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Pre-trained deep learning models
for brain MRI image classification

Srigiri Krishnapriya and Yepuganti Karuna*

School of Electronics Engineering, Vellore Institute of Technology, Vellore, India

Brain tumors are serious conditions caused by uncontrolled and abnormal cell

division. Tumors can have devastating implications if not accurately and promptly

detected. Magnetic resonance imaging (MRI) is one of the methods frequently

used to detect brain tumors owing to its excellent resolution. In the past few

decades, substantial research has been conducted in the field of classifying brain

images, ranging from traditional methods to deep-learning techniques such as

convolutional neural networks (CNN). To accomplish classification, machine-

learning methods require manually created features. In contrast, CNN achieves

classification by extracting visual features from unprocessed images. The size of

the training dataset had a significant impact on the features that CNN extracts.

The CNN tends to overfit when its size is small. Deep CNNs (DCNN) with transfer

learning have therefore been developed. The aim of this work was to investigate

the brain MR image categorization potential of pre-trained DCNN VGG-19, VGG-

16, ResNet50, and Inception V3 models using data augmentation and transfer

learning techniques. Validation of the test set utilizing accuracy, recall, Precision,

and F1 score showed that the pre-trained VGG-19 model with transfer learning

exhibited the best performance. In addition, these methods o�er an end-to-end

classification of raw images without the need for manual attribute extraction.

KEYWORDS

convolutional neural networks, transfer learning, VGG-19, VGG-16, inception V3,

ResNet50

1. Introduction

The brain is one of the most complicated organs with billions of cells. A brain tumor

is an abnormal collection of cells brought on by unrestricted cell division in the brain. This

peculiar group of cells might damage healthy cells and reduce brain function if safeguards

are not taken in a timely manner. Like all other forms of cancer, brain tumors are a major

threat to human life and may be fatal if they are not detected and treated in a timely manner.

In 2019, 24,000 new cases of brain cancer were discovered in the US (Cancer.Net, 2020).

The effective management of brain tumors depends on an early and precise diagnosis.

As computer-assisted diagnosis (CAD) benefits neuro-oncologists in vast directions, the

detection of brain tumors using CAD is a keen area for research (Kumar et al., 2017).

Deep and machine-learning-based diagnostic systems are examples of CAD. Magnetic

resonance (MR) imaging is the foundation of CAD systems. Magnetic resonance imaging

(MRI), is one of the many medical imaging methods frequently used to image abnormal

brain tissues. Among the other methods, MRI is the most widely used and safest imaging

technique. Compared with CT images, MRI shows more contrast in the soft tissues of the

brain. High-resolution brain data are available from MRI. Abnormalities in the brain can be

quickly detected using MRI.

Advancements in Medical imaging allow for an in-depth examination of human organs

using a large number of images. Radiologists typically scanMR images to detect irregularities

in the brain. Despite improvements in hardware and medical imaging procedures, it is
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difficult to manually evaluate the vast volumes of data generated

by MRI. This has led to the emergence of computer-aided

semi-automatic or fully-automatic image analysis as a significant

research topic (Bauer et al., 2013). High levels of precision and

clarity are required because this issue has a direct impact on human

health. At this stage, computer-aided diagnostics assist in obtaining

precise results quickly.

The goal of brain tumor segmentation is to locate and

map tumors as well as any effective tumor tissue and edema.

This is accomplished by contrasting uneven tissues with normal

tissues. Brain tumor segmentation using MR images is crucial

for developing an advanced diagnosis and treatment strategy.

Most current generative or discriminative model-based techniques

for segmenting brain tumors are automated or semi-automated

(Menze et al., 2014). Understanding probabilistic image atlases

of both healthy and malignant tissues is necessary for generative

models. The functionality of the method relies on the image

qualities and the classification processes utilized, and exemplary

methods categorize MR images as either tumors or normal tissues

based on their features. Machine learning methods are utilized in

discriminative models to handle handcrafted features. A collection

of algorithms called “machine learning” enables computers to

anticipate outcomes from large amounts of data. However, these

strategies require specialized knowledge to extract features that

permit classification (Akkus et al., 2017).

Artificial intelligence (AI) in healthcare uses complex

algorithms and software to estimate human cognition in the

analysis of complicatedmedical data.AI technology is distinguished

from traditional technologies in health care by its ability to gain

information, process it, and give a well-defined output to the

end-user. There has been an increase in research on AI in various

specialties in medicine such as Radiology, Imaging, Telehealth,

Electronic Health Records, and Industry. Transfer learning is a

research problem in machine learning that focuses on storing

the knowledge gained while solving one problem and applying

it to a different but related problem. One of the fundamental

requirements of transfer learning is the presence of models that

perform well on source tasks. Fortunately, the deep learning

world believes in sharing. Many state-of-the-art deep-learning

architectures have been openly shared by their respective teams.

Deep learning is specific categories of algorithms that have

been utilized to successfully reap the benefits of transfer learning.

A convolutional neural network (CNN or ConvNet) is one of the

most popular algorithms for deep learning, a type of machine

learning in which a model learns to perform classification tasks

directly from images, videos, text, or sound. CNNs are particularly

useful for identifying patterns in images to recognize objects,

faces, and scenes. They learn directly from image data using

patterns to classify images, and eliminate the need for manual

feature extraction. Applications that call for object recognition and

computer vision, such as self-driving vehicles and face recognition

applications, rely heavily on CNNs. Depending on the application,

a CNN can be built from scratch or a pre-trainedmodel can be used

with the dataset. For image recognition tasks, the use of pretrained

models was significant. For one, they are easier to use as they give

you the architecture for “free.” Additionally, they typically have

better results and require less training.

In the literature, many MR image categorization methods

have been used for brain abnormalities. These investigations

often employ preprocessing, feature extraction, and classification

stages to distinguish between normal and abnormal images.

Many supervised machine learning techniques have been used

in these studies, including Independent Component Analysis

(ICA), Support VectorMachines (SVM), Random Forest Classifiers

(RFC), and effective Gaussianmixturemodels (GMM) (Domingues

et al., 2018). Modern reviews employ cutting-edge machine-

learning methods. The Discrete Wavelet Transform (DWT) was

applied by Nayak et al. for feature extraction, feature reduction, and

the AdaBoost algorithm with RFC (Nayak et al., 2016). The same

researchers improved the results in a different study by creating

a model that makes use of the SVM with AdaBoost (Nayak et al.,

2018).

To train the neural network aimed at the categorization of

brain cancers, Mohsen et al. applied the characteristics obtained

by the Principal Component Analysis (PCA) and DWT approach

to segmented MR brain images (Mohsen et al., 2018). Zhang

et al. created a brain MRI classifier by fusing Particle Swarm

Optimization (PSO) and SVM. In a different study, the same

researchers substituted the wavelet entropy approach for the SVM

(Zhang et al., 2015). Wang et al. applied feed-forward neural

networks, PSO, and artificial bee colonies (Wang et al., 2015).

Probabilistic neural networks (PNN) and the wavelet entropy

approach were employed by Saritha et al. (2013).

However, traditional machine learning algorithms are not adept

at making generalizations. Deep learning, a machine learning

method that has gained a lot of attention recently, overcomes

the drawbacks of traditional machine learning algorithms and,

owing to its capacity for self-learning, enables autonomous feature

detection in MR images. Deep learning requires less feature

engineering because features are inevitably extracted by different

processing layers (Ahmad and Choudhury, 2022). A variety of

issues can be solved using deep-learning approaches.

With the advent of the idea of “deep learning”, contemporary

studies on CAD indicate enhanced performance, and the

effectiveness of deep learning is accelerating in the research field

(Cao et al., 2018). Deep learning archetypes were employed

in a variety of biomedical utilizations, including the analysis

of pulmonary nodules (Cheng et al., 2016), skin cancer (Zuo

et al., 2017), breast cancer (Yousefi et al., 2018), lung cancer

(Gu et al., 2018), and histopathological diagnostics (Litjens et al.,

2016). Owing to differences in brain shape, imaging methods, and

equipment, automated detection of brain disorders continues to be

a challenge despite diligent studies in medical image processing.

Convolutional neural networks (CNN) work well with deep-

learning-based techniques for the segmentation of brain tumors.

CNN or Deep CNN (DCNN) can automatically extract features

from brain MR images by parameter tuning of the convolutional

(“conv”) and the pooling (“pool”) layers, and the model had

an 81 percent classification accuracy (Charron et al., 2018). The

CNN models have been successfully applied to several biomedical

applications. Agn et al. suggested a deep learning-based approach

to modify radiotherapy planning parameters for brain tumors to

reduce the risk to healthy tissues (Agn et al., 2019). To classify brain

cancers, Afsharet al. changed the CNN design with a capsule neural
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network, but the performance gain was insufficient (Afshar et al.,

2018).

The classification capability of a CNN is highly reliant

on the size of the data used for training. If the size of the

dataset is small, the CNN starts overfitting. In this scenario,

the concept of transfer learning has emerged, and it has proven

to be effective for classification tasks. Transfer learning is

the process of applying the understanding of one pre-trained

neural network to another, however, it is a new model. The

diagnosis of medical issues using computers offers great promise

for transfer learning. To identify kidney cancer, a pre-trained

Inception V3 model was employed (Zhou et al., 2019). The

VGG-16 and AlexNet models were employed to diagnose breast

cancer, and then SVM was used to classify tumors (Deniz et al.,

2018).

A transfer learning model for the classification of pancreatic

and lung tumors was proposed by Hussein et al. (2019). Studies on

neuro-oncology have also focused on transfer learning. According

to a study conducted by researchers, transfer learning is superior

to conventional machine learning for the classification of brain

tumors (Kaur and Gandhi, 2020). AlexNet and GoogLeNet have

been used to grade tumors on brain MR images (Yang et al., 2018).

Using MR images, a pre-trained VGG-16 deep learning network

was employed to identify Alzheimer’s illness (Jain et al., 2019).

Using MR images, a trained GoogLeNet was used to distinguish

between the three different types of cancer (Deepak and Ameer,

2019). For a comparable objective, a study was conducted using the

AlexNet, GoogLeNet, and VGG models (Rehman et al., 2020). A

revision was made to represent the efficiency of transfer learning

with constrained time and a few epochs in classifying brain tumors

(Chelghoum et al., 2020).

In transfer learning, the weights of the “conv” layer from pre-

trained models are used and only the last layers are trained with

data from the newer classes. In the proposed work, the capability

of four well-known distinct pre-trained CNN models with transfer

learning was investigated for the automated classification of 305

brain MR images into tumorous and non-tumorous categories.

Accuracy, recall, sensitivity, and F1-score measurements were used

to assess the VGG-19, VGG-16, ResNet50, and Inception V3

models. The goal was to attain high accuracy values in small

epochs with a relatively small dataset. The findings of this study

were compared with those of recent studies. The success rate of

the VGG-19 model was higher than that reported in comparable

studies in the literature. This work provides an alternate and

effective method for the detection of tumors in MRI brain images.

The key offerings of the proposed article are summarized

as follows:

• The performance of four well-known unique pre-trained CNN

models with transfer learning was examined for the automatic

categorization of 305 brain MR images into tumorous and

non-tumorous categories.

• The performance of the models was measured using a

variety of performance parameters, namely accuracy, recall,

sensitivity, and F1-score.

• High accuracy values were achieved with fewer epochs and a

smaller dataset.

This paper comprises four primary sections. Materials and

methods section describes the materials and methods used. The

experimental results are presented in results section. The discussion

is presented in Discussions section. Finally, Conclusion section

concludes the work.

2. Materials and methods

The majority of earlier investigations relied on manually

extracting tumor behaviors before classifying them. However, they

cannot become totally automated because of this method. If

the amount of data is relatively small, only a few studies have

demonstrated the production of solutions.

This article used the transfer learning process in deep

convolutional neural networks to propose an automated

classification approach for brain MRI data. A total of 305

brain MRI images were included in the dataset after augmentation.

The images were preprocessed prior to the deep neural network

learning processes. The fundamental steps of the proposed method

are as follows:

1. Pre-processing: With the use of the Open CV library, raw MRI

images have been cropped, and the boundaries of the brain tissue

were identified.

2. Deep learning model implementations: VGG-19, VGG-16,

ResNet50, and InceptionV3 were the four separate pre-trained

models that were used.

FIGURE 1

Flowchart of the proposed methodology using pre-trained DCCN

models.
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3. Data augmentation: Data augmentation techniques were

used during training to improve learning outcomes and

avoid overfitting.

4. Several criteria, including accuracy, precision, recall, and F1

score, were used to assess the performance of the models.

Figure 1 illustrates the workflow of the proposed method.

2.1. Dataset

The 253 brain MRI scans that Chakrabarty gathered and
made publicly available constituted the dataset used in the study
(Chakrabarty, 2019). The 253 brain MRI scans that comprised
the study’s dataset were total in number. Among these images,
98 had no tumors, and 155 had tumors. Figure 2 provides a

FIGURE 2

Pie chart showing the distribution of tumorous and non-tumorous images in the dataset.

FIGURE 3

MR images with and without tumor from the dataset.
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graph illustrating the dataset distributions of the tumor and non-

tumor images.

The distribution of the image classes within the dataset was

unbalanced. The classifier is more likely to select the dominant

class as a result of the dominance of the class in the dataset. The

number of cases of the prevailing class should be decreased or

the data class with fewer instances must be increased to solve

the instability issue. Plummeting the amount of data from the

dominant class reduced the generalizability of the classification

because the dataset utilized in this investigation was rather small.

Thus, data augmentation was applied to the classes with an

insufficient number of samples.

Figure 3 shows examples of MR images of the dataset with and

without malignancies. The black frames surrounding the images

in the dataset have varying sizes. Pre-processing was performed to

normalize the images before training.

2.2. Image pre-processing and data
augmentation

The endpoints at four distinct ends, left, right, top, and bottom

was recognized as the borderlines of the brain tissue all over

the frame surrounding the image during preprocessing using the

OpenCV package with Python, as displayed in Figure 4.

Polar points and borders were used to crop the images. The

borders of the brain tissue were established based on the raw

image, and the exterior portion was eliminated. This facilitated

data processing. The images had different shapes (e.g., 630X630,

225X225). After cropping, the MR images with varying length

and width values were resized to 224 × 224 pixels. Overfitting

results from working with a dataset that is unbalanced and contains

a minimal amount of data. The model is prone to learning the

dominant class and is therefore unable to be applied to different

contexts. This issue is avoided by using a data augmentation

technique that also diversifies the data. By performing operations

on the current dataset at different rates, such as zooming, reflecting,

and rotating, the data augmentation technique makes it possible

to generate new data (Khan et al., 2021). Depending on the

dataset and procedure, empirical data are used to determine the

transformation procedures and rates employed for the original

data. In this analysis, the present dataset was enhanced using 15%

rotation, 5% horizontal and vertical axis shifting, 1/255 rescaling,

and horizontal and vertical axis mirroring. This study’s rotation,

shifting, and scaling ratios were also acquired empirically in a

model that maximizes its work improvement. To balance the

collection, data augmentation was used to recreate non-tumor

images using a smaller number of samples. The number of non-

tumor images increased by 50%, whereas the number of images

with tumors remained constant. The number of images in each class

as a result of data augmentation is shown in Table 1.

2.3. Deep learning, CNN, and transfer
learning

Deep learning is a technique that separates a feature hierarchy

from input data using multiple-layer neural networks. It is a

well-liked technique, as opposed to manual feature extraction

in standard machine learning, which automatically extracts

features from images. Various deep-learning algorithms have been

employed to achieve various objectives.

A CNN is a deep learning method that is frequently employed

in image classification and segmentation. In addition, CNN is

frequently utilized in the analysis of medical images to provide

improved outcomes (Belaid and Loudini, 2020). CNN offers

an automated feature definition and extraction from images.

The convolution, pooling, activation, and classification layers are

common components of CNN. The CNN receives images that

have been categorized using specified tags, which are then used

to enhance the trainable parameters in the system to improve

classification accuracy. The input pixels are subjected to kernel

application in the convolution layer, which reveals the features. By

using the average or largest of the data from the earlier levels, the

pooling layer minimizes the data. Transfer to the prediction phase

TABLE 1 Images count after data augmentation.

Class Count

Tumor images 155

Non-tumor images 150

Total 305

FIGURE 4

Steps involved in preprocessing.
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FIGURE 5

Basic CNN architecture (Hinton, 2012).

is made possible by the fully connected layer. Figure 5 depicts the

general layout of the CNN architecture.

In each convolutional layer, a Rectified Linear Unit (ReLU)

activation function was used. The input-weighted sum is

transformed into the output of the node through an activation

function (Pedada et al., 2023). The rectifier linear unit function

was utilized in the hidden layers of the CNN. ReLU is denoted

mathematically by

f (x) = max (0, x) (1)

Here, ‘x’ represents the input. The negative input is converted

to zero when x is negative or equal to zero. Inputs larger than zero

result in an output of 1. Therefore, ReLUs’ derivative will be

f
′

(x) = 1, for x ≥ 0

0, for x < 0 (2)

As a result, the neuron is a dead neuron in the ReLU function

and is not activated if the input is 0.

2.3.1. Loss function
In machine learning, the error between the actual label values

and algorithmically predicted values is calculated using the loss

function. Subsequently, using any optimization technique, the error

was reduced to a minimum value. The cross-entropy loss function

was used in this work (Mannor et al., 2005). We utilized binary

cross entropy because we were binary in classifying our MRI

images. The cross-entropy error rate in binary calculations ranged

from 0 to 1. In mathematics, it is denoted as

J (x) = xlogP (x) + (1− x) log (1− P (x)) (3)

In this case, P(x) is the predicted label, and x is the actual label.

Because x is multiplied by log, the first term will be zero when the

actual labels, x, are equal to 0. Similarly, when x = 1, the second

component is equal to zero. J(x) will be 0 if x = P(x).

2.3.2. Optimization
To reduce the loss in deep neural networks, we applied several

optimization techniques by adjusting variables such as weights and

learning rates.We employed AdaptiveMoment Estimation (Adam)

optimizer in our research, suggested by Kingma and Ba (2014).

The Adam optimizer combines the momentum-based stochastic

gradient descent with RMSprop.

H. Robbins presented the Stochastic Gradient Descent

technique (Robbins and Munro, 1951). In the stochastic gradient

descent, we calculate the derivatives of the weights (dw) and bias

(dB) for each epoch. Then multiply by the learning rate.

w = w− η × dw

B = B− η × dB (4)

When we calculated dw and dB for the current batch, we

obtained moving mean between 0 and 1. Stochastic gradient

descent with momentum U is the moving mean of our gradients.

Udw = Ŵ × Udw + (1− Ŵ)× dw

UdB = Ŵ × UdB + (1− Ŵ) × dB (5)

Similarly, Hinton proposed an adaptive learning rate algorithm

known as the Root Mean Squared Prop. We use the exponential

moving mean square of the gradients in RMSProp. RMSProp is

represented mathematically as,

Rdw = Ŵ × Rdw + (1− Ŵ)× dw2

RdB = Ŵ × RdB + (1− Ŵ) × dB2 (6)

A hyperparameter called gama Γ adjusts the exponentially

weighted means. To use the Adam optimization technique,

we combined the characteristics of the weighted mean and

the weighted mean of the squares of the previous gradients.

Consequently, Adam Optimizer’s revised weights and bias will be

w = w− η × (Udw/
√

Rdw + R)

B = B− η × (UdB/
√

RdB + R) (7)
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FIGURE 6

Illustration of the network architecture of VGG-19 model (Abuared et al., 2020).

Epsilon R (Epsilon = 10–8) eliminates zero division and η

represents the learning rate.

Transfer learning involves transferring weights from a network

that has been extensively trained with data to another model

designed to address a related issue (Podder et al., 2021). If there

is insufficient training data for the current problem, this strategy

becomes crucial. The network may experience an overfitting issue

with a limited amount of data, making generalization impossible.

The parameters of the transferred network guarantee the accurate

categorization of a small volume of data if the dataset used to

train the pretrained model is sufficiently large. Only the classifiers

in the last section of the new model were trained, and the

estimated weights from the pretrained model were transferred

to it.

Transfer learning is advantageous when few images are

available, according to studies on medical image analysis (Deepak

and Ameer, 2020). In this study, pretrained VGG-19, VGG-16,

ResNet50, and Inception V3 transfer learning models were used

to execute a brain MRI classification task, and the performance

of the models were compared. Models were trained by 25 epochs

for each fold, and a high level of classification performance

was achieved.

2.3.3. VGG-19 model
VGG-19 is a variant of the VGG model that consists of 19

layers (16 convolution layers, three fully connected layers, five

MaxPool layers, and one SoftMax layer). Other variants of VGG

like VGG-11, VGG-16, and others.

Generally, the pre-trained VGG-19 model involves 19 layers,

16 are convolutional, and three are fully connected layers (Latha

et al., 2021). In VGG-19, the first and second convolution layers

of the group of two layers are followed by max-pooling layers,

and the next eight convolution layers are a group of four layers

followed by max-pooling with the same filter size, that is, 3 ×

3; the last three are dense layers, containing 4,096 images and

1,000 features followed by the SoftMax function, as shown in

Figure 6.

2.3.4. VGG-16 model
Simonyan and Zisserman’s VGG network architecture is a

CNN model first presented in 2014 (Simonyan and Zisserman,

2020). The unique VGG type, known as VGG-16 had 16 weighted

layers. Convolution, maximum pooling, activation, and fully linked

layers are the layers. Figure 7 depicts the general framework of the

VGG-16 model.

The design has 21 layers in total; 13 convolutional layers,

five pooling layers, and three dense layers. There were only16

weighted layers among them. There are 64 filters in the first

convolution layer, 128 filters in the second layer, 256 filters in

the third layer, and 512 filters in each of the fourth and fifth

levels. The ImageNet dataset, which contains more than 14 million

images and 1,000 classifications, was used to train the VGG-16

network (Ghosh et al., 2021), which achieved an accuracy rate

of 92.7%.

2.3.5. ResNet50 model
He et al. introduced ResNet in 2015, and with a 3.57% error

rate, their model won the ImageNet competition (He et al.,

2016). ResNet’s structure is based on microarchitecture modules,

in contrast to conventional sequential network topologies.

Theoretically, as a model’s number of layers increases, its

success should follow. However, as the number of factors

increases, training and optimization become increasingly

challenging. In deep neural networks, neurons with low

activation are useless during training; in these cases, residues

develop in the network. Blocks that feed subsequent layers with

residual values were added to construct ResNet as shown in

Figure 8.

In a typical CNN, a non-linear G (x) function is used to

represent a model that proceeds sequentially from the input to

the output. In ResNet, “x” is the input value, which is summed

arithmetically to the function F(x) by making a crosscut from the

input to the output. The idea behind this network is to enable

it to fit the residual mapping instead of having layers learn the

underlying mapping.
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FIGURE 7

The standard VGG-16 network architecture (Simonyan and Zisserman, 2014).

FIGURE 8

The architecture of ResNet50 model (Khan et al., 2021).

F (x) + x is then transmitted through the ReLU. The input

is appended after the completion of the second layer, with

the intention of more forcefully communicating the values in

the previous levels to the following layers. The ResNet50 is a

unique ResNet model that has fifty weighted layers (Kumar et al.,

2022).

2.3.6. Inception V3 model
The crucial phase in the evolution of CNN architectures is

the development of inception networks. There are four variants,

each with different levels of precision and performance. The

creation of the Inception V3 model excelled in ImageNet,

with a small error rate (Szegedy et al., 2016). In the second
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version, the supplementary classifiers included in the Inception

architecture do not begin to participate until the training phase

is complete. Minor modifications were made to the Inception

V3. There were 42 layers in Inception V3. Normalization

of auxiliary classifiers, label smoothing, 7 × 7 convolution,

and the RMSProp optimizer are additional features of the

earlier versions. Figure 9 depicts the structure of the Inception

v3 model.

3. Results

In this work, we developed a fully automated categorization

method for brain tumors. The raw MRI images were

first preprocessed, the borders of the brain tissue were

mechanically identified, and images were cropped. The

dataset was subsequently increased using a data-augmentation

technique. The processing load was reduced, and successful

results were obtained with little data using the transfer

learning method.

3.1. Performance metrics

A performance of the classifier was measured using a variety

of parameters. The most frequently used metric was accuracy.

The ratio of the number of correctly classified samples to the

total number of data points was used to measure the classification

FIGURE 9

Architecture of inception V3 model (Szegedy et al., 2016).

FIGURE 10

Accuracy and loss graphs for the VGG-19 model.
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accuracy, as represented in Eq 8.

Accuracy =
Number of correctly classified samples

Total number of samples
(8)

If the testing dataset comprises the same number of samples

from all classes, classification accuracy is an appropriate metric

for characterizing performance. Confusion matrices were used

to assess the system working with an unbalanced dataset. True

and false catalogs are presented as tables in a confusion matrix.

The following outcomes are represented by values in a confusion

matrix: when the original positive data are accurately classified as

positive, it is referred to as a true positive (TP); when the initial

positive data are incorrectly classified as a negative, it is referred

to as a false negative (FN). When the negative data are properly

categorized as negative, it is referred to as a true negative (TN),

and false negatives are created when the first negative data are

incorrectly labeled as positive (FP). Different metrics were created

using the values obtained from the confusion matrix to represent

the performance of the classifier.

These results were used to calculate recall (sensitivity), which

is represented by Eq 9. The recall shows how well a classification

system can identify true positives.

Recall =
TP

TP + FN
(9)

Equation 10 represents the precision. Precision is a measure of

how well a classification can weigh false positives.

Precision =
TP

TP + FP
(10)

The harmonic mean of the above twometrics was utilized as the

F1- score to represent the balance between precision and recall. Eq

FIGURE 11

Accuracy and loss graphs for the VGG-16 model.

FIGURE 12

Accuracy and loss graphs of the ResNet50 model.
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11 was used to calculate the F1 score.

F1 Score = 2∗
Precision∗Recall

Precision+ Recall
(11)

The precision, Recall, and F1 score values were assessed

using the accuracy parameters for each model utilized in

this investigation.

3.2. Findings

Four distinct pre-trained models were used to classify the

dataset of 305 brain MR images. Each model used had the same

batch size, number of epochs, and learning rate optimization as

all other external factors. Thirty percent of the dataset was used

for testing, whereas 70% was used for training. A validation set

was created using 30% of the test set. For each model, epoch-

based accuracy and loss graphs were obtained. In addition, the

effectiveness of the individual models was evaluated in relation to

the given metrics.

3.2.1. VGG-19 model
Figure 10 shows the accuracy and loss graphs created during

the training and testing, procedures. At the end of 25 epochs, the

accuracy was 99.48%, Recall was 98.76%, precision was∼100%, and

F1 score was 99.17%.

3.2.2. VGG-16 model
Figure 11 shows the accuracy and loss graphs created during

the training and validation procedures. At the end of 25 epochs, the

accuracy was 99%, recall was 98.18%, precision was approximately

about 100%, and the F1 score was 99.08%.

3.2.3. ResNet50 model
Figure 12 shows a graphical representation of the accuracy

and loss created during the training and testing procedures.

The accuracy attained at the completion of 25 epochs was

97.92%, recall was 87.7%, precision was 77.77%, and F1score

was 82.24%.

3.2.4. Inception v3 model
The graphical records of the accuracy and loss obtained

as an outcome of the training and validation processes

are shown in Figure 13. At the end of 25 epochs, the

Inception V3 model had an accuracy of 81.25% and,

63.25% for recall, a precision of 53.84%, and an F1

score of 58.16%.

Confusion matrix for the different pre-trained models is shown

in Figure 14.

The performance outcomes of the four pretrained

models with an equal number of epochs are listed in

Table 2. A comparison of the findings in Table 2 is presented

in Figure 15.

4. Discussions

This section provides classification results on a dataset made

publicly available by Chakrabarty on Kaggle.com and https://ww

w.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tum

or-detection. It also illustrates the comparison of the pretrained

VGG-19, VGG-16, ResNet50, and Inception V3 DCNN models

with other existing state-of-the-art artworks on pathological

image classifications. A comparison was made in terms of the

performance metrics reported in the literature, that is accuracy.

The results are presented in Table 3.

From Table 3, it can be concluded that the pretrained VGG-

19 model with transfer learning attained an accuracy of 99.48% for

brain tumor classification. It is superior to the techniques devised

in works by Zhang et al. (2013, 2018), Yang et al. (2016), Lu et al.

(2017) and Nayak et al. (2018), for which the accuracy values

were 97.78%, 97.78%, 98.33%, 99.26%, and 99.45%, respectively.

Moreover, the techniques devised in Zhang et al. (2013, 2018),

Yang et al. (2016), Lu et al. (2017) and Nayak et al. (2018)

FIGURE 13

Accuracy and loss graphs of Inception V3 model.
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FIGURE 14

The confusion matrix for classification models (A) Inception V3 (B) ResNet50 (C) VGG-16 (D) VGG-19.

TABLE 2 Performance metrics of classification models.

Model Accuracy (%) Recall (%) Precision (%) F1-score (%)

VGG-19 99.48 98.76 100 99.17

VGG-16 99 98.18 100 99.08

ResNet 50 97.92 87.27 77.77 82.24

Inception V3 81.25 63.25 53.84 58.16

used different feature extraction and selection techniques. The

prime advantage of the pre-trained models with transfer learning

in comparison to the existing works in Table 3 is that it needs

no feature extraction mechanism and no intermediate feature

selection phase.

When themodels are represented side by side in terms ofmetric

values, it can be understood that VGG- 19, which has an accuracy

of 99.48%, performs the best on the dataset worked with.VGG-

16, with 99% accuracy, is the second most effective pre-trained

architecture. In comparison to these two models, the ResNet50
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model displayed 97.92% accuracy, and Inception V3 displayed

an accuracy of 81.25%. Regarding their capacity to identify true

positives and eliminate false positives, the VGG- 19, and VGG-

16 models exhibited better performance. By contrast, VGG-19 was

condescending in terms of each metric.

We wanted to boost the success by utilizing the data

augmentation technique because the dataset utilized in this work

was unbalanced. Each model was run without applying data

augmentation while maintaining the same other parameters to

determine the impact of data increase on gaining the prediction.

Table 4 shows a comparison of the accuracy values acquired with

and without data augmentation. Figure 16 shows a comparison of

observations from the results in Table 4.

The results of the measurements revealed that the success

of the model increased by up to 33.39% when employing

the data augmentation technique. The majority of studies on

the classification of MR brain images in the literature have

used machine learning methods based on manually created

characteristics. Manual feature extraction is labor-intensive and

increases error rates. The capacity of deep learning for self-learning

makes it possible for the features of MR images to be automatically

TABLE 4 Accuracy values of classification models with and without data

augmentation.

Model Without
augmentation (%)

With
augmentation (%)

VGG-19 90.7 99.48

VGG-16 90.5 99

ResNet50 88.02 97.92

Inception V3 66.26 81.25

FIGURE 15

Evaluation metric comparison of various classification models.

TABLE 3 Comparison of the pre-trained models using transfer learning technique with existing state-of-the-art artworks.

References Methodology Dataset Accuracy (%)

Zhang et al. (2013) DWT+ PCA+ PSO optimized Kernel SVM 90 images 97.78

Yang et al. (2016) DWT+ BBO optimized SVM 90 images 97.78

Lu et al. (2017) DWT+ BAT optimized machine learning 132 images 98.33

Nayak et al. (2018) Ripplet-II Features+ PCA+ModifiedPSO based ELM 160 images 99.26

Zhang et al. (2018) Pseudo Zernike moment+ Kernel SVM 160 images 99.45

Khan et al. (2020) KM clustering+ Deep learning with data augmentation 220 images 94.06

Proposed work VGG-19 with Transfer Learning 305 images 99.48

VGG-16 with Transfer Learning 99

ResNet50 with Transfer Learning 97.92

Inception V3 with Transfer Learning 81.25

BBO, Biogeography based optimization; DWT, Discrete Wavelet Transform; ELM, Extreme Learning Machine; PCA, Principal Component Analysis; PSO, Particle swarm optimization; SVM,

Support Vector Machine.
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discovered. In Table 5, the results of this study’s classification of

brain MR images using deep learning methods are compared with

those of recent similar studies.

The four pretrained models were implemented on the

PYTHON 3.10.2 platform and executed on a system with an

Intel(R) Core (TM) i5-1035G1 CPU, 8 GB RAM, and 3.3 GHz. The

computation time (training + testing) was 155 minutes on a single

CPU system.

Table 5 demonstrates that the experiments in the literature

utilizing various CNN models on varied-sized datasets range in

accuracy from 70 to 90%. The VGG-19 model demonstrated

maximum success with 99.48% accuracy. This investigation reveals

that Saxena et al.’s analysis utilizing the same model and the best

result of 99% produced using the VGG-16model were both inferior

to each other. InceptionV3 was the least accurate model, with an

accuracy rate of 81.25%. Results from other studies that classified

brain MR images using the Inception V3 model ranged from 55 to

69% (Saxena et al., 2020).

FIGURE 16

Comparison of model accuracies with and without augmentation.

5. Conclusions

The excellent image quality of MRI makes it easier to

identify abnormalities in the brain. Radiologists typically

evaluate MR images and diagnose tumors. However, it is

now challenging to manually evaluate vast amounts of data

collected in a reasonable amount of time, owing to advancements

in medical imaging techniques. Deep learning has garnered

considerable interest in the field of medical image analysis, owing

to its ability to accurately discover complicated associations.

CNNs are frequently used in deep-learning-based brain

tumor segmentation. Transfer learning is used to enhance

the efficiency of data processing. Remarkable success was

attained when the workload of the new model was reduced by

the transfer of the learned parameters. Additionally, transfer

learning ensures success even when limited training data

are available.

In this work, classifications were performed on a dataset

of 305 brain MRI images with and without tumors using pre-

trained VGG-19, VGG-16, ResNet50, and Inception V3 models.

Raw MR images were preprocessed to ease the effort required

during training. Raw images were cropped and scaled after the

margins of brain tissue were established. Data augmentation

was used to balance class distributions in the dataset. Accuracy,

recall, precision, and F1-score measures were used to evaluate the

classification process using four alternative models. With 99.48%

accuracy, 98.76% recall, 100% precision, and 99.17% F1 score,

the VGG-19 model demonstrated the greatest success. With 99%

accuracy, 98.18% recall, 100% precision, and 99.08% F1 score,

the VGG-16 model was next. The ResNet50 and Inception V3

models presented accuracy of 97.92 and 81.25%, respectively.

In this study, as in related studies, the Inception V3 model

had the lowest success rate. The results of this investigation

were compared with those of recent related studies published in

TABLE 5 Comparison of the study’s findings with existing research.

References Dataset Technique Accuracy (%)

Shahamat and Abadeh (2020) 140 MR images Custom CNN 70

Zhang et al. (2020) 361 MR images R-CNN 79

Naser and Deen (2020) 110 MR images CNN-UNet 89

Zhou et al. (2019) 192 MR images InceptionV3 69

Saxena et al. (2020) 3,064 MR images VGG-16 90

Mlynarski et al. (2019) 285 MR images CNN-UNet 80.92

Afshar et al. (2018) 3,064 MR images CapsNet 90.89

Abiwinanda et al. (2019) 3,064 MR images Custom CNN 84.19

Pashaei et al. (2018) 3,064 MR images Custom CNN 81.09

Yang et al. (2018) 113 MR images Google Net 86.7

Mostafiz et al. (2021) 274 MR images Deep CNN 98.79

Ahmad and Choudhury (2022) 250 MR images VGG-19 99.39

Proposed work 305 MR images VGG-16 99

VGG-19 99.48
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the literature. The most effective model in this analysis, VGG-

19, was found to be more effective than those in previous

studies in the literature. This work demonstrated that the transfer

learning process produces good outcomes with little data and

few epochs.

A limitation of the proposed work is that the training

time is very large. The processing of a large amount of

data is required to study MR images. Computers’ graphics

processing unit (GPU) offers better performance for this data-

processing activity than a central processor unit (CPU). Hybrid

DNNs and State-of-the-art (SOTA) DNN models such as

Efficient Net, Mobile Net and DenseNet169 fed with YOLO

can be used to improve the classification performance of

the system.
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