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Design of virtual BCI channels
based on informer
Hang Sun, Changsheng Li* and He Zhang

Department of Mechanical Engineering, Nanjing University of Science and Technology School, Nanjing,
Jiangsu, China

The precision and reliability of electroencephalogram (EEG) data are essential

for the effective functioning of a brain-computer interface (BCI). As the number

of BCI acquisition channels increases, more EEG information can be gathered.

However, having too many channels will reduce the practicability of the BCI

system, raise the likelihood of poor-quality channels, and lead to information

misinterpretation. These issues pose challenges to the advancement of BCI

systems. Determining the optimal configuration of BCI acquisition channels can

minimize the number of channels utilized, but it is challenging to maintain the

original operating system and accommodate individual variations in channel

layout. To address these concerns, this study introduces the EEG-completion-

informer (EC-informer), which is based on the Informer architecture known

for its effectiveness in time-series problems. By providing input from four BCI

acquisition channels, the EC-informer can generate several virtual acquisition

channels to extract additional EEG information for analysis. This approach

allows for the direct inheritance of the original model, significantly reducing

researchers’ workload. Moreover, EC-informers demonstrate strong performance

in damaged channel repair and poor channel identification. Using the Informer as

a foundation, the study proposes the EC-informer, tailored to BCI requirements

and demanding only a small number of training samples. This approach eliminates

the need for extensive computing units to train an efficient, lightweight model

while preserving comprehensive information about target channels. The study

also confirms that the proposed model can be transferred to other operators with

minimal loss, exhibiting robust applicability. The EC-informer’s features enable

original BCI devices to adapt to a broader range of classification algorithms and

relax the operational requirements of BCI devices, which could facilitate the

promotion of the use of BCI devices in daily life.

KEYWORDS

electroencephalogram, informer, brain-computer interface (BCI), virtual channel, motor
imagery

1. Introduction

A brain-computer interface (BCI) is a communication system that operates
independently of the brain’s typical output pathways, such as peripheral nerves and muscles
(Wolpaw et al., 2000). A BCI enables direct connections between the human brain and
external devices, garnering interest due to their potential to transcend human physiological
limitations. Decoding and utilizing information about electric potentials generated by
the brain is the most prevalent method for implementing BCI (Brumberg et al., 2010).
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As research into electroencephalograms (EEG) advances, BCI can
perform an increasing number of control functions. For instance,
Liu et al. (2019) proposed a BCI-based teleoperation strategy for
a dual-arm robot with multi-fingered hands handling a common
object. Abiri et al. (2020) used imagined body kinesthetics to
control a computer cursor. Na et al. (2021) developed an embedded
lightweight steady-state visual evoked potential (SSVEP)-BCI
electric wheelchair through in-depth SSVEP research, yielding
promising experimental results. Willett et al. (2021) achieved
previously science-fictional technologies, such as writing with
thoughts. A BCI not only enable humans to control external
devices subjectively but also facilitate a deeper understanding of
ourselves, assisting medical professionals in monitoring patient
sleep status (Michielli et al., 2019), evaluating newborn health
(Ansari et al., 2019), classifying emotions (He et al., 2020), and
obtaining subject status through P300 event-related potential
analysis (Banea et al., 2020).

Electroencephalogram acquisition methods are primarily
invasive and noninvasive (Ko et al., 2009; Jiang et al., 2018),
both of which can use electrodes. The volume of acquired EEG
information significantly impacts BCI performance. There are two
main approaches to increasing information acquisition: one is to
augment the number of EEG acquisition channels. For example, Ma
et al. (2018) used 19 channels for EEG analysis (Hefron et al., 2017);
Xu and Plataniotis (2016) utilized 32 channels to differentiate
affective states; 64 channels were employed for motor imagery
(MI) classification, and in some cases, 256 channels were used
(Baltatzis et al., 2017). However, increasing the number of EEG
acquisition channels yields more information but also prolongs
experiment preparation time. This may alter subjects’ mental
states, affecting study results and contradicting the convenience
and lightweight requirements for broader BCI applications. As
the number of EEG acquisition channels grows, the likelihood
of channel damage and displacement also rises exponentially.
While noninvasive devices can be corrected if detected promptly,
invasive acquisition devices are difficult to adjust without causing
secondary harm to subjects. Consequently, experiments may
be halted due to channel damage or data loss, prompting
the use of interpolation or tensor methods to supplement
missing information (Sole-Casals et al., 2019). The expectation
maximization-based Kalman filter can also estimate missing model
signals (Gunnarsdottir et al., 2019). The second approach is to
optimize EEG acquisition location and quantity. For example, Zhou
et al. (2019) proposed a channel selection algorithm that could
automatically choose the minimal electrode subset for a specific
subject, achieving satisfactory classification performance using only
5–8 channels of EEG data. Li et al. (2020) introduced a recurrent
convolutional neural network model for intention recognition
by learning decomposed spatiotemporal representations and used
activation mapping visualization technology to select channels with
the highest information content, maintaining 92.31% intention
decoding performance while reducing nearly half of the acquisition
channels. However, optimal channel locations vary across tasks,
and actual effects differ among individuals. Therefore, promoting
BCI use requires superimposing optimal channels under various
circumstances, complicating channel reduction. Simultaneously,
channel reduction and layout adjustment necessitate recalculating
and retraining the original classification and operation model
parameters, hindering the ongoing development of existing BCI

systems. Consequently, the challenge in promoting BCIs is
reducing the number of required acquisition channels while
obtaining more information and avoiding the need to adjust
optimal EEG acquisition channels based on the operator and
classification task.

Fundamentally, EEG signals in BCIs are collected via electrode
channels, with the potential and timeline of each channel forming
a one-dimensional (1D) time series. MI can be classified using
common spatial pattern (CSP) or independent component analysis
(ICA) methods (Ghanbar et al., 2019; Wu et al., 2020), while
the wavelet transform (WT) (Geng et al., 2022) enables more
detailed EEG analysis and application. In recent years, the rapid
development of hardware has led to the emergence of deep
learning, which has naturally combined with BCI. Deep learning
architectures such as convolutional neural networks (CNN) and
recurrent neural networks (RNN) play a crucial role in BCI
development (Craik et al., 2020), accelerating its advancement.
Using deep learning for MI classification typically achieves
accuracies exceeding 80% or even 90% (Lu et al., 2017; She
et al., 2019). The choice of time series processing architecture
influences BCI system application performance. Researchers have
conducted numerous studies to reduce the number of EEGs
required for BCI device utilization. For instance, Corley and Huang
(2019) implemented super-resolution (SR) based on generative
adversarial networks (GANs) to decrease EEG device channel
number requirements. Li et al. (2022) proposed an improved
Wasserstein generative adaptive network (WGAN) for generating
EEG samples in virtual channels, improving sample action
classification accuracy. Svantesson et al. (2021) demonstrated
that using neural networks to restore or upsample EEG signals
was a viable alternative to spherical spline interpolation. Kwon
et al. (2019) employed SR technology with deep CNN, proving
that exploring various brain dynamics might be possible even
with a small number of sensors. Tang et al. (2022) proposed
Deep-EEGSR, restructuring corresponding high-resolution (HR)
acquisitions through an end-to-end SR process. The Transformer,
introduced in 2017, is commonly used to address time series
problems such as language recognition (Vaswani et al., 2017).
Its attention mechanism emphasizes key aspects of computer
learning, achieving nearly overwhelming advantages in speech
and image recognition compared to other models (Wang et al.,
2020; Chen et al., 2021), becoming a research focal point across
various fields. However, the requirement for 10-plus or hundreds
of GPUs and datasets with tens of thousands of entries discourages
small research teams. Unfortunately, BCI device applications are
more personal, making collecting tens of thousands of samples
nearly impossible. As a result, the modeling compatibility between
BCI and Transformer is poor, with few studies combining the
two. Examples include Bagchi’s EEG-ConvTransformer network,
achieving high classification accuracy in five different visual
stimulus classification tasks (Bagchi and Bathula, 2022), and Jia’s
Transformer-based MI classification with good accuracy, applicable
to various motion classification scenarios (Jia et al., 2022). The
difficulty of utilizing new models over time inevitably hinders BCI
development. In 2019, the Informer, based on the Transformer,
emerged (Zhou et al., 2021). Guided by the proposed self-
attention distilling operation, Informer achieved long-term data
prediction for electricity consumption planning. Most importantly,
Informer significantly reduced hardware requirements for users
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when employing Transformer, providing access to small research
teams.

In response to the issues above, this study utilized the Informer
as a foundation and combined it with BCI device usage to propose
an EEG-Completion Informer (EC-informer). Compared to the
1,096,192 samples (iterations of 50 epochs) used in Corley and
Huang (2019) and the 5,144 h of data (iterations of 60–100
epochs) used in Svantesson et al. (2021), the EC-informer required
only a small number of samples (288 samples, approximately
27 min of data) and 15 epochs to train a satisfactory model. The
model’s self-attention distilling operation also reduced hardware
requirements for training, enabling training and application on
portable devices. As a channel completion model, the EC-informer
can establish virtual channels at target locations simply by inputting
a limited number of EEG channels. It can also maintain relatively
comprehensive EEG information and adapt to BCI application
models requiring additional channels. To verify the effectiveness
of the EC-informer, several experiments were conducted for
analysis: (1) Data from multiple subjects were used to confirm
the feasibility of the EC-informer. (2) The impact of the distance
between input and target channels on the virtual signal was
examined. (3) The performance of the EC-informer was assessed
when obtaining EEGs from various acquisition locations. (4) The
retention degree of the EC-informer was evaluated in extreme
layouts. (5) The applicability of transferring the EC-informer to
different subjects was verified. (6) Using a simple classification
network, the accuracy of the complementary information obtained
by the EC-informer was found to be only slightly lower compared
to the real information. (7) The stability of the EC-informer
was confirmed using our dataset. The primary innovation of
this study is the proposal of the EC-informer, which can reduce
the number of actual EEG acquisition channels and complete
them with virtual channels. The high information retention of
the complementary signal and low hardware requirements could
facilitate the promotion of BCI devices.

2. Materials and methods

2.1. Data and processing

The dataset utilized in this study was the 2008 2a MI-EEG
dataset from the BCI Competition (Tangermann et al., 2012). The
dataset employed 22 Ag/AgCl electrodes to collect EEGs from
9 subjects in a non-embedded acquisition mode. The spacing
between adjacent electrode channels was 2.5 cm, and the sampling
frequency was 250 Hz. The channel distribution is illustrated in
Figure 1.

Two sets of experiments were conducted for each subject,
serving as training and test sets, respectively. Prior to each
experiment set, a 5-min signal recording was conducted to
estimate the impact of the electrooculogram (EOG). Following
the prompts, subjects were asked to complete four types of
imagination tasks, specifically, imagining the movement of the left
hand, right hand, both feet, and tongue. Each dataset’s recording
time was approximately 2,700 s, resulting in 288 experiments.
The primary focus of this study was to use the EC-informer to
add virtual channels or complete poor channels, i.e., supplement

FIGURE 1

Electrode arrangement of the data set, a total of 22 channels were
used.

EEG data. Consequently, sample classification performance was
not considered; rather, the obtained virtual or completed EEG was
compared to the real information for evaluation.

Brain-computer data is susceptible to external data
interference, and EEG information typically falls within the
frequency range of 2–40 Hz. Therefore, bandpass filtering is
necessary for preprocessing EEGs to eliminate interference from
power frequency and excessively high frequencies. Moreover,
since the magnitude of the acquired data samples obtained was
10−6V, the data needed further processing to adapt them to the
EC-informer structure. In this study, the EEG of each channel was
standardized and normalized, ensuring the amplitude of the EEG
signal ranged between 0 and 1.

2.2. EEG-completion-informer

As deep learning technology advances, numerous network
models have emerged, such as convolution, RNN, and long-
short-term memory (LSTM), which are applicable to tasks like
image recognition, behavior recognition, machine translation, and
time series forecasting. Recently, the Transformer, composed of
multiple layers of encoders and decoders, has gained significant
popularity. Each encoder consists of two sublayers: a multi-
head self-attention mechanism and a fully connected feedforward
network. Compared with the encoder, the decoder adds a masked
multi-head attention layer. Thanks to its exceptional mechanism,
the Transformer has exhibited remarkable performance across
various fields, but it demands more computer hardware resources
compared to traditional models. To address this issue, Zhou et al.
(2021) introduced the self-attention distilling operation within the
Informer structure, significantly reducing the model’s data volume
and the Transformer’s hardware requirements. Furthermore,
the generative-style decoder in Informer can produce a long
sequence output while simultaneously avoiding cumulative error

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1150316
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1150316 April 18, 2023 Time: 14:25 # 4

Sun et al. 10.3389/fnhum.2023.1150316

FIGURE 2

The number of input channels is adjustable, the time series of the target channel label is included in the time series of the input channel, and the
starting time is shifted backward.

FIGURE 3

Schematic diagram of the EC-informant structure. It includes two encoder layers and one decoder layer, and uses a self-attention distilling
operation to effectively reduce the RAM usage requirements.

propagation during the inference phase, making it highly effective
in time-series forecasting.

Informer employs a global timestamp to analyze the effects of
hours, days, weeks, and even festivals on the data, yielding excellent
results. This study aimed to create virtual EEG acquisition channels
or complete missing ones. The data’s coordinate axis corresponds
to the EEG acquisition moment. Although the sample’s specific

temporal location throughout the time period or the type of action
performed can be used as additional timestamps, they hold little
significance for EEG channel data acquisition. This is because EEG
signals are nonstationary, highly random, and abrupt. In short
and irregular experiments, factors such as age, date, and signal
acquisition time can be disregarded. Moreover, while macroscopic
human behavior can be somewhat predicted, EEG signals are a
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combination of external factors (e.g., vision, touch) and subjective
factors (e.g., human thinking), constantly changing. Consequently,
forecasting EEG signals is extremely challenging, and predicting
real-time EEG signals from self-aware humans is nearly impossible.
This study employed known EEGs to complete unknown BCI
channels rather than predicting future signals, rendering the direct
use of Informer unsuitable. Informer was modified to develop
EC-informer, which demonstrated considerable advantages in
augmenting virtual BCI channels and supplementing poor channels
to achieve channel data completion.

In this study, based on the test content, several channels
were chosen as known channels, while the remaining channels
were deemed unknown, with no electrodes installed in practical
applications. Instead, the EC-informer was employed to acquire
output EEG information from the (virtual) channel at a specific
location for analysis and utilization. Alternatively, if channel data
were damaged or information was lost due to external factors, the
EC-informer could be utilized to complete the BCI channel. In the
subsequent sections of this study, the information obtained from
the virtual channel using the EC-informer is referred to as the
complementary signal, and the corresponding channel is termed
the complementary channel.

The input channel of EC-informer is Ci ∈ {C1, .., Cn}, where n
is the number of input channels; Cp is the complementary channel,
Cp /∈ {C1, .., Cn}; and C

′

p is the finally obtained complementary
signal. In comparison to models like RNN and LSTM, Informer
disrupts the temporal sequence, resulting in input data that no
longer possesses temporal information (Yan et al., 2022). Hence, it
is necessary to incorporate relative and absolute positions for each
time instance. The Informer employs the point-wise self-attention
mechanism and time stamps to adjust the information’s location,
utilizing a sinusoidal positional encoding approach, as illustrated
in Equation (1).

PE(pos,2j) = sin(
pos

(2Lx)

2j
dmodel

)

PE(pos,2j+1) = cos( pos

(2Lx)

2j
dmodel

)
(1)

Sinusoidal time encoding is conducted, allowing for periodic
alterations in the timestamp while confining the range between 0
and 1. The computation of PE in the formula is associated with
the parity of pos (index information of data within the time series).
The value range of pos can encompass the entire time series or be

TABLE 1 The remaining parameters.

Description Parameter Description Parameter

Train epochs 3 Dimension of
model

128

Batch size of train input
data

128 Number of heads 16

Input sequence length of
EC-informer encoder

48 Number of
encoder layers

2

Label sequence length of
EC-informer decoder

24 Number of
decoder layers

1

Optimizer learning rate 0.001 Dropout 0.05

Bias 4

restricted to a local time index. Lx is the length of the time series,
and dmodel is the dimension of the input and output vectors of
the model, where j ∈ {1, 2,, [dmodel/2]}. The expressions enclosed
in brackets serve to differentiate the positions and periods of
data points. This encoding technique effectively circumvents issues
related to vanishing or exploding gradients while mitigating the
effects of overfitting and noise. The relative location information
of the input channel is posi ∈ {0, 1, 2,, L−1}, and the location
information of the output signal is pos

′

j {ts, ts+1, ...,ts+L′−1}.
Here, ts is the initial code of the output label, L

′

is the output
time-series length, and the following conditions exist:{

ts ≥ 0
ts+L′ − 1 ≤ L− 1

(2)

In essence, the positional information of the label is entirely
encompassed by the input sample’s location information, taking
into account both the preceding input channel’s impact on the
predicted channel and the predicted channel’s effect on the
subsequent input channel. This approach enhances the accuracy of
the output channel.

For the sample at time t, the input data is X t
{xt

1, ..., xt
Lx
|xt

i ∈

Rdx}, where is the channel number of the EEG signal input. The
data information outputted by EC-informer is Y t

{yt
1, ..., yt

Lx
|yt

i ∈

Rdy}, where dy 1 is the number of output channels. The association
between input channels and complementary channels is illustrated
in Figure 2.

Building upon the Informer, the proposed EC-informer
consists of a two-layer EC-informer and a single-layer decoder. The
detailed structure of the model can be seen in Figure 3.

In the aforementioned figure, the multi-head ProbSparse self-
attention block comprises three tensors, namely Query(Q), Key(K),
and Value(V), which are computed using three distinct linear
layers. Furthermore, Q ∈ RLQ d, K ∈ RLk d, V ∈ RVQ d, where d
is the dimension of self-attention. In order to enhance parameter
efficiency and decrease the model’s hardware demands, self-
attention in this research is derived probabilistically, as illustrated
in Equation (3).

A(qi, K, V) =
∑LV

j

k(qi, kj)∑LK
l k(qi, kl)

Vj (3)

Here, p(kj|qi) k(qi, kj)/
∑LK

l k(qi, kl), and k(qi, kj) selects
the asymmetric exponential kernel qikT

j /
√

d. As the probability
distribution of self-attention is sparse, there is a strong correlation
between only certain segments of Q and K. By concentrating on
these significant portions of Q and replacing the remainder with
the average distribution, the model’s complexity can be effectively
reduced. The Kullback-Leibler (KL) divergence is employed to
assess the correlation between Q and K in order to identify these
important segments of Q.

KL
(
q||p

)
= ln

∑LK

l = 1
exp

(
qikT

l
√

d

)
−

1
LK

∑LK

l = 1

qikT
l
√

d
−lnLK (4)

Upon eliminating the constants, the sparsity measure for the
i-th query is defined as:

M
(
qi, K

)
= ln

∑LK

j = 1
exp

(
qikT

l
√

d

)
−

1
LK

∑LK

l = 1

qikT
l
√

d
(5)
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FIGURE 4

Evaluation results of complementary channels of subjects.

Finally, the softmax function is used to obtain the most
important parts of Q:

A
(
Q, K, V

)
= softmax

(
QKT
√

d

)
V (6)

By identifying the most crucial queries, the model’s complexity
can be reduced; however, the length of the time series output
from each encoder layer remains unchanged. The addition of
encoders leads to an exponential increase in data volume. To some
degree, the self-attention distilling operation addresses this issue.
The maximum pooling layer employed between two encoders can
concentrate essential features, as illustrated in Equation (7).

Xj+1 = MaxPool(ELU(Conv1d([Xj]AB))) (7)

where �AB includes the key operations of multi-head probSparse
self-attention and attention block; Conv1d (·) means 1D
convolution on the time series; ELU � is the activation function,
and MaxPool� is the maximum pooling layer with a step size of
2. Following the self-attention distilling operation, the cumulative
time-series length for each encoder layer is halved compared to
the previous layer. This effectively constrains the data volume of
model parameters, allowing the model to be trained on GPUs with
limited video memory.

The decoder in EC-informer adopts the standard decoder
structure in Transformer, and the output result is the channel that
needs to be completed. Finally, the mean square error (MSE) is used
to calculate the data loss and train EC-informer.

2.3. Hardware condition

The primary program was executed on an NVIDIA 3070Ti
(8GB memory). Additional configurations comprised an AMD R9
5900HX, 32GB DDR4 RAM, and 256GB M.2 SSD, which were
sufficient to meet the research requirements.

2.4. Model parameter settings

The dataset employed in this research included 9 subjects,
each with a training set (T) and a test set (E). Following model

training, the mean square error (MSE) was utilized to assess the
complementary signal and the original EEG information. Here,
Pl is the original signal value at a certain moment, P̂l is the
corresponding value of the complementary channel and L is
the length of the data sample. The smaller the value of E, the
more closely the complementary signal approximates the original
information.

E =
1
N

∑L

l = 1
(Pl−P̂l)

2 (8)

Moreover, Equation (9) is employed to compute the correlation
coefficient between the original signal and the complementary
signal, thereby quantifying the congruence of the two signals. xx
can be considered as the quantity of information from the original
signal retained by the complementary signal. In this context, xx
represents the mean value of the original signal and signifies the
mean value of the complementary signal. A correlation coefficient
of 1 indicates that the two signals are entirely correlated, while a
value of 0 implies that the two signals are unconnected.

ρ =

∑L
l = 1 (Pl−P) (̂Pl−P̂)√∑L

l = 1 (Pl−P)
2
×

∑L
l = 1 (̂Pl−P̂)

2
(9)

Including too many EEG channels can create complications
and hinder the promotion of BCI, whereas using only 1 or 2
channels can result in insufficient data and reduced accuracy in BCI
analysis. To address this issue, the proposed EC-informer selected
four EEG channels, and each training session completed one of the
lost channels. The input size for both the encoder and decoder was
set to 4, while the output size was set to 1. Other parameters used in
the study are presented in Table 1.

2.5. Model training analysis

2.5.1. Applicable objects of EC-informer
The available EEG acquisition device had 22 channels, with

the Cz channel located at the center. Hence, for the first trial,
Cz was chosen as the target channel, and the 1st, 8th, 12th, and
20th channels situated 5 cm from the Cz channel were selected as
input channels, as seen in Figure 1. The EC-informer was used
to complete the missing information of the Cz channel, and the
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FIGURE 5

Example of EEG waveformst. (A) Comparison of real signals and complementary signals in channels S1-10th. (B) Comparison of real signals and
complementary signals in channels S7-10th. (C) Comparison of real signals and baseline-corrected complementary signals in channels S7-10th.

complementary information was obtained. The performance of the
proposed approach was evaluated on 9 subjects, and the results are
presented in Figure 4.

The EC-informer yielded low MSE values for the
complementary signals obtained for all 9 subjects. To provide
a comparison of the results, EEG signals from subjects S1 and S7
were selected and plotted in Figures 5A, B.

For S1, the Cz channel data completed using EC-informer with
the chosen parameters showed a high degree of data recovery,
and the trends of change were almost identical, with only slight
differences in amplitude. The correlation coefficient ρ between
the two signals was 0.9567, indicating a high level of information

retention. For S7, although the MSE was the highest among
subjects, the correlation coefficient ρ still reached 0.9334. This
result may be attributed to the change in channel placement
during the two EEG acquisitions for S7. The supplementary
signal showed a slight upward shift, but the waveform was
identical to the actual waveform. In most BCI applications,
preprocessing, such as mean correction, is performed on each
channel, which has little impact on subsequent analysis. Thus,
baseline correction was applied to all complementary signals by
setting the average values of the output channel data and the Cz
channel data to 0. The corrected waveform comparison is shown in
Figure 5C.
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FIGURE 6

The MSE and ρ of 9 subjects in the 10th channel were compared using EC-informer, GN1, and interpolation method. The results show that the
complementary signals obtained using EC-informer have the best performance for most subjects.

FIGURE 7

As the distance from the target channel increases, the complementary effects of all three methods decrease, but overall, EC-informer has the best
complementary results.

All output signals underwent baseline correction, resulting in
a high degree of coincidence between the complementary signal
and Cz channel data. The new MSE was calculated based on
the corrected signals. Furthermore, the MSE between the original
information and the interpolated EEG data using Equation (10) was
also computed after baseline correction.

Cp =

4∑
i = 1

ηiCi (10)

where i is the channel used, ηi 1/[di(
∑4

i 1 1/di)], and di is the
distance from the channel to the target channel. In order to evaluate
the effectiveness of EC-informer, it was not only compared with the
interpolation method but also with the GN1-model proposed in Ref
(Svantesson et al., 2021). However, it was found that the input data

length of the original GN1-model (10 s, 2,500 sampling points) did
not suit the 2a dataset well, possibly due to too few samples. Hence,
the input data length of the GN1-model was changed to 0.4 s (100
sampling points) so that its input channels were the same as those
for EC-informer in each comparison. Additionally, the number of
training epochs was increased from 60 to 300, and the modified
GN1-model showed satisfactory results. The comparison of MSE
and the correlation coefficient between the three methods can be
seen in Figure 6.

The results indicate that EC-informer had a significant
complementary effect on all subjects, as shown by the decreased
MSE values. Moreover, the correlation coefficients were greater
than 0.93, demonstrating high retention of the original EEG
information. Overall, the evaluation results were better than
those of the interpolation method and slightly superior to those
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FIGURE 8

From the figure, it can be observed that the complementary signal and the real signal have a very high degree of overlap. (A) The waveform of the
real and complementary signals of subject 1–10th channel when the average distance is 2.5 cm. (B) The waveform of the real and complementary
signals of subject 1–10th channel when the average distance is 6.8 cm.

FIGURE 9

Multi-channel completion effects. Using 1st, 8th, 12th, and 20th channels to supplement the information of the remaining 18 channels of Subject 1,
compared to the other two methods, EC-informer retains the most information.

of the GN1-model, illustrating the high applicability of EC-
informer to most operators. Nevertheless, the MSE and correlation
coefficients showed variations between subjects, which might be
associated with subtle differences in head structure, BCI illiteracy,
or factors such as Body Mass Index (BMI), as discussed in
Lee et al. (2019) and Gorniak et al. (2022). Nonetheless, these
findings imply that there is still value in using EC-informer for
channel supplementation.

2.5.2. Relationship between complementary
channel and input channel distance

Subject S1 was chosen for a more detailed analysis of the
capabilities of EC-informer. The distance between the input
channels and the lost channel was found to affect the accuracy of the
complementary signal. In order to investigate this effect, the study
increased the average distance between the input channels and the
lost channel, and evaluated the results, as shown in Figure 7.
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FIGURE 10

EEG waveforms from direct output. (A) Comparison of the waveform of the real EEG and complementary information of the 7th channel after
baseline correction. (B) Comparison of the waveform of the real EEG and complementary information of the 7th channel after baseline correction.
(C) Comparison of the waveform of the real EEG and complementary information of the 7th channel after amplitude correction. (D) Comparison of

the waveform of the real EEG and complementary information of the 13th channel after amplitude correction.
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FIGURE 11

EEG channels to be completed, (A) using 1st, 8th, 10th, and 20th channels to supplement the 8 red-marked channels. (B) Using 1st, 8th, 10th, and
12th channels to supplement the 9 red-marked channels.

Figure 8A displays the complementary signal waveform in the
test with an average distance of 2.5 cm. As the distance increased,
the MSE using the complementary signal decreased and the signal
correlation coefficient slightly decreased. In the test with an average
distance of 6.8 cm, the combination with the farthest distance
to the sample in the dataset, the signal comparison is shown in
Figure 8B. The fitting degree using the 1st, 7th, 13th, and 22nd
channels to complete the Cz channel was inferior to the 2.5-
cm case, but the signal correlation coefficient still exceeded 0.91,
indicating excellent fitting performance. Comparing with Figure 7,
the advantages of using the complementary signals of EC-informer
over the interpolation method and GN1-model were revealed,
particularly when the acquisition channels were sparse.

2.5.3. Multi-channel completion of EC-informer
EEG-completion-informer allows for using channels other than

the middle channel as complementary channels. In this research,
the complementary signals of the remaining 18 channels were
obtained using the 1st, 8th, 12th, and 20th channels as input
channels. The output MSE for each channel is depicted in Figure 9.

Among the channels, the 7th and 13th channels had the worst
MSE values, which may be attributed to their locations at the edges
of the EEG acquisition device. The corresponding complementary
waveforms are shown in Figures 10A, B.

It can be observed that the differences between the
complementary signals were primarily in magnitude, while
the trends were similar. By multiplying the complementary
channel by a coefficient α, the signal amplitude could be adjusted
to approach the original amplitude. Equation (11) details the
calculation method for α.

α =

∑L
l = 1 |Pl|∑L
l = 1 |̂Pl|

(11)

The obtained new MSE values for channels 7 and 13 were
8.8 × 10−4 and 13.17 × 10−4, respectively. This reduction in
data loss indicated that the amplitude of the complementary

signal played a crucial role in affecting the MSE of boundary
complementary channels. The processed waveforms are presented
in Figures 10C, D, indicating that the complementary signal
contained relatively complete EEG change information with a
correlation coefficient ρ greater than 0.91. Therefore, only a small
amount of information was lost, and the degree of information
retention was much higher than that of interpolation and slightly
higher than that of the GN1-model in general. This research
demonstrated that EC-informer could obtain relatively complete
information on multiple channels even with a small number of
evenly distributed channels.

As interpolation only completed data between input channels
and exhibited poor performance for boundary channels,
subsequent research only analyzed EC-informer and did not
compare it with the interpolation method.

2.5.4. Signal completion of opposite channels
This study also explored the completion of BCI acquisition

channels on one side with those on the other side to analyze the
effectiveness of EC-informer and GN1-model under extreme cases.
The red channels in Figure 11 were taken as the complementary
targets. The completion of the channels on the right side using the
1st, 8th, 10th, and 20th channels as input channels is shown in
Figure 11A, while the completion of the posterior half channels
using the 1st, 8th, 10th, and 12th channels as input channels is
shown in Figure 11B. In both cases, the other half channels were
used as input.

After EC-informer training, the evaluation results of the two
cases are displayed in Figure 12.

It is evident from the figure that the MSE and the correlation
coefficient ρ of the complementary signal were closely related to
distance. This phenomenon was primarily due to the different
functional divisions of the cerebral cortex in various areas:
the further the distance, the greater the functional differences.
However, even the farthest channels (i.e., the 13th and 22nd
channels) still preserved a significant amount of information
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FIGURE 12

Evaluation results of opposite complementary signals, (A) completion results of the right channels, (B) completion results of the left channels. (A) For
the supplementation of the latter half of the channels, the supplementation effect of EC-informer is slightly better than that of GN1. (B) For the
supplementation of the right half of the channels, the supplementation effects of the two models are basically the same.

for analysis, which demonstrates the outstanding complementary
effect of EC-informer.

2.5.5. Migration of EC-informer
Not all subjects can participate in multiple EEG acquisition

experiments, which limits the availability of complete data for
modeling. Furthermore, due to the significant variations in EEG
signals among different individuals, a model that works for one
subject may not generalize well to others. Therefore, this study
investigated the feasibility of using a trained EC-informer model
on other subjects with only one subject’s data available for training.
The selected input channels were 1st, 8th, 12th, and 20th, and the
target channel for completion was Cz. The model was trained on
the data from one subject, and the remaining eight subjects were
used for evaluation.

The results, shown in Figure 13, indicate good consistency in
MSE and high correlation coefficient ρ across different subjects.
This suggests that even with only one subject’s data, the model is
still effective for completing data for other subjects, demonstrating
the excellent generalization potential of EC-informer. Compared to

the GN1-model, EC-informer achieved better performance in most
cases, highlighting its superiority.

2.5.6. Verification of EC-informer effectiveness
The main objective of using EC-informer was to obtain

channels that were not present in the EEG acquisition device or
to handle the loss of certain channel signals during abnormal
conditions. In order to validate the data obtained by EC-informer, a
simple three-layer CNN network was established to classify the four
types of actions included in the 2008 2a dataset. The channels used
in the classification experiment were the 4th, 8th, 10th, and 20th
channels. Real data were used for model training, whereas for the
verification set, real data was compared with the complementary
signals derived from EC-informer. Taking the accuracy of real data
as a baseline, the difference in accuracy between the two verification
sets was calculated. The four input channels in the verification set
were all complementary signals, emphasizing the gap between the
two types of signals. Figure 14 shows the comparison results.

As seen from the figure, the classification accuracy of
the complementary signals derived using EC-informer on the
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FIGURE 13

Using transfer to verify the two complementary effects, it can be observed that for most subjects, EC-informer has better complementary effects.

verification set decreased slightly compared to that of the real data
due to the inevitable loss of local signals in data extrapolation.
However, the EEG results obtained using the EC-informer model
were still maintained at a relatively satisfactory level, which proved
the effectiveness of the EC-informer model in BCI applications.
Compared to other methods, EC-informer required fewer samples
and iterations to obtain satisfactory data.

2.5.7. Verification of EC-informer stability
To test the stability of EC-informer, inactivity data of 20 min

was collected from four healthy subjects. Ten minutes of data were
used as the training set, and the remaining 10 min were used

as the verification set. Four channels with an average distance of
5.59 cm, namely the 2nd, 6th, 14th, and 18th channels, were used
to complement the data of the 10th channel in accordance with the
channel layout of 2a. After processing the data as described earlier
and training the model with EC-informer, the obtained results are
presented in Table 2.

The output results of EC-informer from our dataset
were slightly lower than those of the 2a dataset, possibly
due to differences in acquisition device accuracy, acquisition
environment, and subjects. Nevertheless, the model maintained
a low MSE and a high correlation coefficient, indicating good
stability and promising application prospects for EC-informer.
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FIGURE 14

By classifying samples using both the true values and the complementary information obtained from the EC-informer on the validation set, it is
proven that using the EC-informer does not lose much information and can still retain most useful signals.

TABLE 2 Evaluation statistics.

Subject S1 S2 S3 S4

MSE 0.00101 0.00174 0.00113 0.00194

Correlation coefficient (ρ) 0.82911 0.86605 0.89126 0.85448

2.5.8. Other application examples of EC-informer
EEG-completion-informer has various potential applications

beyond the research discussed above. For instance, it can be
utilized to identify faulty channels. If the data obtained from a
channel of an acquisition device shows significant deviation or
lacks correlation with the complementary signal derived from EC-
informer, it can be concluded that the channel is damaged or has
been affected by additional interference at some point. This can
effectively prevent the negative impact of EEG noise on subsequent
work. In scenarios where the number of channels available on a
new BCI device is limited, EC-informer can be used to generate
virtual channels’ EEG, enabling researchers to follow the control
strategy of the original BCI without further experiments. This
approach reduces researchers’ workload and saves development
time, making EC-informer essential for promoting the widespread
applications of BCI.

3. Results

This study presents the EC-informer deep learning model and
its potential applications in BCI devices. Through analyses of
the model’s applicability, the relationship between complementary
and input channel distances, multi-location channel completion,
and migration capability, it was demonstrated that EC-informer
could effectively increase the number of acquisition channels for
BCI devices. Particularly when only a few acquisition channels
are available, EC-informer can provide a satisfactory level of

EEG information through complementary effects. It can be used
to recover damaged or bad channel data, as well as determine
bad channels in experiments and applications. Furthermore, the
model’s stability and effectiveness were experimentally verified.
These findings suggest that EC-informer has practical significance
in BCI research and development.

4. Discussion

EEG-completion-informer has a wide application prospect
because its ability to complement channels is superior to that
of interpolation methods and other network models under many
working conditions. Due to the inherent characteristics of the
EC-informer, it could be used with a few computing resources,
reducing the hardware requirements of the BCI system. A small
number of acquisition channels and low hardware demand,
together with a high degree of fitting of virtual channel signals,
allow the BCI system to maintain high operating accuracy while
considering a lightweight and convenient design. In conclusion, the
proposed EC-informer has a positive significance in promoting the
applications of BCI in daily life.

The EC-informer model is designed for processing long
time series data and can be utilized as a data amplification
scheme for adding virtual channels in BCI systems to adapt to
diverse channel requirements. The model can also be applied
to different types of EEG signals that are converted into time
series. Furthermore, in systems requiring EEG analysis and
showing EEG correlation between channels, EC-informer can
be used for channel completion or assessment to enhance
system performance.

It is worth noting that the quality of complementary signals
provided by EC-informer depends on the input data channels.
If there are artifacts or transients in the input channels, they
can also appear in the complementary signals and require
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additional processing techniques such as wavelet transform. When
the input channels contain localized fluctuations or spatially
limited activities, the complementary signals can partially restore
the signals. However, in completely independent scenarios, data
recovery is more challenging. There are some limitations to the
working conditions of EC-informer. For instance, most existing
networks are designed to train for a single channel, and using
multiple channels as target channels may result in unstable
output and reduced accuracy. Additionally, while a single EC-
informer requires less computation and fewer parameters and has
low hardware demands, the simultaneous processing of multiple
channels can consume more computer resources, limiting its real-
time use on portable devices and making it more suitable for offline
analysis. Therefore, future research should aim to increase the
number of output channels and reduce the hardware requirements
for using the model, facilitating its implementation on real-
time BCI devices.
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