduction

Up until now, functional MRI (fMRI) based methods, including blood-oxygen-
level dependent (BOLD), arterial spin labelling (ASL), calibrated BOLD, Vascular-Space-
Occupancy, have replaced 15O PET studies for functional imaging based on regional cerebral
blood flow (rCBF) (Verger and Guedj, 2018). Connectivity studies with nuclear medicine
technologies are mainly performed at the group level, using 18F-FDG, a PET radiotracer
of glycolytic metabolism, that can identify resting-state networks (Yakushev et al., 2017).
Functional 18F-FDG PET (fPET) imaging studies, including studies of connectivity at the
individual and group level, have emerged in recent years (Villien et al., 2014; Sala et al.,
2021; Jamadar et al., 2022). But there are no connectivity studies with brain perfusion SPECT
imaging in the literature owing to the low spatial and temporal resolution of conventional
cameras. In parallel, SPECT imaging performances have improved considerably, owing
to CZT technology, with the possibility of high contrast brain perfusion SPECT imaging
(Bordonne et al., 2020a,b). CZT SPECT imaging is also associated with better spatial and
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temporal resolution in comparison to conventional systems, thus
allowing dynamic 3D SPECT imaging (Mairal et al., 2022). The
objective of this case report was to evaluate the feasibility of
functional SPECT (fSPECT) imaging for brain perfusion using
a 360◦CZT camera for identification of well-known resting-state
networks.

Case description

We present the case of an 80-year-old man referred for brain
perfusion SPECT imaging for cognitive disorders. A dynamic
SPECT acquisition (temporal sampling of 15 frames × 3 s,
10 frames × 15 s, 14 frames × 30 s) was performed
utilizing a 360◦CZT camera (VERITON 200 series, Spectrum
Dynamics R©) immediately after the injection of 615 MBq of
99mTc-hexamethylpropyleneamineoxime (HMPAO), followed by a
conventional static acquisition of 15 min. CZT-SPECT acquisitions
were performed with no zoom and a radius of gyration of
11.5 cm. Dynamic and static images were reconstructed with an
ordered-subset expectation maximization (OSEM)-3D algorithm
(4 iterations with 8 subsets and 28 iterations with 8 subsets,
respectively), with a temporal kernel filter for dynamic images.
All dynamic and static images were corrected for attenuation and
scatters, and displayed with voxels of 4.92 × 4.92 × 4.92 mm and
2.46 × 2.46 × 2.46 mm, respectively, (Bordonne et al., 2020b).

Diagnostic assessment

All SPECT images from 30 s to 10 min post-injection were
spatially normalized to the MNI (Montreal National Institute)
space using a dedicated template. This template was created
using the 14 frames of 30 s: they were (i) co-registered, to

FIGURE 1

Results of SPECT seed correlation analyses projected on MRI axial
slices for the respective seeds of default mode (seed 2, –54,
36 mm), executive (seed 44, 37, 21 mm), salience (seed –32, 25,
–10 mm), sensory-motor (seed –43, –26, 55 mm) and visual (seed
–21, –86, 18 mm) networks (p-voxel < 0.001, uncorrected,
corrected for the cluster volume). The blue circles indicate the
location of the reference seed used for each network.

correct for potential movement artefacts, (ii) averaged, and
(iii) spatially normalized to the MNI template provided by the
SPM12 software (Wellcome Department of Cognitive Neurology,
University College, London, UK). All SPECT images were also
normalized in intensity using proportional scaling and a Gaussian
post-filter of full width at half maximum (FWHM) of 12 mm was
applied at the end of the preprocessing. Seed based correlation
analyses (Lee et al., 2008) were performed to identify within the
set of SPECT images the well-known resting-state networks: default
mode, executive, salience, sensory-motor and visual (Malpetti
et al., 2019). The coordinates of one voxel-seed for each network
have been previously reported (Trotta et al., 2018). A statistical
level of significance of p < 0.001 uncorrected, corrected for the
cluster volume was applied. Results are expressed according to the
Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). Figure 1 depicts the results of voxel-wise analyses
obtained for each network and Table 1, details the identification of
brain regions associated to each network (Farras-Permanyer et al.,
2019; Malpetti et al., 2019; Oliver et al., 2019). The visual and
semi-quantitative analyses of conventional static images according
to the current guidelines (Kapucu et al., 2009) did not reveal
any argument for a neurodegenerative condition for the cognitive
disorders in this patient.

Discussion

This case supports the feasibility of identification of resting-
state networks through fSPECT imaging. To our knowledge, this
is the first time that dynamic brain perfusion SPECT imaging
has been used to identify resting-state networks. When injected
with a bolus, HMPAO activity over the brain reaches a maximum
at only 1 min post-injection, followed by some loss of activity
and a plateau at about 2 min post-injection until about 2 h
post-injection (Sharp et al., 1986), justifying our choice of time
frames adapted to perfusion brain SPECT imaging, with shorter
time frames at the beginning of the acquisition. The particular
properties of CZT cameras, especially their improved sensitivity
and subsequently better temporal resolution in comparison to
conventional systems, allow the development of fSPECT imaging
protocols to study connectivity. 99mTc-HMPAO distribution in the
brain is a reflection of rCBF (Lucignani et al., 1990; Murase et al.,
1992). Its advantages are the reflection of rCBF at 1-minute post-
injection with a high signal contrast ratio, and the stability of
radiotracer activity over time. This new imaging technique must
be compared to existing imaging modalities that reflect rCBF.
15O PET imaging is limited by the short radioactive period of
15O, at only 2 min, and therefore cannot be used in clinical
practice. fMRI is widely performed with BOLD signal, which is
nevertheless a composite of effects attributable to the cerebral
metabolic rates of oxygen, the cerebral blood flow, and the cerebral
blood volume changes (Buxton, 2012), but associated with a good
signal-to-noise ratio and high temporal resolution. However, the
BOLD signal is unstable for long task durations (Rischka et al.,
2021). By contrast, fMRI with ASL more consistently reflects the
rCBF, produces a temporally more stable signal (Stewart et al.,
2014) and can provide absolute quantification (Detre and Wang,
2002), but at the cost of a relatively low signal-to-noise ratio and
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temporal resolution (Zhu et al., 2013). Owing to their excellent
contrast-to-noise ratios, nuclear medicine modalities are associated
to low variances concentrations in results (Yakushev et al., 2017),
which permit highly robust replication studies. Moreover, the
susceptibility of fMRI to ferromagnetic artefacts, non-observed
with nuclear medicine technologies, can limit some indications
in neurological imaging (Horwitz and Simonyan, 2014). On the
other hand, connectivity studies performed with fPET at the
individual level with different administration schemes, a bolus
and/or a constant infusion of the radiotracer (Wehrl et al., 2013;
Villien et al., 2014; Tomasi et al., 2017; Amend et al., 2019),
necessitate a radiotracer uptake time of approximately 30 min
(Guedj et al., 2022), well beyond the 1 to 2 min of the HMPAO
radiotracer used in SPECT. Depending on the tested paradigm,
brain activation studies, which represent a different approach for
studying molecular connectivity, can thus be more easily planned
using a radiotracer reflecting temporally subtle changes in brain
functions.

Of course, this case report has some limitations, the most
consistent being the relatively low spatial resolution of fSPECT
imaging, even if using recent CZT cameras. Combined with the
different information provided by perfusion SPECT and BOLD
signals, as well as the specific seed-based correlation analysis used
in the current case, this may explain why other brain regions than
those classically found in BOLD-based resting-state networks are
observed in Figure 1. To illustrate this point, a comparison of our
identified resting-state networks with BOLD-based resting-state
networks obtained from a large database (Schaefer et al., 2018)
is provided in Supplementary Figure 1. From a methodological
point of view, an original scheme of administration combining
a bolus followed by a constant infusion was recently proposed
for fPET with 18F-FDG (Jamadar et al., 2022). Given the short
time for accumulation in the brain, fSPECT with HMPAO should
also be tested with a different radiotracer administration scheme.
It is also known that the normalization process is a crucial step
when dynamic images are used to derive single subject molecular
connectivity and can lead to different results depending on the
choice of normalization (Wehrl et al., 2013; Schaefer et al., 2018;
Amend et al., 2019). In the current study we opted for proportional
scaling, based on a mean image normalization. However, resting-
state networks obtained with two other normalization methods,
respectively, no normalization and normalization across time,
which is based on a normalization of each voxel time activity curve
(TAC) by the mean voxel TAC, are depicted in Supplementary
Figure 2. They confirm that in our case, a normalization step
(whether it be proportional scaling or mean voxel TAC) provides
better resting-state network discrimination than applying no
normalization. In addition, this case is a proof of concept in
only one patient addressed for suspicion of cognitive disorders.
Albeit not showing hypoperfusions in favor of a neurodegenerative
disorder on the static images, this elderly patient is not an healthy
control, thus also potentially modifying the connectivity of brain
networks (Farras-Permanyer et al., 2019).

Perspective

This case illustrates the feasibility of identifying well-known
resting-state networks with fSPECT imaging. Further experiments

TABLE 1 Brain regions usually belonging to each network and identified
by seed correlation analyses (p-voxel < 0.001, uncorrected, corrected for
the cluster volume).

Network AAL brain regions identified*

Executive
(seed 44, 37, 21 mm)

Frontal middle right (161 voxels, T-max at 31.2) and left
(114 voxels, T-max at 9.8), frontal superior right (81 voxels,
T-max at 10.5) and left (109 voxels, T-max at 9.6),
supramarginal right (2 voxels, T-max at 8.5) and left (87
voxels, T-max at 11.8), parietal inferior right (19 voxels,
T-max at 9.1) and left (43 voxels, T-max at 6.9), parietal
superior right (24 voxels, T-max at 6.8) and left (37 voxels,
T-max at 8.5), angular right (7 voxels, T-max at 4.4) and
left (11 voxels, T-max at 6.9), frontal middle orbital right
(6 voxels, T-max at 5.7) and left (8 voxels, T-max at 4.9),
frontal superior orbital right (3 voxels, T-max at 5.7) and
left (3 voxels, T-max at 6.2)

Default mode
(seed 2, −54,
36 mm)

Precuneus right (135 voxels, T-max at 31.3) and left (104
voxels, T-max at 31.3), frontal superior medial right (46
voxels, T-max at 7.4) and left (39 voxels, T-max at 11.0),
insula right (13 voxels, T-max at 8.3) and left (41 voxels,
T-max at 12.0), anterior cingulate right (27 voxels, T-max
at 7.6) and left (16 voxels, T-max at 7.4), para-hippocampus
right (25 voxels, T-max at 7.9) and left (7 voxels, T-max at
5.6), temporo-pole mild right (22 voxels, T-max at 7.9),
fusiform right (18 voxels, T-max at 8.9) and left (8 voxels,
T-max at 7.9), posterior cingulate right (16 voxels, T-max
at 8.9) and left (7 voxels, T-max at 8.9), frontal medial
orbital right (11 voxels, T-max at 8.7) and left (1 voxel,
T-max at 8.7), hippocampus right (10 voxels, T-max at 5.4)
and left (11 voxels, T-max at 6.1), angular right (8 voxels,
T-max at 6.4) and left (4 voxels, T-max at 6.7)

Salience
(seed −32, 25,
−10 mm)

Rolandic opercular right (27 voxels, T-max at 5.6) and left
(10 voxels, T-max at 6.7), insula right (7 voxels, T-max at
5.6) and left (19 voxels, T-max at 24.5)

Sensory-motor
(seed −43, −26,
55 mm)

Supramarginal left (72 voxels, T-max at 8.2), postcentral
left (71 voxels, T-max at 14.5), supplementary motor area
right (16 voxels, T-max at 4.2) and left (27 voxels, T-max at
5.7), frontal middle right (3 voxels, T-max at 6.8) and left
(17 voxels, T-max at 5.8), precentral left (8 voxels, T-max at
8.5), paracentral lobule left (3 voxels, T-max at 4.6)

Visual
(seed −21, −86,
18 mm)

Occipital middle right (99 voxels, T-max at 8.5) and left (56
voxels, T-max at 13.4), calcarine right (27 voxels, T-max at
7.9) and left (74 voxels, T-max at 18.4), occipital inferior
right (55 voxels, T-max at 9.5) and left (40 voxels, T-max at
9.7), cuneus right (27 voxels, T-max at 8.8) and left (51
voxels, T-max at 20.6), occipital superior right (22 voxels,
T-max at 7.4) and left (47 voxels, T-max at 25.8), lingual
right (29 voxels, T-max at 8.0) and left (38 voxels, T-max at
11.9)

*Only brain regions belonging to each network are represented; AAL, Atlas
automatic labeling. Bold represent the brain regions.

should evaluate its interest, relative to its advantages but also its
drawbacks, in dedicated functional imaging studies including brain
activation ones.
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