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Investigating cognitive brain functions using non-invasive electrophysiology can

be challenging due to the particularities of the task-related EEG activity, the

depth of the activated brain areas, and the extent of the networks involved.

Stereoelectroencephalographic (SEEG) investigations in patients with drug-

resistant epilepsy o�er an extraordinary opportunity to validate information

derived from non-invasive recordings at macro-scales. The SEEG approach

can provide brain activity with high spatial specificity during tasks that target

specific cognitive processes (e.g., memory). Full validation is possible only when

performing simultaneous scalp SEEG recordings, which allows recording signals

in the exact same brain state. This is the approach we have taken in 12 subjects

performing a visualmemory task that requires the recognition of previously viewed

objects. The intracranial signals on 965 contact pairs have been compared to

391 simultaneously recorded scalp signals at a regional and whole-brain level,

using multivariate pattern analysis. The results show that the task conditions

are best captured by intracranial sensors, despite the limited spatial coverage of

SEEG electrodes, compared to the whole-brain non-invasive recordings. Applying

beamformer source reconstruction or independent component analysis does not

result in an improvement of the multivariate task decoding performance using

surface sensor data. By analyzing a joint scalp and SEEG dataset, we investigated

whether the two types of signals carry complementary information that might

improve the machine-learning classifier performance. This joint analysis revealed

that the results are driven by the modality exhibiting best individual performance,

namely SEEG.

KEYWORDS

EEG, stereo-EEG, simultaneous recordings, multivariate pattern analysis, recognition

memory

1. Introduction

Electroencephalography (EEG) is routinely used to understand cognitive processes
(Kappenman and Luck, 2011). The ability of these non-invasive recordings to capture
cognitive processes accurately and entirely is the subject of ongoing investigations. A primary
challenge is the well-known ill-posed problem of source reconstruction (Grech et al., 2008).
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Knowing the actual sources and their time course in detail
would provide invaluable information to disentangle brain
activities. Clinical uses of EEG face a similar challenge, e.g.,
concerning the surface visibility of epileptiform activity, either
ictal or inter-ictal. The challenge has been addressed through
the simultaneous recording of intracranial and surface, both
with EEG (Tao et al., 2005; Ray et al., 2007; Koessler et al., 2015;
Antony et al., 2019; Barborica et al., 2021) and MEG (Pizzo et al.,
2019). An asset of the clinical context is that many forms of
epileptiform activity, sometimes paroxysmal, involve relatively
large patches of cortical tissue that present synchronized activity,
evoking potentials on the scalp having reasonable signal-to-
noise ratio (SNR). By contrast, cognitive processes evoke more
subtle activities and variations, involving deep brain structures,
and high-frequency activity. These factors may cumulatively
contribute to poor scalp visibility of the corresponding
EEG activity.

Recognition memory (Yonelinas, 2002) provides an ideal test
case to explore how neural activities evoked by cognitive tasks
are captured at the scalp by EEG. Recognition memory is a
complex cognitive function generally broken down into encoding,
storage, and retrieval processes (Mandler, 1980; Besson et al.,
2012). These are known to involve lateral and deep structures
such as the hippocampus (Rutishauser et al., 2006; Merkow et al.,
2015). Recognitionmemory has been extensively studied with EEG,
using recordings made either on the scalp (Ratcliff et al., 2016)
or in the brain (Merkow et al., 2015), but not simultaneously.
Here, we assess to what extent the postulated processes are
visible on scalp EEG by validating the source localization results
with the simultaneous scalp intracranial recordings. The data are
collected from patients undergoing stereoelectroencephalographic
(SEEG) pre-surgical evaluation for drug-resistant epilepsy; they
performed a standard task requiring them to encode and later
recognize pictures of objects (Besson et al., 2012; Despouy et al.,
2020).

In animal studies, memory processes have been widely
studied using electrophysiological recordings. The reduced size
of the brain limits the number of electrodes that can be
implanted in the behaving animal. Therefore, most studies
include recordings from only one or two regions, mainly
in the hippocampal formation (Mizuseki et al., 2009; López-
Madrona et al., 2020). However, their spatial resolution is much
higher than human SEEG, with a single electrode composed
of up to seven shanks in the array (Csicsvari et al., 2003) or
containing hundreds of recording channels (Steinmetz et al.,
2021).

For our data collected simultaneously at different scales
(mesoscale – SEEG, macroscale – scalp) in human subjects,
providing wide (SEEG) or whole-brain (surface EEG) spatial
coverage, we have performed a high-sensitivity multivariate
pattern analysis (MVPA) (Haxby et al., 2001; Grootswagers
et al., 2017), not only on individual sets of signals of
different modalities (intracranial, scalp, or reconstructions)
but also on combined sets having higher dimensionality,
to evidence possible synergies between signals recorded at
different scales.

2. Methods

2.1. Subjects

We selected 12 patients diagnosed with focal drug-resistant
epilepsy that underwent long-term simultaneous EEG and SEEG
recordings in the Emergency University Hospital Bucharest
between 2020 and 2022 (Table 1). Patients were considered surgical
candidates and underwent pre-surgical non-invasive evaluation
using extended patient history, video-electroencephalography,
brain structural and functional imaging (inter-ictal FDG-PET CT),
and neuropsychological profile. Consequently, in these patients,
invasive recordings were considered necessary to delineate the
epileptogenic zone and to map the functional cortex for tailoring
the surgical resection (Munari et al., 1994; Kahane et al., 2003;
Jayakar et al., 2016; Isnard et al., 2018). The details regarding
the patients’ gender, age, type of epilepsy, and lateralization are
provided in Table 1. In addition, as part of this research protocol,
scalp electrodes were attached, allowing for simultaneous surface
and intracranial long-term recordings. This study included only
patients with unmodified anatomy, no previous major resection,
and no major cognitive deficit.

The study has been performed under Bucharest University
ethical committee approval CEC 23/20.04.2019. All patients, or
their legal guardian/next of kin, signed a written informed
consent, in accordance with the Declaration of Helsinki, for the
simultaneous recordings and data sharing procedures.

2.2. Experimental paradigm

We used the same experimental visual memory paradigm as
in López-Madrona et al. (2022). In summary, we used 168 images
from the database of Duñabeitia et al. (2018) that were organized
in blocks of 12 or 24 images, presented on a computer screen.
There were two block types: encoding (“ENC”), where a set of 12
images were presented to the patient, followed by a recognition
block where the same 12 familiar images (“OLD”) were randomly
interleaved with other 12 novel images (“NEW”). The patient was
required to indicate by pressing two buttons on the keyboard, using
two fingers of the right hand, whether the images were familiar or
not, within 1500ms. A distracting video of 1min was presented
in between encoding and recognition blocks. The sequence of
36 image presentations was repeated seven times using different
images from the 168-image set and pseudo-random distribution of
the OLD and NEW items, with the constraint that there were never
more than three “old” or “new” items in a row. Stimuli presentation
and response logging were controlled by the software E-Prime 3.0
(Psychology Software Tools, Pittsburgh, PA).

2.3. Simultaneous scalp and intracranial
recordings

Stereoelectroencephalographic exploration was performed
using depth electrodes (Dixi Medical, Chaudefontaine, France)
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TABLE 1 Patients included in this study.

Patient ID Age Epilepsy Laterali
zation

Language
organization

SEEG
electrodes

SEEG
contacts

Scalp
electrodes

SEEG
electrode
location

1 89 37 Insular R Left typical 14 172 30 Left, posterior

2 90 17 Insular-
opercular

L Left typical 9 86 30 Left, central

3 92 27 Insular L Left typical 10 145 30 Left, posterior

4 96 26 Temporal R Left typical 11 152 38 Right,
anterior

5 97 26 Rolandic
Operculum

L Atypical
bilateral

10 135 35 Left, central

6 98 39 Temporal R Left typical 9 129 38 Right,
posterior

7 99 24 Insular L Left typical 13 189 38 Left, anterior

8 101 31 Temporal B Left typical 14 187 40 Bilateral,
central

9 102 31 Temporo-
insular

B Left typical 16 229 40 Bilateral,
posterior

10 104 20 Insular L Left typical 10 124 40 Left, central

11 105 26 Frontal R Left typical 12 161 37 Right,
anterior

12 107 26 Frontal L Left typical 8 176 40 Left, anterior

with 8 to 18 contacts per electrode, 2mm contact length, 3.5mm
center-to-center contact spacing, and 0.8mm diameter. Multiple
electrodes (9 – 16) were placed following a patient-specific
hypothesis regarding the localization of the seizure onset zone
and the pathways of ictal spread (Kahane et al., 2003; Jayakar
et al., 2016), allowing for up to 229 contacts to be available in
each patient. Electrodes were placed intracranially using the
microTargetingTM Multi-Oblique Epilepsy STarFix Platform (FHC,
Bowdoin, ME USA) (Dewan et al., 2018; Yu et al., 2018; Pistol et al.,
2021) or the Leksell stereotactic frame (Elekta AB, Stockholm,
Sweden). To determine the exact location of each electrode and
contact, the post-implantation CT scan was loaded into surgical
planning software (Waypoint Planner, FHC, Bowdoin, ME USA),
co-registered with the pre-implantation MRI, and adjustments
to the initially planned trajectories were made to match the
postop location of the electrodes. Manual labeling of the SEEG
contacts has been performed using the abbreviations listed in
Supplementary Table S1.

In view of the group analysis, the pre-surgical MRI of each
patient was also used for running an analysis pipeline implemented
in FreeSurfer (Fischl, 2012) that allowed us to obtain the patient’s
cortical surface reconstruction, used for visualization purposes, but
also—more importantly—, for performing a non-rigid registration
of the patient’s MRI to the “cvs_avg35_inMNI152” FreeSurfer
template (Postelnicu et al., 2009), providing us with the coordinates
of each intracranial contact in a common MNI space.

One up to three days after the SEEG implantation, between
30 and 40 scalp electrodes were placed according to the 10-20

system. A few electrodes were repositioned on adjacent 10-10 grid
location, due to interference with the SEEG electrodes, and up to
10 electrodes could not be placed at all. The exact number of scalp
electrodes in each patient is provided in Table 1.

Signals were collected using a setup as described by Barborica
et al. (2021). In summary, two identical Natus Quantum 128-
channel amplifiers (Natus Neuro, Middleton, WI) were used, one
for each modality (scalp/intracranial) and having separate signal
references. The reference for the SEEG recordings was chosen on
one contact located in white matter exhibiting minimal activity,
whereas the reference for the scalp system was Fpz. Raw data
were acquired at a sample rate of 4096Hz. The hardware was
synchronized using digital triggers to both systems and a 50Hz sine
reference signal, recorded simultaneously using DC inputs of the
two systems. Patients 9–12 were recorded with a single Quantum
256-channel amplifier that did not require external synchronization
hardware. The data were combined and saved in a single file in
AnyWave ADES format (Colombet et al., 2015), containing both
types of signals. The analysis workflow is shown in Figure 1.

The synchronization between stimuli presentation and (S)EEG
recordings has been performed using a photodiode part of the
Chronos response box (Psychology Software Tools, Pittsburgh, PA)
attached to a corner of the screen where trial start synchronization
flashes were presented. The response time and correctness were
merged into the AnyWave event file by reading the E-Prime log
files using MATLAB (MathWorks, Natick, MA) custom scripts.

Only intracranial sensors located outside the seizure onset zone
and gray matter were included in the analysis. Additional artifacted
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FIGURE 1

Signal collection and analysis workflow.
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trial removal, as well as bad channel removal, was performed
manually by visually inspecting the recordings.

2.4. ERP processing

Signals were loaded into EEGLab (Delorme and Makeig, 2004)
software, resampled at 256Hz, and filtered in the 0.5–45Hz
interval. Scalp EEG was re-referenced to the common average,
and artifacts were removed using independent component analysis
(ICA). Only correct trials have been retained for further analysis.

2.5. Source localization

To test the inverse solution of scalp EEG for finding brain
areas that are involved in task decoding, we have calculated source
signals at the location of the intracranial electrodes. To achieve
that, we have performed a beamformer analysis on the standard
FreeSurfer’s fsaverage template, brain electrical model, and 10–
20 electrode positions available in MNE-Python (Gramfort et al.,
2014). The beamformer spatial filters calculated using linearly
constrained minimum variance (LCMV) (Van Veen et al., 1997)
were used to calculate source time courses on a 5-mm grid covering
the brain. The source time course on the grid point nearest to
the midpoint between a pair of SEEG contacts that were part
of a bipolar-recorded signal was considered to approximate the
source signal at each intracranial site. We, therefore, obtained a
set of signals with the same dimensionality as the SEEG, which
we analyzed using the common MVPA pipeline. Calculating the
source signals at the locations near intracranial recording sites
allowed the SEEG recordings to be used as ground truth for source
reconstructions (Mikulan et al., 2020) and provided the ability to
compare task-related activations at the same locations for both
types of signals.

2.6. Independent component analysis

To test whether a method that is known to separate temporally
correlated neuronal sources can enhance MVPA decoding results,
we have performed an independent component analysis (ICA) of
scalp signals using second-order blind identification (SOBI) blind
source separation (Belouchrani et al., 1993, 1997; Tang et al., 2005),
using EEGLab software (Delorme and Makeig, 2004).

2.7. Multivariate pattern analysis

For multivariate pattern analysis, we have generally followed
the workflow described in Grootswagers et al. (2017). The
processing has been performed using the MNE-Python toolbox
(Gramfort et al., 2013, 2014) and custom Python and MATLAB
(MathWorks, Natick, MA) scripts. A logistic regression linear
classifier was trained to discriminate between responses for the
OLD and NEW conditions using the L-BFGS-B – (Large-scale
Bound-constrained Optimization) solver. The model was fitted

to the standardized data, and its performance was scored using
the receiver operating characteristic (ROC) area under the curve
(AUC). The scores were evaluated using 20-fold cross-validation,
and time intervals where they were statistically different from
chance were evaluated using a one-sample permutation cluster test
applied to the set of scores calculated for each fold (Maris and
Oostenveld, 2007).

The processing pipeline was applied to SEEG bipolar signals,
to the EEG signals, to the entire set of independent components
of scalp EEG, or to the scalp source signals at the SEEG sensor
location obtained using a beamformer. Specific to our study, the
simultaneous collection of the scalp and SEEG data allowed the
pooling of the signals for the two modalities to investigate whether
combined data provide a classifier performance significantly
different from analyzing individual sets.

We have calculated the contribution of signals at each
intracranial sensor location (recorded or reconstructed) to the
recognition process by calculating the activation patterns associated
with fitting the data with a linear model (Haufe et al., 2014) using
the MNE-Python toolbox, which in turn resorts extensively to
scikit-learn Python toolbox (Pedregosa et al., 2011; Abraham et al.,
2014). In contrast to the classifier weights associated with each
sensor, which do not have a direct interpretation, the reconstructed
activation patterns are interpretable as neural sources encoding the
studied processes that can be projected onto the sensors (Haufe
et al., 2014; Fahrenfort et al., 2018).

To assess the contribution of various brain structures to
decoding task conditions, we repeated the MVPA analysis on a
subset of signals recorded or reconstructed within the same brain
area or structure (Despouy et al., 2020), according to the labeling
we have described earlier in this section.Wewill further refer to this
analysis restricted to a region of interest (ROI) as “regional analysis”
(Ebrahiminia et al., 2022). In contrast to activation patterns (Haufe
et al., 2014), which have no statistical significance associated
with their time courses, regional analysis allows inferring, in a
probabilistic way, the time intervals where decoding performance
is different from chance, evidencing the sequential/hierarchical
processing of stimulus novelty within the brain.

3. Results

A total of 136 intracranial electrodes having 1,885 contacts
were implanted in 12 patients. Additional 436 surface electrodes
were attached to the scalp. After data curation and application of
inclusion criteria, signals recorded at 965 intracranial sites and 391
scalp locations were further included in the analysis. The subjects
correctly identified stimulus novelty in 89.53% of the trials. The
MVPA analysis was applied to 1,729 correct recognition trials
(OLD: 822, NEW: 907) having a mean± SD response time of 719.1
± 162.4ms (OLD) and 765.0± 191.2 ms (NEW).

3.1. Responses on the single scalp and
SEEG electrodes

The ERPs for the scalp sensor and SEEG sensor having the
highest magnitude multivariate activation patterns among all scalp
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FIGURE 2

(A) ERP image for the scalp sensor PO2 in subject 1, exhibiting the highest multivariate activation pattern; trials are grouped by condition and sorted

by the response time, marked using black lines; average ERPs for each condition, as well as the contrast between OLD and NEW conditions, are

shown; the statistical significance of the univariate (permutation cluster test) di�erence, if present, between OLD and NEW conditions at a significance

level p < 0.05 is shown using thick horizontal lines; (B) same as (A), but for the intracranial sensor X04-X05 located in right anterior insula in subject 9.

andm= 965 SEEG signals recorded in all n= 12 patients are shown
in Figure 2.

While a typical high-amplitude ERP presents
prominent peaks either following the stimulus presentation
(∼200ms) or around response time, depending on sensor
location, these examples rather capture situations where
the novelty of the stimulus is best captured, between
400ms and 600ms and around the response time
(∼800 ms).

3.2. Single-subject multivariate analysis

The results of the MVPA analysis of responses at the SEEG,
scalp, source level, and combined scalp SEEG in patient 3 are
shown in Figure 3. The classifier performance for the SEEG
signals is consistently above-chance through the interval ∼450ms
through ∼900ms (permutation cluster test, p < 0.05). By contrast,
the scalp signals provide a statistically significant classification
performance only during the memory retrieval and stimulus
recognition processes between ∼500ms and ∼600ms. Computing
source signals at SEEG sensor locations provide classification
results that are similar in magnitude to the scalp sensor signals,
with eventually better results in terms of the extent of the clusters
reflecting the scores significantly different from chance (p < 0.05).

A regional MVPA analysis presented in Figures 3C, D
highlights the regions that contribute most to the overall
decoding performance, namely the anterior cingulate cortex and
hippocampus. The ACC, as sampled by SEEG, exhibits sustained
better-than-chance scores in the late interval ∼500ms through
∼900ms, whereas Hc presents early (∼500ms), but limited
duration (∼100ms) activations. The scalp, source, and combined
signals provide similar results in Hc, but rather different ones
in ACC.

3.3. Group analysis

At the population level (n = 12 subjects), the classifier
performance based on intracranial signals was much higher than
the one based on scalp or source signals, as shown in Figure 4.

The use of source signals calculated at SEEG sensor locations
provides slightly lower classifier performance than the one based on
signals from which it was derived, i.e., scalp signal (Figure 4). The
MVPA analysis applied to the independent components of the scalp
signal provides results that are virtually identical to the scalp ones.
Combined scalp and SEEG scores follow closely the time course of
the SEEG scores.

The time course of classification performance using SEEG
signals is consistent across subjects, as shown in Figure 5, where
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FIGURE 3

Task decoding performance is expressed as the area under curve of the receiver operating characteristic of the classifier for SEEG, scalp, and source

signals in patient 3. (A) SEEG electrode locations in the left hemisphere; (B) ROC-AUC for sensors of di�erent types, as well as for combined scalp

and SEEG; (C) same as (B), but for the contacts located in the anterior cingulate cortex; (D) same as (B), but for contacts located in the hippocampus.

we have plotted the scores for all subjects as well as the grand
average. This is somehow unexpected, as the areas implanted with
depth electrodes can be quite different. In Figures 5A, C, we show
two implantation schemes providing similar scores, which are
highlighted in Figure 5E with green and blue colors.

When we perform a regional analysis of the performance in
decoding task conditions, we see that the findings at the level of all
m = 965 sites in n = 12 subjects, shown in Figure 4, are confirmed
at a regional scale (Figure 6), with scores significantly different
from chance associated with SEEG signals being higher and more
sustained over time, compared to source signals reconstructed at
the same locations. Among the areas exhibiting the highest and
earliest SEEG scores, we can count F, ITG, and Hc, as well as the
insular-opercular complex. One has to keep in mind that all these
findings are strongly influenced by the coverage of each ROI with
SEEG electrodes.

The 3D representation of multivariate activation patterns
(Haufe et al., 2014) of SEEG and source-space data is shown in
Figure 7. One has to keep in mind that these activation patterns
do not reflect the magnitude of the ERPs, but rather represent
a virtual signal corresponding to how well a site encodes the
stimulus novelty, in our case (Wardle et al., 2016; Grootswagers
et al., 2017). A wide-area brain activation (Figure 7A) over the

course of the recognition process is visible for the intracranial
signals; whereas at a comparable amplitude scale, the source data
show much less activations. The activation patterns of various
brain areas are sequential, following a posterior-to-anterior flow,
as illustrated in Figure 7 and in the Supplementary Data Movie.
The activations associated with EEG source signals show a roughly
similar spatiotemporal pattern. At a closer visual inspection of
Figure 7, we can find evidence of known leakage-related effects
(Schoffelen and Gross, 2009), as multiple contacts in several
electrodes exhibit similar activation values.

In SEEG recordings (Figure 7A), we can divide the activation
into four clinically relevant time intervals. The significant activation
starts at ∼20 0ms and between 200 and 400ms, we can observe
the recognition process that activates the network of structures that
mainly involves the temporal-basal and hippocampus on the right
side. Then, between 400 and 600ms, we can see the activations
related to the decision-making process that significantly involves
bilaterally the perisylvian, prefrontal, and mesial temporal lobe
structures. The sensorimotor activation overlaps the 400–600ms
and continues in the next interval of 600–800ms and represents
the response phase of the task. The last time interval (600–
800ms) highlights the activation of the prefrontal cortex possibly
related to self-evaluation or memory storage. The EEG source
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FIGURE 4

Classifier performance for SEEG, scalp, source, ICA, and combined scalp SEEG signals for all n = 12 subjects. The dashed areas show standard error

intervals for the set of classifier scores for all patients. The horizontal bars indicate the intervals where the scores are statistically di�erent from

chance (one-sample permutation cluster test, p < 0.05).

(Figure 7B) displays a similar timeline of the activation pattern in
the 200–600ms. However, the late phase between 600 and 800ms is
not informative.

4. Discussion

While other studies comparing intracranial to scalp data used
a sequential recording of the two modalities (Ebrahiminia
et al., 2022) or even different sets of participants (Haufe
et al., 2018), we have simultaneously acquired data in the
two modalities, allowing us to validate the results of the EEG
source reconstruction using SEEG recordings in decoding
task conditions, as well as investigate the possible synergy
between invasive and non-invasive recording in decoding
stimulus novelty.

Our results show that our task requiring the subjects to
categorize visual stimuli based on novelty, involving memory
encoding and retrieval, activates large areas of the brain. This
finding is supported by the widespread activation visible in
Figure 7, as well as by the fact that SEEG implantations at
totally different locations result in decoding performances over
time that are close to each other and to the group average
(Figure 5).

The decoding performance of the ML classifier is maximal
when using intracranial signals, although the SEEG implantation
has limited spatial coverage of the brain, compared with the
scalp EEG which is supposed to provide full-brain coverage, as

visible in Figures 3, 4. The relatively poor decoding performance
of the classifier that uses scalp signals can be attributed, in our
opinion, to the significantly lower signal-to-noise ratio (SNR) of
the scalp EEG compared to SEEG. It is also possible that scalp
EEG provides poor visibility of activity in deep structures of the
brain, whereas SEEG samples with undegraded SNR all implanted
locations, regardless of depth. A previous study by Ebrahiminia
et al. (2022) performing sequential scalp and electrocorticographic
(ECoG) recordings has shown that scalp EEG provides slightly
better classification performance of passively viewing visual stimuli
of different categories (Liu et al., 2009). Without counting the
differences in the tasks, one reason for this discrepancy may relate,
once again, to the fact that ECoG does not record activity in deep
brain structures, therefore both modalities provide information
from the outer cortex, with scalp EEG providing slightly better
spatial coverage. Another factor thatmay favor EEG in other studies
is that in our simultaneous protocol, the EEG electrodes were glued
to the scalp 1 day or more before running the memory task (part
of a wider set of investigations), resulting in a degradation of the
quality of the contact within this interval, uncorrectable due to the
requirement of maintaining sterility at the scalp level. Furthermore,
due to spatial constraints related to pre-existing SEEG electrode
anchors, the coverage with scalp electrodes was non-uniform.

Interestingly, using SEEG electrodes, the classifiers were always
able to decode the task conditions using task-evoked intracranial
EEG recorded 300 to 1000ms post-stimuli presentation. This
was true not only at the group, but also at the individual
subject level, even when the spatial sampling of the SEEG
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FIGURE 5

Classifier performance using intracranial signals for two patients having SEEG implantation covering di�erent areas of the brain; (A) bilateral

implantation in subject 8, covering temporal lobe, including mesial structures; (B) mean magnitude of activation patterns in subject 8 across the

entire trial duration; (C) electrode locations in subject 12, frontal, parietal and cingulate areas; (D) same as (B), but for subject 12; and (E) average and

individual classifier scores.

electrodes was completely different (Figure 5). Recent studies
have shown the “traveling wave” behavior of brain activity
(Lubenov and Siapas, 2009; Muller et al., 2014; Liang et al.,
2021; Bhattacharya et al., 2022), and it is possible that we have
observed such effects in our analysis. Under the assumption

that the task-evoked intracranial EEG activity is recorded on a
critical number of electrodes, sufficient for the classifier to learn
the propagation patterns of the traveling wave, we may decode
the task conditions from various brain regions, without a loss
in decoding performance. Similar effects have been observed by
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FIGURE 6

(A) Timeline of decoding performance significantly di�erent from chance (p < 0.05) for signals recorded on subsets of intracranial contacts

implanted in di�erent brain structures. The color of the bars indicates the maximum value of the AUC score within a cluster. The numbers at the right

of each bar indicate the number of sites and number of patients for clusters in each ROI; (B) same as (A), but for scalp sources calculated at the

location of intracranial contacts using beamformer.

groups that studied the representation and processing of emotion in
the brain with machine learning methods, concluding that emotion
representation is encoded as patterns of activations over widely
distributed brain networks (Wager et al., 2015; Donos et al., 2022).

The process of reconstructing the EEG source signals using
beamforming does not result in a significant improvement at the
population level of the classifier’s performance, yielding results
comparable to signals on scalp sensors, as shown in Figure 4. There
are exceptions to that general finding in some individual patients,
as illustrated in Figure 3B, where the decoding performance of
a classifier operating on source signals show earlier and longer
statistically significant above-chance scores than sensor-based
analysis, at a significance level of p < 0.05. However, such results
have to be treated with caution, given the probabilistic nature of
the statistical tests applied (Sassenhagen and Draschkow, 2019).
The regional analysis of the classification performance shown
in Figure 6 is in agreement with the overall results in Figure 4,
where source signals result in more sparse and limited-duration
significant scores than the intracranial signals.

The beamformer source reconstruction is based on linear
matrix operations on the responses (Westner et al., 2022). A linear
transformation based on a square non-singular matrix is equivalent
to an affine transformation in the n-dimensional response space,
which is the space in which the MVPA operates (Grootswagers
et al., 2017).

Another approach that also uses linear matrix transformations
for separating statistically independent components in a set
of signals is the independent component analysis (ICA). We
have tested whether applying ICA to the scalp EEG responses,
results in a set of independent components that provide better
decoding of the task conditions. The results, presented in Figure 4,
show that classifier performance operating on the full set of
independent components, without dimensionality reduction, is
virtually identical to the one for the original signals on the
scalp sensors.

These data-driven findings related to deriving virtual
signals/components based on linear transformations suggest
more general theoretical considerations: a non-singular
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FIGURE 7

MVPA timeline of activation patterns, as introduced by Haufe et al. (2014), for SEEG signals (A) and in EEG source space (B) for all 965 contacts

implanted in 12 patients, shown on the glass brain. The mean of activation patterns’ values within 200ms bins is represented.

affine transformation, equivalent to a series of elementary
transformations such as rotation, scaling, and shear (Goldman,
1992), that do not change the relationships between points
representing the set of n responses at a particular point in time;
therefore, it is not expected to significantly affect the performance
of an ML classifier operating on the transformed set of points.
It should be noted that only linear transformations that do
not perform dimensionality reduction (i.e., the transformation
matrix is square), such as the ones we have considered, are
equivalent to affine transformations and thus unlikely to affect
MVPA classifier accuracy, based on geometrical considerations.
By contrast, other approaches based on non-square linear
transformation matrices, such as principal component analysis
with dimensionality reduction, have been shown to have the

potential for improving ML classifiers’ accuracy (Grootswagers
et al., 2017; Hatamimajoumerd et al., 2020).

In investigating whether scalp and intracranial signals contain
complementary information that might contribute to a classifier
performance, we did find that the modality providing the
best performance (i.e., SEEG) is determining the combined
performance (Figures 3, 4).

A limitation of the study is the partial and non-uniform spatial
sampling of both scalp and intracranial sensors, due to objective
reasons. The source reconstructions are based on the fsaverage

template and associated volume conduction model, without taking
into account the individual patient anatomy, which might lead to
different results (Ramon et al., 2006; Céspedes-Villar et al., 2020).
The scalp electrode locations used for calculating inverse solution
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were the standard 10–20 ones, aligned with the fsaverage head
model, without taking into account the displacements related to the
inaccuracy of the electrode positioning and the avoidance of the
SEEG electrodes. Only one source-reconstruction-algorithm with
fixed parametrization, among many different possible ones, has
been considered (Grech et al., 2008; Mikulan et al., 2020). Another
limitation is that our analysis pipeline is the most conservative
one, being based on wide-band single-trial data. Creating “super-
trials” or “pseudo-trials” by averaging several trials (Despouy
et al., 2020; Ashton et al., 2022) might improve the SNR of
EEG and correspondingly of the source reconstruction signals.
Further measures for improving SNR can be possibly implemented
(Grootswagers et al., 2017), alleviating some of the apparent
limitations of non-invasive recordings.

5. Conclusion

Analysis of invasive EEG provides the highest amount of
information related to stimulus novelty, compared with scalp
recordings, despite the limited spatial sampling of the brain
with depth electrodes. This may be related to the limited scalp
visibility of the activity related to memory processes in deep brain
structures, particularly if containing higher frequency components.
The synergy between the two modalities—enabled by pooling
data recorded simultaneously—is limited, with the SEEG sensors
providing the best decoding performance driving the combined,
overall, performance.
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