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A garment that measures brain
activity: proof of concept of an
EEG sensor layer fully
implemented with smart textiles

Eduardo Lopez-Larraz*, Carlos Escolano,
Almudena Robledo-Menéndez, Leyre Morlas, Alexandra Alda
and Javier Minguez

Bitbrain, Zaragoza, Spain

This paper presents the first garment capable of measuring brain activity with
accuracy comparable to that of state-of-the art dry electroencephalogram (EEG)
systems. The main innovation is an EEG sensor layer (i.e., the electrodes, the
signal transmission, and the cap support) made entirely of threads, fabrics, and
smart textiles, eliminating the need for metal or plastic materials. The garment is
connected to a mobile EEG amplifier to complete the measurement system. As
a first proof of concept, the new EEG system (Garment-EEG) was characterized
with respect to a state-of-the-art Ag/AgCl dry-EEG system (Dry-EEG) over the
forehead area of healthy participants in terms of: (1) skin-electrode impedance; (2)
EEG activity; (3) artifacts; and (4) user ergonomics and comfort. The results show
that the Garment-EEG system provides comparable recordings to Dry-EEG, but it
is more susceptible to artifacts under adverse recording conditions due to poorer
contact impedances. The textile-based sensor layer offers superior ergonomics
and comfort compared to its metal-based counterpart. We provide the datasets
recorded with Garment-EEG and Dry-EEG systems, making available the first
open-access dataset of an EEG sensor layer built exclusively with textile materials.
Achieving user acceptance is an obstacle in the field of neurotechnology. The
introduction of EEG systems encapsulated in wearables has the potential to
democratize neurotechnology and non-invasive brain-computer interfaces, as
they are naturally accepted by people in their daily lives. Furthermore, supporting
the EEG implementation in the textile industry may result in lower cost and
less-polluting manufacturing processes compared to metal and plastic industries.

electroencephalography (EEG), textile EEG, Dry-EEG, wearable EEG, smart textiles,
neurotechnology, brain-computer interface (BCl), EEG dataset

Introduction

The electroencephalogram (EEG) is a non-invasive technique for measuring the
electrical activity produced by the brain (Biasiucci et al., 2019). Some of its most relevant
applications are for diagnosis of conditions such as epilepsy, ADHD or sleep disorders,
among others, as a brain mapping tool for neuroscience, psychology and electrophysiology
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research, and for brain-computer/machine interface (BCI/BMI)
applications (Niedermeyer and Lopes da Silva, 2005). One trend
of innovation in the EEG field in the last 2 decades addresses
the evolution of EEG technology to enable its use for real-world
research and real-life applications (Niso et al., 2023). This has
led to the development of wireless systems, their miniaturization,
low-density sensor layouts, the use of new conductive materials
to produce gel-less sensors, improved usability for non-experts,
and cost reduction, among many other innovations (Casson et al.,
2010; Milldn et al., 2010; Casson, 2019). All these efforts are
directed toward the improvement of user acceptance, while trying
to preserve signal quality. Although there has been very relevant
progress in this direction, reliable EEG technologies that are
affordable and widely accepted by the general population are still
missing.

Mobile EEG systems are composed by three elements: (1)
the EEG sensor layer (i.e., EEG electrodes, signal transmission
and head support); (2) the EEG amplifier (analogic, digital and
communication electronics); and (3) the interface between them
(connector), see Figure 1. The sensor layer is the component that
contributes most to the usability/ergonomics of the whole system,
and thus, is key for its acceptability in out-of-the-lab environments
(Biasiucci et al.,, 2019; Casson, 2019; Niso et al., 2023). This
layer, and specifically the EEG electrodes, traditionally rely on wet
electrodes (Figure 1, first row), which require the application of an
electrolytic substance between the sensor and the scalp. Although
these electrodes are the gold-standard in medical applications, the
need for such a substance reduces their usability and acceptance.
Dry-EEG electrodes do not require the application of electrolytes
(Figure 1, second row), which improves setup, cleaning time,
ergonomics and comfort, especially for non-experts (Lopez-Gordo
etal., 2014). Dry electrodes operate with higher contact impedances
and thus are more prone to artifacts when compared to wet
electrodes. However, this issue is partially compensated by the use
of higher input impedance amplifiers (Shad et al., 2020). There has
been a lot of research in new conductive materials and electrode
shapes to create novel dry-EEG electrodes: different conductive
metals and coatings (Lopez-Gordo et al.,, 2014), hydrogels (Li et al.,
2021; Pei et al.,, 2022), polymers (Leleux et al., 2014), conductive
inks (Ferrari et al., 2020), graphene (Ko et al, 2021), organic
transistors (Venkatraman et al., 2018), conductive/smart textiles
(Tseghai et al., 2020), among others.

Conductive or smart textiles offer significant advantages for
the development of EEG sensors (usually referred to as textile-
EEG or textrodes), given that they allow for complete integration
of the EEG sensor layer into a garment (to differentiate between
the two approaches, we will refer to the latter as “Garment-EEG”).
These sensors or garments can be built by combining conductive
and isolating fibers, making them light, soft and, bendable, which
increases user-comfort and reduces fabrication cost (see right
column in Figure 1 for a comparison of the use of different
textile and non-textile materials for manufacturing different EEG
devices). They can also inherit some relevant properties from
the textile industry, like being breathable and washable. There
are successful examples of biosignal electrodes based on textiles
(Marquez et al., 2013) that measure ExG signals within the millivolt
range, like electrocardiogram (ECG), electromyogram (EMG) and
electrooculogram (EOG) (Catrysse et al., 2003; Acar et al., 2019).
However, EEG is measured in the microvolt range, and obtaining
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an acceptable signal-to-noise ratio is far more challenging. Note
that, while standard wet EEG has impedances below 5 KQ, textile
(and other dry) sensors are two orders of magnitude above (in
the range of 100 s of KQ), and thus, have higher levels of noise.
To date, only a few research studies have proposed innovative
EEG electrodes with different conductive textile materials, such as
silver-plated or copper-plated fabrics (Tseghai et al., 2020). A recent
review of the literature on textile EEG suggested that the lack of
relevant progress in this field is mainly due to 2 factors. On the
one hand, the new textile EEG systems are limited to publishable
research, with no incremental or further innovative development.
On the other hand, these published developments do not generally
report quantitative comparisons with standard EEG systems to
assess their value (Tseghai et al.,, 2020). When generalizing from
the electrode to the entire sensor layer, all proposed textile EEG
systems always rely on non-textile materials (metals or plastics) to
complete the sensors, transmissions, or cap support. For instance,
by developing textile electrodes that are used to contact standard
metal electrodes (Fleury et al., 2017), or by connecting the textile
electrodes via metal snaps to standard cables (Lofhede et al., 2012;
Arnin et al., 2013).

In this paper, we move one step further in the state-of-the-
art in textile EEG. We characterize the first EEG sensor layer
implemented using only materials and manufacturing processes
from the textile industry (Figure 1, third row). In other words,
the complete sensor layer is a garment by design and manufacture.
The contribution is the unified design of the EEG electrodes, the
shielded transmission and the head support using conductive and
isolating textile materials. As a first proof of concept evaluation
of the technology, we ran an experimental validation, measuring
EEG activity over the forehead area of healthy participants (sub-
hairline EEG), as is usually done for the evaluation of novel EEG
approaches (Leleux et al., 2014; Lepola et al., 2014; Bleichner and
Debener, 2017; Venkatraman et al., 2018; Ferrari et al., 2020). The
new EEG system (Garment-EEG) was quantitatively characterized
with respect to a state-of-the-art Ag/AgCl dry EEG system (Dry-
EEG) in terms of: (1) skin-electrode impedance; (2) EEG activity;
(3) artifacts; and (4) user ergonomics and comfort.

Materials and methods

To characterize the new EEG sensor layer, we designed two
different headbands to monitor EEG from people’s forehead, at
positions F7, Fpl, Fp2, and F8, according to the International
10/20 system. One of them was made exclusively with textile
materials (Garment-EEG) and the other integrated standard metal
electrodes and coaxial cables (Dry-EEG). This Dry-EEG technology
was selected as baseline and state-of-the art for the comparison as it
has already been benchmarked with respect to a medical-grade gel-
EEG system in the context of electrophysiological measurements
and brain-computer interfaces (Schwarz et al., 2020). Each of the
two headbands contained four recording electrodes, as well as
reference and ground electrodes. The headbands were equipped
with identical connectors at the back, where the amplifier was
attached. As this research constitutes the first-in-human validation
of the technology, we opted for a simplified setup in which we
measured sub-hairline EEG to facilitate access and replicability.
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FIGURE 1

EEG SENSOR LAYER

MATERIALS TOTAL (18 PARTIAL unit)
Ag/AgCI (5.8%): 99(5.8%) 059
ABS (2.9%): 4,59(2.9%) 025¢
Cable (23%): 36 g (23%) 2g
Resin (2.9%): 4,59(2.9%) 025¢
Silicone (43.5%): 68 g (43.5%) 375¢
Tin (0.2%): 0,36 9 (0.2%) 0.02g
PA (0.3%): 0,59 (0.3%) 0.03g
Neoprene (21.7%): 349 (21.7%) 199
TOTAL (100%). 156.5 g (100%) 869
Textile industry processes: 15.79%

Other industry processes: 84.21%

MATERIALS TOTAL (12 PARTIAL unit)
Ag/AgCl (8%): 69 (8%) 05g
ABS (24.1%): 189 (24.1%) 15g
PU (44.2%) 33 g (44.2%) 275g
Cable (16.1%): 129(16.1%) 19
Resin (4%): 39 (4%) 0.25¢g
Galvanized steel (1.8%): 1.359 (1.8%) 0.11g
Tin (0.3%): 0.24 ¢ (0.3%) 0029
EPDM (1.3%): 19(1.3%) 0.08g
TOTAL (100%): 74.6 g (100%) 6.21g
Textile industry processes: 0%

Other industry processes: 100%

MATERIALS TOTAL (7 PARTIAL unit)
Ag + Nylon (4.3%): 29 (4.3%) 0.28g
Polyester (12%) 5.59 (12%) 0.79¢g
PU (4.3%): 29 (4.3%) 0.28g
PA (1.1%): 0.59 (1.1%) 0.07g
Polyamide + Nylon + silver+

copper + tin-plated (6.5%): 39 (6.5%) 0.43g
PA + Elastomer + PU (71.7%): 33 g (71.7%) 47g
TOTAL (100%): 46 g (100%) 6.57g

Textile industry processes: 100%
Other industry processes: 0%

Different technologies for electroencephalogram (EEG) devices with specific focus on the EEG sensor layer. (A) Example of “shower-cap”
research-oriented EEG systems. (B) Example of “minimalistic” application-oriented dry EEG systems. (C) Proof-of-concept “garment” EEG system.
For a complete review of similar devices from different manufacturers, see Niso et al. (2023). In all the EEG devices, we differentiate between the
EEG sensor layer, the connector, and the amplifier. In panels (A,B), the sensor layer is implemented with plastics, metals, glues and materials from
the electronic devices industries, while in panel (C), “garment” sensor layers are implemented with materials and manufacturing processes from the
textile industry only. The blue text in the right panel represents materials and manufacturing processes from the textile industry. ABS, acrylonitrile
butadiene styrene; PA, polyamide; PU, polyurethane; EPDM, ethylene propylene diene monomer rubber.

This approach enables us to focus on the skin-electrode properties
and quality of the electrophysiological data, while mitigating
artifacts derived from contact with hairy areas (placement,
difference type of hair, head morphology, etc.).

Garment-EEG headband

The novel Garment-EEG headband integrated sensors and
signal transmission using only textile materials (Figures 2A, B).
The textrodes were implemented using 3-strand silver-coated
Nylon conductive yarns with a linear resistance of 114 Q/m. They
were embroidered in 3 directions (0°, —45°, and 45°) with a
distance between yarns of 1 mm. Electrodes at Fpl and Fp2 covered
an area of 2.8 cm?, while F7 and F$ electrodes covered an area of
7.4 cm?, allowing appropriate electrode-skin contact for different
head sizes. The ground electrode was placed on Fpz and covered
an area of 1.5 cm?. The reference electrode had a long rectangular
shape of 18 cm? to facilitate the contact on the upper union between
the left ear and the head regardless of the head perimeter.

By overlapping different textile layers, the signal transmission
from the sensor to the connector was implemented mimicking
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a coaxial cable with active shielding. First, the transmission wire
was embroidered with 8-strand silver-coated Nylon yarns, with a
linear resistance of 15 Q/m. This conductor was insulated using
vinyl by heat-sealing at a temperature of 150°C for 10 s. Then, an
additional conductive layer was added to shield both sides, using
Ultraflex Tape Zell RS conductive fabric, made of PA/Nylon 6.6
coated with silver, copper, and tin, and with surface resistivity of less
than 0.02 Q. The final overlay, to isolate and fix the transmission to
the fabric, was made with vinyl sealed at 150°C for 10 s.

The connection between the textrode and the transmission core
was made by embroidering the former directly onto the latter. The
connection between the transmission and the connector was made
through a rigid PCB with copper pads sewn with conductive wire
made of silver-coated polyamide/polyester with a linear resistance
of less than 530 Q/m. The support headband was made of polyester
fabric with a satin structure and a grammage of 120 g/m?.

Dry-EEG headband

The Dry-EEG system integrated Ag/AgCl electrodes, welded
on coaxial cables, onto a similar headband (Figures 2C, D).
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FIGURE 2

10.3389/fnhum.2023.1135153

Garment-EEG and Dry-EEG headbands. (A) Detail of Garment-EEG electrodes shape and location. (B) Garment-EEG headband worn by one
participant. (C) Detail of Dry-EEG electrodes shape and location. (D) Dry-EEG headband worn by one participant.

The 4 recording electrodes were located at F7, Fpl, Fp2 and
F8 positions. The ground electrode was placed on Fpz, and the
reference electrode was on the left ear with an earclip. These
electrodes had a circular shape with a diameter of 0.8 cm. The
cables included a silver platted copper core (0.45 mm of diameter,
resistance of 0.158 Q/m), a PTFE tape insulation, a silver platted
copper shielding layer, and an extruded FEP jacket. The connection
between the coaxial cables and the connector was made by welding.
The support headband was made of polyester fabric with a satin
structure and a grammage of 120 g/m? (similar to the textile one).

EEG connector and amplifier

The two EEG headbands were equipped with the same high
input impedance amplifier (50 GQ) that had a CMRR of 100 dB.
This helped reduce noise and minimize imbalances in skin-
electrode impedance [which for dry-EEG, can be in the order of
100-200 KQ, (see Lopez-Gordo et al., 2014; Shad et al., 2020)].
The system provides active shielding for the sensors and a DRL
circuit to reduce noise. This amplifier samples the 4 EEG channels
at 256 Hz and uses Bluetooth Low Energy (BLE) to transmit the
data to a laptop. To connect the sensor layer and the amplifier,
we used a commercial 20-position board-to-board connector with
gold-plated phosphor bronze contacts and a liquid crystal polymer
cover.

Experimental validation

We carried out two experimental studies. In the first one,
we characterized the impedance of the electrodes and signal
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transmission of the new Garment-EEG system, while in the second,
we quantified common spontaneous (frequency domain) and
evoked (time-frequency domain) EEG patterns of activity.

Participants

Six healthy volunteers participated in the first study (5
females, 1 male, age: 30.2 &= 5.8 years) and ten different healthy
volunteers participated in the second study (5 females, 5 males, age:
27.8 £ 3.7 years). The participants were recruited from Bitbrain’s
volunteer database and received an economic compensation of 25€.
All of them signed an informed consent form and were debriefed
about the study purpose and their rights regarding the physiological
and demographic data collected from them.

Study 1: impedance analysis

We quantified impedances of the sensor layer (including the
electrode and transmission) of both Garment-EEG and Dry-EEG
systems. As baseline, we performed an additional measurement
(Wet-EEG) in which the Dry-EEG headband was used with an
electrolytic substance (SAC2 conductive gel, by Spes Medica) after
cleaning the skin with abrasive gel (NeurPrep, by Spes Medica).
This skin preparation with abrasive gel is a common procedure
in clinical and research EEG applications. To simulate real-world
conditions in the evaluation of the Garment-EEG and Dry-EEG
impedances, the skin of the subjects was only cleansed with make-
up remover wipes.

We used a PalmSens4 with a MUX8-R2 multiplexer (PalmSens,
Houten, Netherlands) to measure the skin-electrode impedance
as a function of logarithmically sampled frequency, ranging from
0.1 to 30 Hz with 10 sample points. We repeated the impedance
measurements 3 times for each of the 4 electrodes.
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Study 2: EEG activity analysis

In this study, participant’s brain activity was monitored using
the two headbands sequentially. They performed the same tasks
using both technologies in a cross-over manner, half of them
starting with the Garment-EEG and the other half starting with the
Dry-EEG [serial setup for EEG comparisons, (see Gargiulo et al.,
2010; Kutafina et al., 2020)]. The tasks were:

o Task 1: 3 min of resting state with eyes closed.

e Task 2: 3 min of resting state with eyes open.

e Task 3: 80 cue-guided reaching movements with the right
arm. Participants completed 4 blocks of 20 movements each.
They faced a screen on which two different visual cues
were displayed: “rest” (with a random duration of 7 £ 1 s)
and “movement” (with a fixed duration of 5 s). They were
instructed to blink and make any movement to adjust their
position after the change from the “movement” period to the
“rest” period.

e Task 4: artifact induction, where the following actions were
executed for 10 s each, to contaminate the EEG signals: (i) the
experimenter moves both hands above the participant’s head;
(ii) tongue movements; (iii) jaw movements; (iv) blinking;
(v) lateral and vertical eye movement; (vi) vertical head
movement; (vii) horizontal head movement; (viii) up and
down shoulder movement; (ix) up and down movement with
both arms.

The raw EEG data recorded in this study is available as
Supplementary material.

EEG analysis

The EEG signals recorded with both technologies were
quantified and compared using a frequency analysis (tasks 1, 2, and
4) and a time-frequency analysis (task 3).

Frequency analysis of EEG during resting
state/artifact induction (tasks 1, 2, and 4)

The eyes-closed and eyes-open resting state (Tasks 1 and 2),
and the artifact induction (Task 4) EEG recordings were analyzed
in terms of their power spectral density.

Preprocessing

First, we removed outlier amplitude values from each EEG
recording. For that, we high-pass filtered the signals at 60 Hz,
with a 4-th order non-causal Butterworth filter, applied a Hilbert
transform, and z-scored the values. Those samples going beyond
5 standard deviations above the mean were marked as outliers
and discarded in the original signal, filling the gaps by linear
interpolation. This step was not applied to the signals of the artifact
induction task, since in that case, the objective was to compare the
occurrence of artifacts in both technologies.

Processing

We filtered the EEG signals between 0.1 and 100 Hz, using a 4-
th order non-causal Butterworth filter. Subsequently, we estimated
their power distribution between 0 and 60 Hz using a fast Fourier

Frontiers in Human Neuroscience

10.3389/fnhum.2023.1135153

transform (FFT) with a 1 s hamming window, zero-padded to 1024
points (0.25 Hz resolution) and 30 ms of overlap, and computed the
logarithm of the obtained power values.

Statistics

For the statistical comparisons, we averaged the power values
of the four electrodes. For this average electrode, we computed the
mean power for each participant and headband in five frequency
bands: 0-3 Hz (delta), 4-7 Hz (theta), 8-12 Hz (alpha), 13-30 Hz
(beta), and 45-55 Hz (electrical noise). These ranges cover the most
common frequency bands in EEG analyses, as well as the influence
of electrical contamination, which can been used as a surrogate
of electrode impedance (Insausti-Delgado et al., 2021). A paired
Wilcoxon signed-rank test was used to test for statistical differences
between both headbands in each frequency band.

Time-frequency analysis of EEG during
movement execution (task 3)

The EEG data recorded during the execution of reaching
movements was analyzed in the time-frequency domain to quantify
the event-related desynchronization/synchronization (ERD/ERS)
of sensorimotor rhythms (Pfurtscheller and Lopes da Silva, 1999).

Preprocessing

First, we removed trials that contained unusually high
amplitudes. Trials showing amplitude values higher than 250 WV in
any of the four electrodes were marked as artifacts and discarded.

Processing

We filtered the EEG signals between 0.3 and 30 Hz, using a 4-
th order non-causal Butterworth filter. Subsequently, we computed
the time-frequency representation of all the trials using Morlet
Wavelets in the frequency range 5-30 Hz, with a frequency
resolution of 0.25 Hz. The ERD/ERS maps were computed as the
percentage of power decrease/increase with respect to a resting state
baseline ([—5, —2] s).

Statistics

To compare the ERD/ERS obtained with the Garment-
EEG and the Dry-EEG headbands, we first averaged the time-
frequency representation of all the trials of each subject, and then
averaged across electrodes, obtaining a time-frequency matrix per
subject. Subsequently, for each time-frequency bin, we applied
a paired Wilcoxon signed-rank test. No correction for multiple
comparisons was used.

Comfort and perception assessment

After completion of the EEG recordings with each sensor layer,
participants filled a comfort and perception questionnaire, in which
they were asked about the following four points:

e Global comfort of the system, including the electrodes,
the headband and the amplifier, on a scale from 1 (“Not
comfortable at all”) to 7 (“Very comfortable”).

e Comfort of the EEG electrodes and their contact with the
forehead skin, on a scale from 1 (“Not comfortable at all”) to 7
(“Very comfortable”).
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Impedance results for Garment-EEG, Dry-EEG, and Wet-EEG
Impedance is displayed as a function of the frequency. The values
for all the subjects, electrodes and repeated measurements for each
electrode are averaged for each technology. The shades represent
the standard error of the mean. Notice that the y-axis is displayed in
a logarithmic scale. The dashed horizontal line displays the value of
5 KQ, as standard threshold for good impedance in wet EEG
systems (Nuwer et al., 1998)

e Weight perception of the system, using the following scale: 1
“I do not feel the weight”, 2 “Noticeable but not bothersome,” 3
“Noticeable but little bothersome,” and 4 “Very noticeable and
bothersome.”

e Perception of stability of the system, using the following scale:
1 “I feel it stable,” 2 “I feel it a bit unstable,” 3 “I feel it unstable.”

Results

Impedance analysis

Figure 3 shows the impedance values as a function of the
frequency for the Garment-EEG, Dry-EEG and Wet-EEG (Dry-
EEG using electrolytic gel). The average impedances at 1 and 10 Hz
for the Garment-EEG were 368 and 171 K, for the Dry-EEG were
110 and 78 KQ, and for the Wet-EEG were 3.2 and 3.05 KQ (below
the gold-standard threshold of 5 KQ). Notice that Garment-EEG
has systematically higher impedances than Dry-EEG (around two-
three times more), and both of them are two orders of magnitude
above Wet-EEG. These results are in line with state-of-the-art
values reported for wet and dry EEG systems (Lopez-Gordo et al.,
2014; Shad et al., 2020).

Frequency analysis of EEG during resting
state/artifact induction

Both the Garment-EEG and the Dry-EEG system provided
similar EEG signals in terms of morphology and amplitude
during the resting state measurements (Figure 4). Strong alpha
waves are visible during eyes-closed, which are then suppressed
during eyes-open, where eye blinks become noticeable. Figure 5
displays the power spectral density analysis of the EEG signals
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recorded with both headbands during eyes-closed resting state
(Figure 5A), eyes-open resting state (Figure 5B), and during the
generation of artifacts (Figure 5C). Overall, the signals measured
during resting state with the Garment-EEG and the Dry-EEG
headbands displayed equivalent power spectral density values at
the frequencies usually analyzed in EEG studies (i.e., below 30 Hz).
During eyes-closed resting state, a clear alpha peak at ~10 Hz
can be observed in frontopolar (Fpl and F2) and frontal (F7 and
F8) locations using both technologies (Figure 5A). This alpha
activity is not so evident during eyes-open (Figure 5B). Noticeably,
the Garment-EEG headband was found to be more susceptible
to artifacts. This can be seen as higher power at 50 Hz in all
the channels (Figures 5A, B), as well as higher broadband power
during the artifact induction task (Figure 5C). For both resting
state measurements, the EEG power in delta, theta, alpha and beta
frequencies was not significantly different between the Garment-
EEG and the Dry-EEG (Figures 5D-E; p > 0.05 in all cases).
Conversely, during the induction of artifacts EEG, the power in
these frequencies was significantly higher for the Garment-EEG
headband than for the Dry-EEG headband (Figure 5F; p < 0.01
in all cases). For the 45-55 Hz frequency band, the power was
significantly higher with the Garment-EEG headband both during
resting state and during artifact induction (Figures 5D-F; p < 0.01
in all cases).

In a subsequent analysis, we investigated which of the actions
of the artifact induction task contributed most to the differences
between both technologies. We repeated the statistical comparisons
on the power values obtained from the 10-second segments
of signal corresponding to each action (see Supplementary
Figure 1). The actions involving larger motions, such as the
experimenter moving their hands above the participants head,
as well as vertical head movements and arm movements,
produced significant differences in multiple frequency bands
between the technologies, whereas tongue and jaw movements
produced significant differences in delta only. For four of the
actions (eye blinks, eye movements, horizontal head movement,
shoulder movement), there were no significant differences between
the two technologies in either of the delta, theta, alpha, and
beta frequencies.

Time-frequency analysis of EEG during
movement execution

Figure 6 shows the ERD/ERS maps of the four electrodes
with the Garment-EEG headband (Figure 6A) and with the Dry-
EEG headband (Figure 6B). Given the distant location of the
four electrodes with respect to the motor cortex, which is where
this motor-related activity originates, the ERD of sensorimotor
rhythms is of low magnitude with both technologies. When
directly comparing the ERD magnitude of the average electrode
of both systems, the Dry-EEG headband produces a stronger ERD
(Figure 6C, left and center panels). The time-frequency bins that
showed a significant difference between both headbands (p < 0.05)
were used to create a mask that was subsequently applied to the
difference between the ERD/S map of the Dry-EEG headband and
the ERD/S map of the Garment-EEG headband (Figure 6C, right
panel). This analysis revealed that the Dry-EEG headband provided
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FIGURE 4

Electroencephalogram signals recorded with Garment-EEG and Dry-EEG technologies. Time series representing 10-s EEG traces of the 4 electrodes
recorded with each system during (A) eyes-closed and (B) eyes open. Left panels correspond to the measurements with the Garment-EEG, while
right panels correspond to the Dry-EEG. The signals are bandpass filtered between 0.5 and 30 Hz. Notice that the vertical scale is different for

a significantly stronger ERD between 5 and 15 Hz during the
execution of the reaching movements.

Comfort metrics

The time the participants spent with each headband ranged
between 42 and 48 min, except for one case (Participant 1, session
with Garment-EEG headband) where, due to technical problems,
the session lasted 66 min (Figure 7A). The degree of comfort
reported by the participants, both for the whole system and for
the sensors part, was always high for the Garment-EEG headband
and medium-to-high for the Dry-EEG headband (Figures 7B, C).
The perception of the weight was distributed between “I do not
feel the weight” and “Noticeable but little bothersome,” and the
participants never reported any of the headbands to be bothersome
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(Figure 7D). The perception of stability was also positive, with most
of the responses being “I feel it stable,” and none reporting the
systems to be unstable (Figure 7E). Statistical comparisons were
carried out for the five analyses using the Wilcoxon signed-rank
test, but none of them reached the significance level of p < 0.05 (see
p-values in Figure 7).

Discussion

Accessible electroencephalographic (EEG) systems are the first
step toward democratizing neurotechnology. Market indicators for
wearables predict that in the next one or two decades, wearable
neurotechnology will be widely adopted, much like other wearables
several years ago (Johnson and Picard, 2020). Recent hardware
innovations in dry EEG technologies have widened the portfolio
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Frequency analysis. Power spectral density comparison between the EEG activity measured with the Garment-EEG and Dry-EEG during (A)
eyes-closed, (B) eyes-open, and (C) artifact induction. In panels (A—C), each subplot displays one of the four forehead electrodes (F7, Fpl, Fp2, and
F8). Statistical comparisons between both headbands on five frequency bands during (D) eyes-closed, (E) eyes-open, and (F) artifact induction. n.s.,

non-significant; **p < 0.01.

of tools available for monitoring the brain. However, despite the
progress seen over the last decade, we cannot yet consider that dry
electrodes have completely revolutionized the way EEG is used.
User acceptance in terms of ergonomics, usability and
price are the main obstacles for EEG systems to establish
neurotechnology and non-invasive brain-computer interfaces as
common technology. In principle, EEG sensor layers built with
textiles and encapsulated in garments have potential to enable
neurotechnology that is naturally accepted by people in their daily
lives. In addition to this, EEG implementation in the textile industry
would lead to lower manufacturing costs and much less pollution
when compared to metal and plastic industries. In this paper, we
propose and quantitatively characterize a proof of concept for an
EEG measuring garment; a system that uses, exclusively, textile
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materials for its sensor layer. The evolution and optimization of
this technology might open the door to its application out of
scientific laboratories or clinics, either for real-world research,
for home-based wellness applications, or for patient diagnostics,
treatment, and follow-up.

Signal quality and artifacts

Overall, the proof-of-concept Garment-EEG proposed in this
study provided EEG recordings that were comparable to those
of state-of-the-art, metal-based dry EEG electrodes. In terms of
resting state recordings with eyes open and eyes closed, the signals
in the frequency domain had equivalent power distributions for
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electrodes, (right) pairwise statistical comparison between both headbands.

Time-frequency analysis. Event-related (de)synchronization (ERD/ERS) maps of the EEG activity measured during the reaching movements with (A)
the Garment-EEG headband, and (B) the Dry-EEG headband. Each subplot in panels (A,B) displays one of the four forehead electrodes (F7, Fpl, Fp2,
and F8). (C) Comparison between the two technologies; (left) average of all the Garment-EEG electrodes, (center) average of all the Dry-EEG

both technologies, and there were no significant differences in
power between the Garment-EEG and the Dry-EEG at frequencies
below 30 Hz (i.e., the ranges usually analyzed in EEG applications).
This includes the alpha waves visible in the eyes closed condition
and its blocking when eyes are open (Klimesch, 1999).

The motor-related evoked activity produced by arm
movements, measured as time-frequency ERD/ERS maps, was
visible with both systems over the measured frontal areas, but with
a considerably lower magnitude than what is normally measured
at the motor cortex during this type of tasks (Lopez-Larraz
et al,, 2014). Dry-EEG provided slightly stronger ERD maps than
Garment-EEG. Although these results might not be conclusive,
there are two possible causes: (1) it could be that artifacts produced
during the execution of upper limb movements (Bibian et al.,
2022) affect the recording with textile electrodes more than with
dry electrodes; and (2) the reference of the Garment-EEG is in the
upper part of the ear, being closer to the sensory-motor area than
in the Dry-EEG, which could lead to an attenuation of the ERD.
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Garment-EEG was more prone to getting affected by artifacts,
which was seen as significantly higher 50 Hz contamination
and significantly higher broadband power during the artifact
induction task. Artifacts are one of the most limiting problems in
EEG research (Urigiien and Garcia-Zapirain, 2015; Lopez-Larraz
et al,, 2018), and therefore, the higher likelihood of Garment-
EEG getting contaminated should not be disregarded. However,
having more frequent artifacts does not invalidate the relevance
of the technology. Artifact removal is a standard procedure
(and even a necessary step) in most clinical and research EEG
applications (Urigiien and Garcia-Zapirain, 2015), and recent
research is currently targeting specific techniques for low density
EEG (Lopez et al., 2022). Therefore, while there should be lines of
work trying to minimize the appearance and impact of artifacts
in this new technology, there can also be progress in the field
under the assumption that this type of technology can overcome
this limitation with its ability to effortlessly acquire massive
amounts of data and exploit advanced machine learning techniques
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(Craik et al., 2019). The fact that signals were comparable in
less artifacted conditions, such as resting state recordings, is an
encouraging result that supports further research and development
to improve this technology.

Actions that involved large movements, and especially the
experimenter moving their hands above the participant’s head,
caused the largest artifacts in the Garment-EEG recordings. The
reason behind this might be that these movements change the
capacitive coupling of the sensors with the mains, as described
in Metting Van Rijn et al. (1990), affecting the impedance of
the electrodes and transmission lines. Poor impedance is one of
the primary factors contributing to the presence of artifacts, and
could be the source of the differential impact of artifacts on the
Garment-EEG as compared to the Dry-EEG. Impedances of Dry-
EEG electrodes have been reported to be in the range of 100-
200 KQ over non-hairy areas (Lopez-Gordo et al., 2014; Shad et al.,
2020). This is the reason why high input impedance amplifiers,
like the one used in this study, are required (preferably in the
order of GQ) (Niso et al., 2023). As can be seen in our study,
the impedances of the Garment-EEG and the Dry-EEG systems
were consistent with those values, although they were around two
to three times higher with the textile-based system. Conductive
textiles cannot yet offer resistance values at the level of metals,
and the fact that both the electrode and the transmission line of
the Garment-EEG were made with textiles justifies these higher
impedance values. Strategies to optimize the electrode-skin contact
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(Soroudi et al., 2019; Song et al., 2020) or to maximize the efficacy
of the transmission lines (Le$nikowski, 2011) might be a reasonable
starting point to continue optimizing this technology.

Applications of garments to measure EEG

The use of smart textiles to manufacture EEG devices is a
growing trend with the potential of large end-user acceptance
and lower costs. One of the main critiques pointed out by a
recent review in Textile-EEG is that most of the systems developed
in the last few years are not further developed and remain
only as published papers, without a clear progress toward usable
and marketable devices (Tseghai et al.,, 2020). The authors also
evidenced a lack of publications with quantitative analysis and from
industrial research, which slows the progress in the field (Tseghai
et al., 2020). We believe that public-private investment is key to
foster the development of radically new technologies such as the
one proposed in this study. Once this type of technology reaches an
appropriate level of maturity, there is a vast range of applications
that could easily benefit from having EEG devices integrated as
garments. These could be divided into three contexts: medical,
research and wellness/leisure.

While the use of neurotechnology to allow brain control of
devices out of the laboratory (e.g., videogames, domotics or even
rehabilitation) might still require several years of research and
innovation to become a reality, ambulatory brain monitoring
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is a promising near-term medical application, for instance, for
patient follow-up, seizure detection or sleep assessment (Cannard
et al., 2020; Tseghai et al., 2020). In sleep studies, it could be
used as a relatively cheap triage tool for patients that require
a full polysomnographic study (Rundo and Downey, 2019).
Epileptic patients can also require long term monitoring of
the brain during daily life activities, and it could be easily
done with a wearable textile EEG device (Hasan and Tatum,
2021). For the monitorization of newborns, or for patients in
need of intensive care, brain monitoring with soft systems like
textiles would also constitute a clear advantage (Lothede et al,
2012). Sub-hairline and low density EEG montages have been
described and implemented as part of the clinical toolkit when
a fast and easy EEG is required or when EEG technicians are
not available (Young et al., 2009; Tanner et al, 2014; Brenner
et al, 2015; Touchard et al, 2021). These types of montages
maintain a high specificity and are often a go-to for emergency
situations.

In the mid-to-long term, this new technology in combination
with modern artificial intelligence techniques, could be used
to discover and track biomarkers related with the progress or
treatment of neurological disorders, such as cognitive decline
(Huggins et al., 2021), Parkinson’s disease (Scholten et al., 2020),
stroke (Ray et al., 2020; Wilkinson et al., 2020) or spinal cord injury
(Lopez-Larraz et al., 2015). In addition to monitoring applications,
these systems could also be integrated for home-based therapies,
such as for motor rehabilitation (Bundy et al., 2017; Escolano et al.,
2020), cognitive enhancement (Escolano et al., 2014), or closed-
loop neurostimulation during sleep (Lee et al., 2020; Esparza-Iaizzo
et al., 2021).

In terms of research applications, the fields that could most
clearly benefit from this type of system are those that involve
out-of-the-lab brain monitoring. Inexpensive and easy to wear
EEG devices would enable large-scale recordings in ecological
conditions (Dikker et al., 2017, 2021). This might constitute a
breakthrough in the way we study the human brain (Matusz
et al,, 2019). On the one hand, brain activity could be measured
in contexts where it is currently not possible, such as during
daily life activities. On the other hand, the resources currently
required to execute a scientific study with few dozens of
participants, might allow to record hundreds or thousands of
them.

In addition to clinical and research applications, brain
could be

neuroscience applications in education, wellness, sports or

monitoring with garments easily adopted for
industrial environments, incorporating these measurements to the
range of bio-signals that are currently acquired by smart watches,
rings, or chest-bands (Peake et al., 2018; Cannard et al., 2020; Di
Pasquale et al., 2022).

Limitations

As this work represents the first proof-of-concept of Garment-
EEG technology, there are several limitations that should motivate
future lines of work.

We chose a sub-hairline montage (i.e., forehead EEG) to
assess the validity of the proposed technology and to compare
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it with dry EEG sensors. While this is a common approach for
validating novel textile EEG electrodes (Lofhede et al., 2012; Arnin
et al., 2013; Fleury et al,, 2017), or other novel EEG sensing
approaches (Leleux et al., 2014; Lepola et al., 2014; Bleichner and
Debener, 2017; Venkatraman et al., 2018; Ferrari et al., 2020),
many EEG applications require the placement of electrodes over
areas of the head with hair. Therefore, further research should
explore the possibilities of improving textile EEG technology to
measure over areas of the head with hair. For instance, this could
be achieved by developing electrodes that can penetrate though
hair or by using electrolytic substances in combination with the
textrodes.

The comparison between the Garment-EEG system and the
Dry-EEG system was made in terms of electrode impedance,
resting state activity, modulation of sensorimotor oscillations,
and robustness against artifacts. Other types of EEG patterns
of activity should be studied in future research, such as
event-related potentials (Luck, 2014), which will require
investigating different protocols such as P300, steady-state
evoked potentials, or error-related potentials, among others.
Additionally, note that we followed a “serial” method for the
EEG comparison, meaning that the Garment-EEG and the
Dry-EEG were positioned with a “same place different time”
configuration. A different approach would be to use a “parallel”
method, or “same time different place” (Kutafina et al., 2020).
This second method will allow for performing additional
quantitative analyses of the time series recorded with both
technologies.

Among the measured tasks, one involving motor execution
for measuring ERD/ERS activity was included. The results showed
that neither the Garment-EEG nor the Dry-EEG devices provided
accurate measurements of ERD/ERS activity, as the electrodes were
not placed close to motor areas. This might make the analysis
less informative, although future research could exploit advanced
machine learning methods to predict activity from central brain
areas using sensor placed on distant locations (Fickling et al.,
2020).

Although the two headbands were designed as similarly as
possible to facilitate their comparison, there are two differences
in their design that might have influenced the obtained results.
The first difference was electrode size. Anticipating that textile
electrodes would have higher contact impedances than metal
electrodes (due to the lower conductive properties of conductive
threads vs Ag/AgCl alloys), we designed them with a larger size
to increase their contact area, which lowers their impedance.
To ensure proper contact with different head sizes, textrodes
were made in varying sizes depending on their location. Adult
head circumference statistics were taken into consideration to
guarantee that the electrodes would provide proper contact for
head sizes ranging from the 5th percentile of female heads
to the 95th percentile of male heads. The second difference
was the location of the reference electrode. The Dry-EEG
system included an earclip to be placed in contact with the
left earlobe, as commonly done in EEG wearable devices
(Niso et al., 2023). Implementing an equivalent contact point
in the earlobe using only textrodes and textile transmission
would be challenging. Therefore, we opted to use the contact
point of the headband with the upper part of the ear.
Note that both locations can be valid for referencing EEG
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measurements and, in most cases, they will provide almost
equivalent results (Nunez and Srinivasan, 2006). However,
an electrode placed on the upper part of the ear might
capture more electrical activity originating in the brain than
an earlobe electrode. Also, the contact impedance might be
slightly different for both locations, causing differences in how
artifacts affect the signals. Both factors can potentially affect
signal morphology. Future lines of work should focus on
investigating the relevance of parameters such as the size of
the textrodes and the location of the reference on the obtained
measurements.

Conclusion

This paper presented the first proof of concept of a garment
to measure EEG activity. We compared the Garment-EEG with a
state-of-the-art Ag/AgCl dry EEG system in terms of spontaneous
and evoked EEG activity, artifacts, skin-electrode impedance,
and comfort. Under favorable recording conditions (low level of
artifacts), the Garment-EEG provided comparable measurements
to the metal-based EEG system, although it is more prone to
artifacts in adverse conditions, due to poorer contact impedances.

One of the most relevant advantages of this innovation
is that it opens the door to creating EEG technology that
can be broadly adopted by the general population, due to its
comfort and its reduced manufacturing cost. This could allow
large scale recordings for clinical and non-clinical purposes in
ecological conditions. To promote open science and replicability,
we are providing public access to our datasets, thus releasing
the first open-access dataset of an EEG sensor layer built
exclusively with textiles and allowing its comparison with a metal-
based dry EEG.

An important final remark about the opportunities that this
technology could enable is that this paradigm shift in brain
monitoring should not take place without paying sufficient
attention to its inherent risks. Experts in neuroethics are
already working on creating recommendations for researchers,
manufacturers and regulators to facilitate a responsible
development of the neurotech field and its safe integration in

our daily lives (Yuste et al., 2017).
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