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Action observation (AO) can improve motor performance in humans, probably

via the human mirror neuron system. In addition, there is some evidence that

transcranial direct current stimulation (tDCS) can improve motor performance.

However, it is yet to be determined whether AO combined with tDCS has

an enhanced effect on motor performance. We investigated the effect of AO

combined with high-definition tDCS (HD-tDCS) targeting the inferior parietal

lobe (IPL) and inferior frontal gyrus (IFG), the main aggregates of the human

mirror neuron system, on motor performance in healthy adults and compared

the immediate vs. 24-h retention test effects (anodal electrodes were placed

over these regions of interest). Sixty participants were randomly divided into

three groups that received one of the following single-session interventions:

(1) observation of a video clip that presented reaching movement sequences

toward five lighted units + active HD-tDCS stimulation (AO + active HD-

tDCS group); (2) observation of a video clip that presented the same reaching

movement sequences + sham HD-tDCS stimulation (AO + sham HD-tDCS

group); and (3) observation of a video clip that presented neutral movie

while receiving sham stimulation (NM + sham HD-tDCS group). Subjects’

reaching performance was tested before and immediately after each intervention

and following 24 h. Subjects performed reaching movements toward units

that were activated in the same order as the observed sequence during

pretest, posttest, and retest. Occasionally, the sequence order was changed

by beginning the sequence unexpectedly with a different activated unit.

Outcome measures included mean Reaching Time and difference between

the Reaching Time of the unexpected and expected reaching movements

(Delta). In the posttest and retest, Reaching Time and Delta improved in

the AO + sham HD-tDCS group compared to the NM + HD-sham tDCS

group. In addition, at posttest, Delta improved in the AO + active HD-

tDCS group compared to the NM + sham HD-tDCS group. It appears that
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combining a montage of active HD-tDCS, which targets the IPL and IFG, with AO

interferes with the positive effects of AO alone on the performance of reaching

movement sequences.
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1. Introduction

It is possible to acquire novel motor skills or to improve
motor performance by observing the actions of others (Mattar
and Gribble, 2005; Osman et al., 2005; Porro et al., 2007; Lee
et al., 2013; Kim et al., 2017). Action observation (AO) has been
found to improve a variety of motor tasks, such as serial reaction
time tests (Osman et al., 2005) and force production (Porro et al.,
2007), among healthy subjects and populations with neurological
(Pelosin et al., 2010, 2013; Buccino et al., 2011; Lee et al., 2013; Park
and Hwangbo, 2015) and orthopedic conditions (Paravlic, 2022)
(however, see also Sarasso et al., 2015; Gatti et al., 2019; Borges et al.,
2022).

The effects of AO on motor performance are thought to be
mediated via the human mirror neuron system (hMNS) (Rizzolatti
and Craighero, 2004; Buccino, 2014; Kemmerer, 2021; Kim and Lee,
2021). Mirror neurons are specific neurons that are activated while
performing motor actions and observing those actions (Rizzolatti
et al., 1996). They were first found in macaque monkeys in the
ventral premotor cortex (F5) and around the anterior intra-parietal
sulcus of the macaque (di Pellegrino et al., 1992; Fogassi et al.,
2005). The hMNS is thought to reside in a network comprised of
the inferior frontal gyrus (IFG), the inferior parietal lobule (IPL)
and additional cortical regions such as the ventral premotor cortex
and superior parietal lobule (e.g., Grèzes et al., 2003; Filimon et al.,
2007; Gazzola et al., 2007; Gazzola and Keysers, 2009; Caspers et al.,
2010; Molenberghs et al., 2012; Kemmerer, 2021).

In addition to AO, another means that can improve motor
performance in healthy adults (Patel et al., 2019; Halakoo et al.,
2020; Wang et al., 2021) and populations with neurological
conditions (Broeder et al., 2015; Ammann et al., 2016; Kang
et al., 2016; Sánchez-Kuhn et al., 2017) is transcranial direct
current stimulation (tDCS). It should be noted, however, that
some studies did not find tDCS-related positive effects on motor
performance (for reviews see Elsner et al., 2017; Lefaucheur et al.,
2017). This is a safe stimulation method that delivers weak direct
currents (usually 0.5–2 mA) via surface electrodes placed on
the skull. It alters spontaneous brain activity and excitability by
subthreshold modulation of neuronal membranes in a polarity-
dependent manner (Roche et al., 2015; Stagg et al., 2018). It is
assumed that anodal stimulation enhances cortical excitability,
while cathodal stimulation reduces it (Nitsche and Paulus, 2000;
Stagg et al., 2018); however, the effects of tDCS are much more
complex. For instance, a non-linear dose–response relationship in
neurophysiological (Nitsche and Paulus, 2000; Batsikadze et al.,
2013; Moliadze et al., 2015; Ammann et al., 2016; Strube et al.,
2016) and behavioral measures (Ehrhardt et al., 2021; Lerner et al.,
2021) was found. To avoid the assumption that anodal stimulation
necessarily reflects excitatory stimulation, we have described the

term anodal tDCS in this paper as active tDCS, meaning that an
anodal electrode was placed over the region of interest (ROI).

Although the separate effects of AO and tDCS on motor
performance have been extensively investigated (Wang et al., 2021),
to the best of our knowledge, the combination of tDCS and AO
has been implicated in only a few behavioral studies (Wade and
Hammond, 2015; Apšvalka et al., 2018) and neurophysiological
studies (Feurra et al., 2011; Enticott et al., 2012; Qi et al., 2019).
From a neurophysiological viewpoint, reduced motor evoked
potentials (MEPs) have been found following AO combined with
10 min of 1 mA conventional tDCS (which uses large pad
electrodes), with a cathodal electrode placed over M1 (Qi et al.,
2019), as well as during AO conducted immediately following
10 min of 1.5 mA conventional tDCS with an anodal electrode
placed over the parietal cortex (Feurra et al., 2011). Conventional
2 mA tDCS, for 20 min, with an anodal or cathodal electrode placed
over the IFG, but not IPL, reduced MEP amplitude (Enticott et al.,
2012). From a motor behavior viewpoint, 20 min of conventional
1 mA tDCS with an anodal electrode placed over M1 during AO did
not significantly affect keypress sequence performance (Apšvalka
et al., 2018). In contrast, 15 min of 1 mA conventional tDCS with
an anodal electrode placed over the left premotor cortex improved
reaction time without losing accuracy of a serial response time task
in the posttest compared to the sham stimulation group (Wade and
Hammond, 2015).

As IPL and IFG are considered to be the main aggregates
of the hMNS (e.g., Grèzes et al., 2003; Filimon et al., 2007;
Gazzola et al., 2007; Gazzola and Keysers, 2009; Caspers et al.,
2010; Molenberghs et al., 2012; Kemmerer, 2021), this study is the
first attempt to determine the effect of AO combined with tDCS
that simultaneously targets IPL and IFG on motor performance
among healthy adults, relating to the immediate vs. retention
test effects. Most of the tDCS research, including studies dealing
with the effect of AO combined with tDCS, used conventional
large pad tDCS. Conventional tDCS delivers current to diverse
brain regions, rather than only to the targeted ROI. Improved
spatial focality of tDCS can be achieved using high-definition
(HD) tDCS (Datta et al., 2009, Datta et al., 2013; Caparelli-
Daquer et al., 2012; Kuo et al., 2013). Compared to conventional
large pad tDCS, HD-tDCS demonstrated a peak induced electric
field magnitude at the sulcus and adjacent gyri directly below
the active electrode (Datta et al., 2009). Therefore, using HD-
tDCS, which allows more nuanced control of current flow to
both the IFG and IPL during AO, may be more beneficial
for determining the effects of stimulating these ROIs on motor
performance (although it does not eliminate the current spatial
distribution). We compared the effects of AO via a video clip
combined with active HD-tDCS that targets the IPL and IFG, AO
via a video clip combined with sham HD-tDCS, and observation
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of a neutral movie (NM) clip combined with sham HD-tDCS
on reaching movement sequences. We hypothesized that (1)
AO combined with active HD-tDCS would be more effective in
improving motor performance than AO combined with sham HD-
tDCS and observing NM combined with sham HD-tDCS and
(2) AO combined with sham HD-tDCS would be more effective
in improving motor performance than NM combined with sham
HD-tDCS.

2. Materials and methods

2.1. Study design

This was a single-blind, parallel, randomized, sham-controlled
study. Data were collected in a brain and motor behavior laboratory
at Ariel University, Israel. Subjects were randomly assigned with
a 1:1:1 ratio, using a random number generator in WINPEPI, to
one of three groups: (1) AO + active HD-tDCS (AO + active HD-
tDCS group); (2) AO + sham HD-tDCS (AO + sham HD-tDCS
group); and (3) Observation of NM + sham HD-tDCS (NM + sham
HD-tDCS group). All participants were blinded to group allocation.
The stimulator monitor was hidden from the participants, and the
sham stimulation increased and decreased in a ramp-like fashion to
ensure blinding of participants (see HD-tDCS section).

2.2. Participants

Sixty participants participated in the study (30 women, aged
24 ± 3 years). Inclusion criteria included right-hand dominance
and normal health status according to self-report. Exclusion
criteria included musculoskeletal or neurological deficits affecting
task performance (proper reaching performance in a sitting
position). Participants signed an informed consent form prior to
participating in the study. All procedures were approved by the
Ariel University Institutional Ethical Board (approval number:
AU-HEA-SFT-20210721) and were performed in accordance with
relevant guidelines and regulations. Participants were paid $20 for
their participation.

2.3. Motor task

In all participants, the left arm was tested. The non-dominant
arm was tested to challenge the motor performance of healthy
participants, aiming to allow more room for improvement in the
motor performance. This approach is acceptable in motor learning
studies (e.g., Korman et al., 2007; Friedman and Korman, 2016).
The participants performed a sequential reaching task. A detailed
description of the task and the apparatus is provided in a previous
study (Frenkel-Toledo et al., 2020). Subjects from each group
participated in a session that included familiarization with the
motor task, pretest, single session intervention (AO + active HD-
tDCS/AO + sham HD-tDCS/NM + sham HD-tDCS), posttest, and
retention test after 24 h.

Apparatus used in the tests: The custom-made testing
device was set up on a table with a smooth tabletop of

FIGURE 1

Experimental setup. (A) General setup of the motor task.
(B) Push-button switch and a red light-emitting diode (LED), were
attached to the tabletop in a 38-cm radius half circle, numbered
right to left from 1 to 5.

105 cm × 80 cm × 80 cm. Five switch-led units of
5 cm × 8 cm × 5 cm, each composed of a large push-button
switch and a red light-emitting diode (LED), were connected to the
tabletop in a 38-cm radius half circle, numbered right to left from 1
to 5 (see Figure 1).

The system was operated by a desktop computer interfaced
with a data acquisition card of LabVIEW software. The algorithm
enables parameter selection of the LED activation (illumination)
sequence, duration of reaching movement (RM), delay between
RMs, and number of RM repetitions. Participant reached toward
the activated unit LED and press the push-button switch. Pushing
the switch of an activated unit deactivated it, and the response
time between the activated and deactivated LED was recorded. The
testing position of the participants was sitting on a chair with solid
back support in front of the table, hips and knees flexed 90◦. The
starting position included placing the left fist of the participants
on the edge of the table in front of their chest (parallel to switch
three) so that they could reach and touch switch three with their
third metacarpal.

The familiarization practice of the participants consisted of 30
randomized RMs toward the activated unit, touching the unit-
related switch as fast as possible, and returning the hand to the
starting position until the next unit was activated. During each
pretest, posttest, and retest, the participant was asked to perform
RMs toward the units as fast and accurately as possible (they were
not told that the task consisted of a reaching sequence). The units
were activated in the sequence 1, 4, 3, 5, 4, 2 and with an activation
duration and delay of 1 s. If the participant did not reach the
activated unit within 1 s or if an incorrect unit was pressed, the
trial was considered a “fail” and was not included in the averaged
response time. During pretest, posttest, and retest, the participants
performed 20 sequences (i.e., 120 RMs); five sequences constituted
each block. The participants rested for 30 s after each block. In the
fifth, third, fourth, and second sequences of the first, second, third,
and fourth blocks, respectively, the sequence order of the test was
changed unexpectedly and began with unit 5 instead of unit 1; that
is, 5, 4, 3, 5, 4, 2 instead of 1, 4, 3, 5, 4, 2. Response times toward
all units were recorded. The averaged response times of the RMs
toward all the targets and toward unit 5 during the regular sequence
and the unexpected sequence (the latter relates to RM toward the
first five in the unexpected sequence 5, 4, 3, 5, 4, 2) were recorded
(see Figure 2).
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FIGURE 2

Experimental procedure. AO, action observation; HD-tDCS, high-definition transcranial stimulation; NM, neutral movies.

Outcome measures: Reaching Time (milliseconds) was
computed by averaging the response time of all the RMs during the
sequences, and Delta (milliseconds) was computed by subtracting
the response time of the expected RMs from the unexpected RMs
toward unit 5. The time limit for each RM is 1 s. As for each
pretest, posttest, and retest Delta was averaged across four trials
only (one trial per block), specifically for Delta, the value 1,001 ms
was given for a RM toward the unexpected unit 5 that was not
accomplished within 1 s (for a similar approach, see Bogard et al.,
2009; Fritz et al., 2009; Frenkel-Toledo et al., 2020). Improved
motor performance was indicated by a shorter Reaching Time
and a larger positive time difference between the unexpected and
expected RMs toward unit 5 (higher Delta).

2.4. Action observation

The participants were instructed to observe the video clip and
avoid moving during the observation. In the AO + active HD-
tDCS and AO + sham HD-tDCS groups, the observed sequence
(7 s each) in the video clip consisted of six RMs toward the units in
the order of 1, 4, 3, 5, 4, 2 (averaged response time of the observed
RM: 126.83 ± 37 ms). The units were activated in the same order
as in the pretest, posttest, and retest. The observed RM sequence
was executed by a young healthy male (27 years), performing the
above sequence with his non-dominant left hand on the same
device used by the participants. The participants observed 120
sequences (720 RMs) from an egocentric viewpoint, as it was found
to be more effective than an allocentric viewpoint with respect
to behavioral imitation tasks (Watanabe and Higuchi, 2016) and
neurophysiological measures (Angelini et al., 2018), with 10 s rest
periods after every 20 sequences. In the NM + sham HD-tDCS,
participants observed NM that consisted of nature views without
any human or animal movements, with 10 s rest periods of a blank
screen at the same rest time points as during the AO video. The
intervention lasted 15 min.

2.5. High-definition-tDCS

The stimulation was administered non-invasively using an
M × N 9-channel HD transcranial electrical current stimulator

from Soterix Medical (New York, NY). Eight sintered Ag/AgCl
electrodes were attached to plastic holders, filled with conductive
gel, and embedded in a HD cap, according to the extended 10–
20 method of electrode placement. HD-Targets brain modeling
software (Soterix Medical, New York, NY) was used to determine
the tDCS montage for maximal focal stimulation of the right IPL
and right IFG (Figure 3). We administered a single session of
15 min of active stimulation at 1 mA (Wade and Hammond, 2015)
targeting the IPL and the IFG by positioning electrodes at the
following sites with the following intensities: F4 (0.48 mA), F8
(−0.08 mA), FC4 (−0.29 mA), CP4 (0.11 mA), F6 (−0.1 mA),
CP6 (0.41 mA), TP8 (−0.36 mA), and Ex18 (−0.17 mA). In the
stimulation group, the current gradually increased over the course
of the first 30 s and gradually decreased over the last 30 s. In the
sham groups, once the current reached 1 mA over the first 30 s,
it was ramped back down over 30 s. In the last minute of the
simulation, an identical ramp up and ramp down was administered
(for a similar approach, see Ljubisavljevic et al., 2016; Charvet et al.,
2018; Greeley et al., 2020; Lerner et al., 2021). Participants were
asked to report any adverse effects and to rank their discomfort
from 1 to 10 following two min of stimulation.

2.6. Statistical analysis

Age and sex were compared between groups (AO + active HD-
tDCS; AO + sham HD-tDCS; NM + sham HD-tDCS) using One-
Way ANOVA and chi-square tests, respectively. The differences
between groups with respect to each of the main outcomes
(Reaching Time, Delta) in the pretest were investigated using one-
way ANOVA with Bonferroni correction for multiple comparisons.
The effects of intervention and time on the main outcomes were
investigated using mixed ANOVA with time (pretest, posttest, and
retest) as a within-subject factor and group (AO + active HD-
tDCS; AO + sham HD-tDCS; NM + sham HD-tDCS) as the
between-subject factor with Bonferroni correction for multiple
comparisons. Greenhouse–Geisser Epsilon (G-GE) was used to
correct the degrees of freedom when Mauchly’s test of sphericity
was significant. The differences between groups with respect to the
frequency of adverse effects were investigated using a chi-squared
test. The differences between groups with respect to discomfort
from adverse effects were investigated using the Kruskal–Wallis
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FIGURE 3

Current flow modeling during 1 mA high-definition transcranial direct current stimulation (HD-tDCS) using the HD-Target software (Soterix Medical,
New York, NY). (A) High-definition transcranial direct current stimulation (HD-tDCS) montage for maximal focal stimulation of the right inferior
parietal lobe (IPL) and the right inferior frontal gyrus (IFG). (B) Current flow modeling during 1 mA high-definition transcranial direct current
stimulation (HD-tDCS) using HD-Target software (Soterix Medical, New York, NY). Current-flow models of the right IPL and the right IFG are shown
on 2D and 3D reconstructions of the cortical surface. Skin, skull, and cerebrospinal fluid (CSF) masks are suppressed to reveal the underlying gray
matter mask. A head model derived from the MNI 152 dataset was used. L, left; R, right; A, anterior; P, posterior.

test with Bonferroni correction for multiple comparisons (for a
similar approach, see Swissa et al., 2022). Outcome measures were
normally distributed. All tests were performed using SPSS (version
25.0) with initial significance levels of p < 0.05.

3. Results

The flowchart illustrating the process of the study is shown
in Figure 4. Sixty-four participants were recruited for the study.
Of those, two did not meet the inclusion criteria and two were
excluded due to technical difficulties. No statistical differences
were found between the groups in age (AO + active HD-tDCS:
23.5 ± 1.91 years; AO + sham HD-tDCS: 23.7 ± 2.86 years;
NM + sham HD-tDCS: 24.6 ± 2.76 years) or gender (10 males
in each group). Mean values and standard deviations of Reaching
Time (milliseconds) and Delta (milliseconds) by group are shown
in Table 1. No statistical difference was found between the groups
in Reaching Time or Delta at the pretest (p > 0.38 for all).

Reaching time: A main effect of Time [F(2,114) = 55.142;
p < 0.001; partial η2 = 0.49; observed power = 1.00] showed
that across the groups, Reaching Time was significantly shorter
at posttest (522.94 ± 87.62 ms) and retest (500.09 ± 98.04 ms)
compared to the pretest (564.55 ± 74.82 ms; pBonferroni < 0.001
for all), and shorter at retest compared to posttest
(pBonferroni < 0.001). A significant interaction of Group X
Time [F(4,114) = 3.921; p = 0.005; partial η2 = 0.12; observed
power = 0.89] showed that the Reaching Rime differed significantly
between groups in posttest [F(2,59) = 4.663, p = 0.013] and in
retest [F(2,59) = 4.423, p = 0.016]. In posttest, Reaching Time
was significantly shorter in the AO + sham HD-tDCS group
(482.84 ± 74.53 ms) compared to the NM + sham HD-tDCS
group (562.65 ± 63.65 ms; pBonferroni = 0.01). Similarly, in

retest, Reaching Time was significantly shorter in the AO + sham
HD-tDCS group (453.14 ± 92.63 ms) compared to the NM + sham
HD-tDCS group (539.43 ± 63.16 ms; pBonferroni = 0.014) (see
Figure 5 and Supplementary Figure 1). A main effect of Group
[F(2,57) = 3.583; p = 0.034; partial η2 = 0.11; observed power = 0.64]
showed that across the time points, Reaching Time was significantly
shorter at the AO + sham HD-tDCS group (493.49 ± 87.43 ms)
compared to the NM + sham HD-tDCS group (559.71 ± 63.84 ms;
pBonferroni = 0.031). In addition, in AO + active HD-tDCS
group and AO + sham HD-tDCS group, response time decreased
significantly in posttest (523.32 ± 104.31 ms and 482.84 ± 74.53 ms,
respectively) and retest (507.71 ± 115.18 ms and 453.14 ± 92.63 ms,
respectively) compared to the pretest (572.10 ± 88.57 ms and
544.49 ± 70.94 ms, respectively; pBonferroni < 0.001, for all).
However, in NM + sham HD-tDCS group, Reaching Time
decreased significantly in retest (539.43 ± 63.16 ms) compared to
the posttest (562.65 ± 63.65 ms; pBonferonni = 0.005) and pretest
(577.06 ± 62.09 ms; pBonferroni < 0.001). No other significant
effects were observed.

Delta: A main effect of Time [F(2,114) = 29.467; p < 0.001;
partial η2 = 0.34; observed power = 1.00] showed that
across the groups, Delta was larger (positive) at the posttest
(61.09 ± 160.87 ms) and retest (27.09 ± 136.92 ms,
pBonferroni < 0.001 for all) compared to pretest (average
delta: −68.68 ± 72.81 ms), and larger at posttest compared
to retest (pBonferroni = 0.003). The significant interaction of
Group X Time [F(4,114) = 5.612; p < 0.001; partial η2 = 0.17;
observed power = 0.95] showed that Delta differed significantly
between groups in posttest [F(2,59) = 5.65, p = 0.06] and at retest
[F(2,59) = 6.77, p = 0.02]. In posttest, Delta was significantly
larger in the AO + active HD-tDCS group (99.35 ± 150.71 ms,
pBonferroni = 0.024) and the AO + sham HD-tDCS group
(114.18 ± 175.68 ms, pBonferroni = 0.01) compared to the
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FIGURE 4

Trial flowchart. AO, action observation; HD-tDCS, high-definition transcranial direct current stimulation; NM, neutral movie.

TABLE 1 Mean values and standard deviations of measures reaching time and delta.

AO + HD-tDCS (n = 20) AO + sham HD-tDCS (n = 20) NM + sham HD-tDCS (n = 20)

Pretest Posttest Retest Pretest Posttest Retest Pretest Posttest Retest

Mean
reaching time
(ms)

572.10 ± 88.57 523.32 ± 104.31 507.71 ± 115.18 544.49 ± 70.94 482.84 ± 74.53 453.14 ± 92.63 577.06 ± 62.09 562.65 ± 63.65 539.43 ± 63.16

Mean delta
(ms)

−76.49 ± 59.51 93.35 ± 150.71 27.49 ± 127.30 −72.24 ± 97.86 114.18 ± 175.68 99.75 ± 155.94 −57.31 ± 55.96 −30.27 ± 116.13 −45.97 ± 80.74

ms, milliseconds; AO, action observation; HD-tDCS, high-definition transcranial direct stimulation; NM, neutral movie.

NM + sham HD-tDCS group (−30.27 ± 116.13 ms). In retest,
Delta was significantly larger in the AO + sham HD-tDCS
group (99.74 ± 155.94 ms, pBonferroni = 0.002) compared
to the NM + sham HD-tDCS group (−45.97 ± 80.73 ms)
(see Figure 6 and Supplementary Figure 2). A main effect of
Group [F(2,57) = 5.238; p = 0.008; partial η2 = 0.16; observed
power = 0.81] showed that across the time points, Reaching
Time was significantly larger at the AO + sham HD-tDCS group
(47.23 ± 167.77 ms) compared to the NM + sham HD-tDCS group
(−44.52 ± 87.04 ms; pBonferroni = 0.031). In addition, only in
AO + active HD-tDCS group and AO + sham HD-tDCS group,
Delta differed between time points such that Delta increased (larger
positive time) significantly in posttest (99.35 ± 150.71 ms and
114.18 ± 175.68 ms, respectively) and retest (27.49 ± 127.30 ms
and 99.74 ± 155.94 ms, respectively) compared to the pretest
(−76.49 ± 59.51 ms and −72.24 ± 97.86 ms, respectively;
pBonferroni < 0.004, for all). Also, only in AO + active HD-tDCS
group, Delta decreased significantly in retest compared to the
posttest (pBonferonni = 0.009). No other significant effects were
observed.

Adverse effects: The stimulation was well tolerated by the
participants. The frequency and discomfort of adverse effects by
group are displayed in Table 2. Frequency of adverse effects
(tingling, burning, itching, and headache) did not differ between
the groups. Strength of the discomfort from the adverse effects

essentially did not differ between groups except for tingling
(p = 0.001) such that it was significantly higher in the AO + HD-
tDCS group (median: 3, interquartile range: 0–0) compared to
the AO + sham HD-tDCS group (median: 0, interquartile range:
0–0; p = 0.016) and the NM + sham HD-tDCS group (median: 0,
interquartile range: 0–0; p < 0.001).

4. Discussion

The goal of the current study was to elucidate the immediate
and 24-h retention test effects of AO combined with active
HD-tDCS, targeting the IFG and IPL, on subsequent motor
performance in healthy adults. In the posttest and retest, Reaching
Time and Delta of the RM sequence improved in the AO + sham
HD-tDCS group (but not in the AO + active HD-tDCS group)
compared to the NM + sham HD-tDCS group. In addition, in
the posttest, Delta improved in the AO + active HD-tDCS group
compared to the NM + sham HD-tDCS group.

Our finding that Reaching Time and Delta of the RM
sequence improved following AO with sham HD-tDCS compared
to observation of the neutral movie with sham HD-tDCS is in
line with our second hypothesis and previous evidence regarding
immediate (Osman et al., 2005; Di Rienzo et al., 2019; Frenkel-
Toledo et al., 2020) and off-line gains of observational learning
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FIGURE 5

Mean of reaching time of each group displayed by time. Ms,
millisecond; AO, action observation; HD-tDCS, high-definition
transcranial direct stimulation. Error bars show the standard
deviation. Asterisks denote a significant difference.

(Porro et al., 2007; Trempe et al., 2011; Hesseg et al., 2016;
Kim et al., 2017; Frenkel-Toledo et al., 2020) in healthy adults.
The immediate and retention improvements can be related to an
initial fast learning phase during the session and a slow, across-
session phase due to consolidation, respectively (Karni et al., 1998;
Robertson et al., 2005).

As opposed to our first hypothesis, AO, together with active
HD-tDCS, in which anodal electrodes were placed over the
IPL and IFG, did not improve Reaching Time compared to
AO combined with sham HD-tDCS and observation of NM
with sham HD-tDCS. Here, in contrast to previous studies that
investigated the combined effects of AO and tDCS on motor
performance (Wade and Hammond, 2015; Apšvalka et al., 2018),
we placed electrodes over the IPL and IFG to specifically target
the main aggregates of the hMNS (e.g., Grèzes et al., 2003;
Filimon et al., 2007; Gazzola et al., 2007; Gazzola and Keysers,
2009; Caspers et al., 2010; Molenberghs et al., 2012; Kemmerer,
2021), which is thought to mediate AO effects. We used brain
modeling software (see HD-tDCS section) to determine the tDCS
montage for maximal focal stimulation of these ROIs. Therefore,
we assumed that adding active HD-tDCS to AO would improve
motor performance compared to AO only (with sham HD-tDCS).
It appears that the addition of the current configuration of active
HD-tDCS to the simultaneous AO interfered with the effects of
observational learning (represented by the performance of the
AO with sham HD-tDCS group). Interestingly, Enticott et al.
(2012), who used large pad electrodes and a higher stimulation
intensity (2 mA) than in the current study (1 mA), indeed
found that active tDCS with an anodal or cathodal electrode
over the IPL decreased the cortico-spinal excitability. It should
be noted that inconsistent findings were found with respect to
the effects of AO combined with tDCS (Wade and Hammond,
2015; Apšvalka et al., 2018). tDCS with an anodal electrode
placed over the premotor cortex combined with AO improved
serial reaction task performance (Wade and Hammond, 2015).
However, conventional tDCS with an anodal electrode placed
over M1 during AO did not significantly affect serial time
performance (Apšvalka et al., 2018). The inconsistent findings may
be related to the different ROIs that were targeted, the different
parameters of stimulation (such as intensity and duration) and

FIGURE 6

Mean of delta of each group displayed by time. ms, milliseconds;
AO, action observation; HD-tDCS, high-definition transcranial direct
stimulation. Error bars show the standard deviation. Asterisks
denote a significant difference.

the use of conventional large pad tDCS in the above-mentioned
studies.

The different motor responses to AO with and without active
HD-tDCS in the current study are in line with previous evidence
that AO effects on motor performance can be modified by different
factors, for example the observed model type (Rohbanfard and
Proteau, 2011), visual guidance during observation (D’Innocenzo
et al., 2016), instruction type (Frenkel-Toledo et al., 2020), and
observation viewpoint (Watanabe and Higuchi, 2016). Here, it
seems that changes in brain excitability due to HD-tDCS over the
IFG and IPL affected the response to AO. Measuring MEPs, using
Transcranial Magnetic Stimulation, from UL muscles at rest before
and after AO with and without tDCS (targeting the IPL and IFG) in
future studies can elucidate this issue.

It should be noted, however, that Delta, but not Reaching Time,
improved in the AO + active HD-tDCS group compared to the
NM + sham HD-tDCS group in the posttest. The Delta reflects
the difference between the response time of the unexpected and
expected RMs toward unit 5. It is possible that the unexpected
element of the Delta measure increased the difficulty of the task,
therefore increasing the amount of room for improvement in
Delta among healthy participants and the sensitivity to detect a
change between the AO + active HD-tDCS and NM + sham HD-
tDCS groups.

Several explanations can be proposed for the findings that AO
combined with active HD-tDCS did not improve Reaching Time
and Delta compared to AO alone and did not improve Reaching
Time compared to observation of NM. First, different tDCS
protocols, depending on several parameters such as stimulation
intensity and duration, can even invert neurophysiological (Nitsche
and Paulus, 2000; Batsikadze et al., 2013; Moliadze et al., 2015;
Ammann et al., 2016; Strube et al., 2016) and behavioral effects
(Ehrhardt et al., 2021; Lerner et al., 2021). Recent evidence suggests
that tDCS with an anodal electrode over the ROI does not
necessarily have an excitability effect, and vice versa with regard
to tDCS with a cathodal electrode over the ROI (Batsikadze et al.,
2013; Shilo and Lavidor, 2019; Lerner et al., 2021). For example,
Batsikadze et al. (2013) found that conventional tDCS, with a
cathodal electrode placed over M1 at 2 mA intensity for 20 min,
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TABLE 2 Frequency and discomfort of adverse effects.

Adverse
effect

AO + HD-tDCS group (n = 20) AO + sham HD-tDCS group (n = 20) NM + sham HD-tDCS group (n = 20)

Frequency Discomfort Frequency Discomfort Frequency Discomfort

Tingling 15 (75%) 3 (0–0) 7 (35%) 0 (0–0) 4 (20%) 0 (0–0)

Burning 3 (15%) 0 (0–0) 2 (10%) 0 (0–0) 0 (0%) 0 (0–0)

Itching 1 (5%) 0 (0–0) 5 (25%) 0 (0–0) 6 (30%) 0 (0–0)

Headache 0 (0%) 0 (0–0) 0 (0%) 0 (0–0) 1 (5%) 0 (0–0)

Median values and interquartile ranges of discomfort are presented. AO, action observation; HD-tDCS, high-definition transcranial direct stimulation; NM, neutral movie.

led to increased MEP. Lerner et al. (2021) found that following
20 min of 2 mA HD-tDCS with an anodal electrode placed over
M1, improvement in movement time of reaching performance
from the course of stimulation to posttest was significantly lower
compared to sham HD-tDCS. Shilo and Lavidor (2019), using a
reaction time task, found that stimulation with a cathodal electrode
placed over M1 at 2 mA led to faster performance than stimulation
with a corresponding anodal electrode placed over M1 after 13 min
of stimulation. It has been suggested that the change in cortical
excitability from excitation to inhibition is related to neuronal
inhibitory mechanisms that have a delayed onset when exposed
to excitatory protocols (Parkin et al., 2019). Alternatively, neurons
throughout the cortex may not be modulated in a homogenous
manner. Neurons in deep cortical layers were often deactivated by
anodal stimulation and activated by cathodal stimulation, contrary
to superficially located cells (Purpura and McMurtry, 1965).
Second, it is possible that in the AO + active HD-tDCS group,
HD-tDCS activated inhibitory mirror neurons, which resulted
in reduced AO-related motor improvement. Indeed, a subset
of mirror neurons demonstrated excitation or inhibition during
both action execution and AO, and a subset of these neurons
demonstrated excitation during action execution and inhibition
during AO (Mukamel et al., 2010). The latter neural subset of
neurons may help preserve the sense of being the owner of an
action during execution and exert control on unwanted imitation
during AO. Indeed, participants were instructed to avoid moving
during AO. It should be noted, however, that the activity of these
neurons that demonstrated excitation during action execution and
inhibition during AO was recorded from cells in human medial
frontal and temporal cortices (Mukamel et al., 2010) and not
specifically IPL and IFG. Furthermore, in the current study, HD-
tDCS over the right IFG may have induced response inhibition.
Activated response inhibition was suggested to relate to the right
IFG based on studies which investigated the neural basis of
inhibitory control (Aron et al., 2003, 2014; Bartoli et al., 2018;
Hannah et al., 2020). Lesions to the right IFG were found to be
associated with an elongation of stop-signal reaction time (Aron
et al., 2003). According to a theory of inhibitory control, right IFG
implements a brake over response tendencies (Aron et al., 2014).

4.1. Limitations

The study has several limitations. First, despite we used
HD-tDCS and brain modeling software to determine the tDCS
montage for maximal focal stimulation of the IPL and the IFG to

improve spatial focality of current, stimulation was not exclusively
delivered to IPL and IFG. The electric fields (V/m) could have
differed between groups because of differences in the participants’
anatomical features (Laakso et al., 2015). Second, the current
study design was a single-blind randomized controlled study
because the experimenter was not blinded to group allocation.
It should be noted, however, that the scoring of the motor
task was automatically computed by the LabVIEW software.
Third, as there is no consensus about the optimized tDCS
protocol, it could be that using other stimulation parameters,
such as stimulation intensity or duration, could have yielded
different results. Fourth, the hMNS activity is enhanced via
the observation of a movement (Rizzolatti and Craighero, 2004;
Rizzolatti and Sinigaglia, 2016). However, additional control
group which would have observed the same sequences of the
lighted units but without reaching movement sequences toward
these units would have verified whether improvement in motor
performance was related specifically to the observed reaching
movement sequences or the observed sequences of the lighted
units.

5. Conclusion

Our results indicate that AO combined with the current
montage of active HD-tDCS with maximal focal stimulation of
the IPL and IFG, the main aggregates of the hMNS, interferes
with the effects of AO alone on the motor performance of
reaching movements. Future studies should consider applying MEP
measurements to elucidate the electrophysiological changes in
cortical excitation underlying behavioral effects.
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SUPPLEMENTARY FIGURE 1

Distribution of reaching time of each group displayed by time. ms,
millisecond; AO, action observation; HD-tDCS, high-definition transcranial
stimulation. Plus represents average. Asterisks denote a significant
difference.

SUPPLEMENTARY FIGURE 2

Distribution of delta of each group displayed by time. ms, milliseconds; AO,
action observation; HD-tDCS, high-definition transcranial stimulation. Plus
represents average. Asterisks denote a significant difference.
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