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Introduction: Modern neurotechnology research employing state-of-the-art
machine learning algorithms within the so-called “AI for social good” domain
contributes to improving thewell-being of individuals with a disability. Using digital
health technologies, home-based self-diagnostics, or cognitive decline managing
approaches with neuro-biomarker feedback may be helpful for older adults to
remain independent and improve their wellbeing. We report research results
on early-onset dementia neuro-biomarkers to scrutinize cognitive-behavioral
intervention management and digital non-pharmacological therapies.

Methods: We present an empirical task in the EEG-based passive brain-computer
interface application framework to assess workingmemory decline for forecasting
a mild cognitive impairment. The EEG responses are analyzed in a framework of a
network neuroscience technique applied to EEG time series for evaluation and to
confirm the initial hypothesis of possible ML application modeling mild cognitive
impairment prediction.

Results: We report findings from a pilot study group in Poland for a cognitive
decline prediction. We utilize two emotional working memory tasks by analyzing
EEG responses to facial emotions reproduced in short videos. A reminiscent
interior image oddball task is also employed to validate the proposedmethodology
further.

Discussion: The proposed three experimental tasks in the current pilot study
showcase the critical utilization of artificial intelligence for early-onset dementia
prognosis in older adults.

KEYWORDS

EEG, dementia, biomarker, mild cognitive impairment, machine learning, artificial

intelligence, prevention, network neuroscience

1. Introduction

Late-age cognitive decline, beginning with mild cognitive impairment (MCI) and

often leading to dementia, caused mainly by Alzheimer’s syndrome (AS) (Herrup, 2021)

or vascular dementia spectrum of neurodegenerative diseases, is an actual healthcare

emergency exemplified by evolved mental impairment in older adults with a span of

psychological or behavioral symptoms (Livingston et al., 2020). Until now, there is no viable

non-invasive biomarker helping to predict a possible early onset of MCI or even dementia,

nor a pharmacological intervention stopping the disease progress, and only a postmortem

autopsy is the conclusive determination (Herrup, 2021). Still, modern late-age dementia

decline diagnostics comprises paper and pencil examinations such as a Montreal Cognitive
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Assessment (MoCA) (Fujiwara et al., 2010). MoCA scores 25 and

below (MoCA≤ 25) define MCI onset. There are several trials

to develop an objective examination brain monitoring techniques

focusing on non-invasive EEG (Rutkowski et al., 2020b, 2021a,b,

2022a,b) concurrently with behavioral evaluations (Rutkowski

et al., 2020a). Such timely research for a neurodegenerative decline,

particularly MCI, prediction is an essential scientific topic but still

in the emerging research stages (WHO, 2019; Myszczynska et al.,

2020; Shi et al., 2022).

Aging-societies-related dementia case increases represent

a substantial and rapidly rising load on the healthcare

ecosystem (WHO, 2019; Livingston et al., 2020). Contemporary

societies expect the feasible attention of AI research to focus on

possible diagnostics and non-pharmacological-therapeutic (NPT)

approaches (Zucchella et al., 2018) in order to aid the wellbeing of

aging communities. Our present report illustrates an application

of a wearable headset Unicorn EEG by g.tec medical engineering

GmbH, Austria. We focus our research on retail wearable headsets

to capture EEG shortly in home-based environments, considering

substantial environmental electromagnetic noise and no clinical
experimental experience of the target older adult users. The
wearable EEG headbands have already been proven satisfactory in
academic research (Barachant et al., 2019; Rutkowski et al., 2022b).

Contemporary neurotechnology applications such as brain-
computer interfaces (BCI) and efficient machine learning (ML)
algorithms improve the daily lives of individuals with limited
mobility or communication skills (Guger et al., 2015). An

extension of the neurotechnology applications to a field of

neuro-biomarkers of age-related cognitive decline and early onset

dementia opens new opportunities to monitor cognitive-behavioral

interventions (Otake-Matsuura et al., 2021) and digital non-

pharmacological therapies (NPT; Sikkes et al., 2020). We discuss a

unique experimental task in an EEG-based passive BCI application

framework to evaluate working memory, which estimates MCI

prediction. We report findings from two older adult volunteer

groups in Poland of the proposed cognitive decline prediction

task by analyzing EEG responses to short facial emotion-displaying

videos. The EEG responses are analyzed in a framework of

network neuroscience using an ordinal partition network (OPN)

approach (Varley et al., 2021; Varley and Sporns, 2022).

A positive result of increased lifespan globally is associated

with chronic late-age-related illnesses such as cognitive

decline (Livingston et al., 2020). Fortunately, a possible application

of digital health technologies, home-based self-management, and

the development of novel screening tests for assessing cognitive

dysfunction in older adults might help minimize the negative

impact of healthcare systems (WHO, 2019). An introduction of

home-based self-assessment and self-management approaches for

older adults with cognitive dysfunction is of critical importance.

Our research project aims to develop simple EEG wearable-based

neurotechnology for easy self-evaluation and possible cognitive or

lifestyle intervention monitoring.

Behavioral studies have shown that recognizing facial

expressions may be impaired in patients with AS. There is already

literature reporting studies on electrophysiological indicators of

face recognition disorders in patients with AS (Güntekin et al.,

2019), which provides the basis for future research to elucidate

the behavioral and neural basis of facial emotional processing in

AS (Fide et al., 2019). These non-linear methods, especially the

calculation of permutation entropy values, offer opportunities

for discrimination leading to the identification of AS. MCI and

AS result in less variability and complexity in brain dynamics.

Moreover, these advanced analysis methods can already apply

to existing EEG data for future research. Thus, reducing EEG

complexity could be considered a marker for detecting AS. The

development of such a classification will give a chance to use this

classification as a clinical tool (Şeker et al., 2021). The studies cited

above may be the basis for research on emotional processing in

patients with various types of dementia. The goal here will be to

discover electrophysiological indices helpful in clinical practice as

correlates of emerging behavioral problems.

Lately, there has been a flurry of research inspiration in

modeling the brain as a network, with nodes indicating brain

regions or single neurons and edges resembling structural or

statistical dependencies (Bullmore and Sporns, 2009). Morabito

et al. (2015) suggested a complex network technique integrated

with time dynamics to perform a time-space investigation to

illustrate the progression of AS in longitudinal studies. However,

a recently rising discipline of network neuroscience focusing on

the so-called network analysis of time series (Varley et al., 2021;

Varley and Sporns, 2022) has permitted researchers to leverage

the substantial force of graph theory and network science to

analyze neural manifolds for temporal brain microstate number

elucidation. Varley and Sporns (2022) in a recent review on network

analysis of brainwave time series such as ECoG, LFP, or EEG,

have shown that a complementary branch of network neuroscience,

which focuses on an analysis of temporal data structures instead

of functional or structural connectivity networks, could be a novel

tool in computational neuroscience. Such a novel approach to

network analysis of time series allows for collapsing at a given

instant signal into a single state vector with edges corresponding

to movement via state space. The edges could be directed or

undirected, weighted, or not.

We propose three unique experimental tasks allowing for

EEG recordings that consider the evaluation of working/short-

term during facial emotion assessment learning, evaluation, and

reminiscent interior oddball tasks. We next apply network analysis

of EEG time series to elucidate differences between healthy aging

cognition andMCI in older adult participants.We acknowledge the

limitation of the current study concerning a restricted number of

older adult participants in the reported pilot study. The presented

encouraging results in the leave-one-out-subject cross-validation

setting shall possibly be soon reproduced with a larger older adult

participants cohort. The motivation and details of the proposed

experimental procedure are explained in subsequent sections.

We also develop novel EEG processing and machine learning

classification procedures, which we describe in methods focusing

sections. The results presentation and future application discussion

conclude the paper.

1.1. Working/short-term memory in
healthy and MCI-concerned older adults

Among late and middle-aged adults, self-reported short-term

memory problems often signify intermediate and long-term risk

factors of vascular and all-cause dementia (Möllers et al., 2022).
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Working-memory impairments often occur in MCI patients and a

further decline in dementia-diagnosed individuals, indicating that

working memory evaluation is a good candidate for assessment

as part of neuropsychological diagnostics of age-related cognitive

decline possibly leading to dementia (Kessels et al., 2011).

As mentioned earlier, the reports indicate impaired working

memory in age-related cognitive decline with a gradient between

MCI and dementia (Gagnon and Belleville, 2011) are feasible

candidates for behavioral and neurotechnological experimental

tasks leading to digital neuro-biomarker development. We propose

including working memory learning of a new skill in the proposed

emotion assessment learning and evaluation task as introduced in

Sections 2.1.1 and 2.1.2.

1.2. Reminiscent image interventions for
the older adults

Reminiscence is a non-pharmacological intervention technique

employed to manage the behavioral and psychological symptoms

of dementia (Khait et al., 2021). Park et al. (2019) reported

depression symptom reduction and increased quality of life in older

adults after applying reminiscence intervention. A reminiscence

is an act of recalling one’s past experiences and affairs. Personal

memories define one’s identity by connecting past events with

the future (Buzsáki et al., 2022). Reminiscence intervention or

stimulation is an interaction that involves communicating past life

events utilizing tangible audiovisual aids such as photos, music, or

videos (Thomas and Sezgin, 2021). In the current study, we employ

a previously developed by our research group (Rutkowski et al.,

2021a, 2022b) reminiscent interior photography/images oddball

task to assess the working memory of older adult subjects and

subsequent development of EEG neuro-biomarker as explained in

Section 2.1.3.

1.3. Facial emotion recognition and
visuospatial learning in healthy and
MCI-concerned older adults

Facial emotion recognition and emotional intelligence improve

with age (Gutchess, 2019). Blessing et al. (2010) reported that

even in subjects with severely impaired explicit memory, implicit

learning of affective responses (e.g., valence and arousal ratings) is

still possible in patients with dementia. The above report suggests

that a facial emotion assessment task is feasible for evaluating

short-term memory learning skills of affective responses in MCI-

declining and dementia-diagnosed older adult individuals since

emotion recognition is a stable trait even in dementia, but the short-

term memory declines (Gutchess, 2019). Therefore we propose

to include facial emotion evaluation assessment learning and

testing tasks to utilize implicit learning and short-term memory

characteristics in healthy cognitive aging vs. MCI participants (see

Sections 2.1.1 and 2.1.2 for details).

Alescio-Lautier et al. (2007) reported that visual recognition

memory and specific attentional mechanisms are impaired in

early dementia of AS type. The authors concluded that a

combination of attentional and visuospatial evaluation should be

a viable direction for discovering predictive neuro-biomarkers

distinguishing MCI individuals from those converting to dementia.

A report by Seo et al. (2018) further suggested that including

visuospatial reproduction and working memory would also

facilitate early detection of MCI. The two above studies inspired

our research team to include a visuospatial task in the experimental

task, a skill-learning task to evaluate facial emotions with an

emoji-grid first proposed by Toet et al. (2018), as explained in

Sections 2.1.1 and 2.1.2.

2. Methods

EEG experimental data collection with the older adult

volunteering participants was accomplished at the Nicolaus

Copernicus University in Torun, Poland, in the summer of

2022. The Institute of Psychology UNC Ethical Committee for

Experiments with Human Subjects has endorsed the investigation.

The experimental procedure and information collection adhered

to The Declaration of Helsinki, regulating ethical principles for

research concerning human subjects, including the investigation

of identifiable human material and data. In the study, 27 older

adult participants took part with a mean age of 70.76 ± 5.34 years

old (for detailed age distribution, see Supplementary Figure 1),

single male and remaining female participants. In the initial group

of 27 participants, 18 older adults were MCI and the remaining

nine of healthy cognitive aging (see Supplementary Figures 2–4

for detailed MoCA score distribution in each experimental task).

All participants volunteered for the study and signed informed

consent forms.

2.1. Stimulus presentation

Taking into account previous research findings related to

workingmemory, facial emotion recognition, visuospatial learning,

and reminiscence, as summarized in Sections 1.1–1.3 we create

three simple cognitive tasks for the older adult subjects.

2.1.1. Emotion evaluation learning task
The stimulus presentation protocol is the same as in the

previously published by our research group employing Japanese

participants (Rutkowski et al., 2020a, 2021b). This time, each Polish

older adult sitting in front of a display presenting short facial

emotion videos from a Mind Reading database (Baron-Cohen,

2004) is instructed to also observe a two-dimensional grid of

valence and arousal (Toet et al., 2018; Rutkowski et al., 2020a,

2021b) and later, after the end of each video, to input similar score

on the same design grid on a touchpad. This task involves facial

emotion assessment evaluation learning and visuospatial memory

elements. In the reported project, we record continuous EEG with

triggers marking all stimulus presentation and participant response

stages from 27 older adults. We present 24 videos (5 s each on

average), from the Mind Reading database (Baron-Cohen, 2004),

for each participant covering valence and arousal for positive and

negative scores (six in each quadrant of a two-dimensional grid;
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Toet et al., 2018). An experimental session consists of 24 emotional

video clip presentations resulting in 24 responses contributed by

each subject (212 from healthy and 432 from MCI participants in

total after rejecting responses with missing markers due to stimulus

system or network errors, as explained with nhealthy and nMCI

variables in the top panels of Figures 1, 2).

2.1.2. Emotion evaluation assessment task
In the subsequent task, we instruct the participants to test

how they learned to evaluate the short facial emotion display

videos. This time they are instructed to input their valence and

arousal evaluation on the same touchpad grid without a preceding

suggestion prompt (Toet et al., 2018; Rutkowski et al., 2020a,

2021b). In this case, we also record continuous EEG with triggers

marking all stimulus presentation and participant response stages

from 24 older adults in the reported project. Similarly, as we

have done in an emotion assessment evaluation learning task,

we also present 24 videos (5 s each on average), from the

Mind Reading database (Baron-Cohen, 2004), for each participant

covering valence and arousal for positive and negative scores

(six in each quadrant of a two-dimensional grid; Toet et al.,

2018). An experimental session consists of 24 emotional video clip

presentations resulting in 24 responses contributed by each subject

(191 from healthy and 367 from MCI participants in total after

rejecting responses with missing markers due to stimulus system

or network errors, as explained with nhealthy and nMCI variables in

the middle panels of Figures 1, 2).

2.1.3. Reminiscent interior images oddball task
In order to evaluate working memory in older adults, for

dementia neuro-biomarker development purposes, we modify a

standard oddball task to include childhood reminiscent interior

images (Rutkowski et al., 2022b). Each short experimental trial

presents eight types of modern and participants’ childhood-

time interior photographs. As in the classical oddball task, each

stimulus from the series of eight became a target once, and

participants are instructed to remember it before each trial.

Here too, we record continuous EEG with triggers marking all

experimental stages from 23 older adults in the reported project.

Each participant session contains a presentation of eight oddball

sessions containing eight randomly ordered interior images (four

reminiscent and four modern rooms). An experimental session

consists of 8 oddball sessions consisting of a single interior image

(a target) presentation followed by eight presentations with a

randomly positioned target photograph, thus, resulting in 72

responses contributed by each subject (503 from healthy and

1, 141 from MCI participants in total after rejecting responses with

missing markers due to stimulus system or network errors, as

explained with nhealthy and nMCI variables in the bottom panels of

Figures 1, 2).

2.2. EEG capture

We collect EEG data in the current study using a Unicorn

EEG headset by g.tec Medical Engineering, Austria. The Unicorn

EEG headset has already been proven a reliable experimental

device, compared to other available wearables, in our previously

published studies (Rutkowski et al., 2022c). For the initial

investigation, we use eight EEG channels uniformly covering

the human scalp at the standard locations of (Fz, C3, Cz,

C4, Pz, PO7, Cz, and PO8). The eight EEG streams initially

digitized with a sampling frequency of 250 Hz are bandpass

filtered in the first preprocessing step to remove signal baseline

shifts and high-frequency noise within a frequency band of

1–40 Hz. We next segment (“epoch”) the EEG signals using

video and image stimulus onset recorded triggers in emotion

assessment and reminiscent interior tasks for five- and two-second

epochs, respectively. We implement the filtering and segmentation

procedures using the MNE package ver. 1.3.0 (Gramfort et al.,

2014) in Python ver. 3.10.9. In the next step, to remove eye-

blink and muscle movement-related artifacts in the collected EEGs,

we employ a previously developed methodology by the members

of the current research team (Rutkowski et al., 2008; Rutkowski

and Mori, 2015). EEG channels are decomposed into intrinsic

mode functions (IMF) using an empirical mode decomposition

(EMD) method, and all the components that exceed the 100 µV

threshold we reject before the final signal reconstruction from

sub-threshold IMFs. We implement the above EEG cleaning

procedures in PyEMD ver.1.4.0 (Laszuk, 2017). We next rectify

the resulting filtered EEG traces to extract amplitude envelope

traces using a Hilbert transform (SciPy ver. 1.10.0; Virtanen

et al., 2020 implementation) and pass them to the network

neuroscience application to time series, as explained in the

next section.

2.3. Network science approach to EEG
time-series

Permutation sequences in a time series are sensitive

characteristics of the dynamic state of an observed system (Bandt

and Pompe, 2002). They can be efficiently computed even for

long time-series EEG. One crucial advantage of the permutation

analysis approach is the possibility of mapping a continuous EEG

recording to a little cluster of discrete permutations. Subsequently,

it is possible to apply principled information-theoretic approaches,

such as permutation entropy (Bandt and Pompe, 2002).

Varley et al. (2021) proposed an exploration of temporal

dynamics of an observed system to derive ordinal partition

network (OPN) representations of recorded neuropsychological

data (EEG in our case). We also apply a similar procedure,

and to avoid problems with multivariate OPNs, we analyze

each EEG channel separately, and afterward, we combine the

obtained network characteristics as input to final classifiers. Such

a methodology allows for limitations of possible remaining

EEG artifacts (eye-blinks, etc.) impact on the analysis,

and each electrode cortical-region-related network features

separate examination with limitations related to the spatial

EEG resolution.

To create an OPN model characterizing EEG time series from

a single channel c, we assemble a vector Xc = xc,1, xc,2, . . . , xc,n,

for limited time points t = 1, . . . , n in a single experimental
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FIGURE 1

Boxplots with marked median, quartile ranges, and whiskers extending to show the rest of the distributions (all non-normal) of the network signal
analysis resulting in node and edge counts for MCI vs. healthy aging cognition subjects for all EEG electrodes analyzed separately (Unicorn EEG
headset with eight Fz, C3, Cz, C4, Pz, PO7, Oz, and PO8 scalp locations). (A, B) represent results from emotion assessment learning, (C, D) from
emotion assessment evaluation, and (E, F) reminiscent interior images oddball tasks, respectively. Wilcoxon rank-sum test for significantly di�ering
distributions resulting pr-values together with the common language e�ect size (CLES) (McGraw and Wong, 1992) and area under the ROC curve
(AUC) (Hanley and McNeil, 1982) scores are summarized for each electrode over each panel, respectively.
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FIGURE 2

Unsupervised clustering (a machine learning training without class labels) scatter plots using UMAP in three experimental tasks and original data
without any data augmentation, thus with unbalanced classes as shown with nhealthy vs. nMCI feature numbers above each scatterplot. (A) Emotion
assessment learning. (B) Emotion assessment evaluation. (C) Reminiscent interior oddball.
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trial to be analyzed next. The so obtained data vector is next

embedded in d−dimensional space, utilizing τ time-lag. We

select τ using the first zero crossing of the autocorrelation for

each EEG channel time series representing an experimental trial.

We limit a search for optimal τ in a range of 0–80 ms for

computational and research reproducibility reasons. For the same

reasons, we also specify the embedding dimension to d = 5

(similarly as in examples published by Varley et al., 2021), for

results visualization purposes as shown in Figures 1, 2, as well as

in the final supervised learning classification results reported in

Figure 3. The resulting temporally ordered d-length vectors υc,i =
[

xc,i, xc,i+τ , . . . , xc,i+(d−1)τ
]

are next mapped to the permutation

π to sort, in increasing order, their coefficients. The positions of

the coefficients are next replaced in ordering π , and the resulting

new vector nc,i = [π(xc,i),π(xc,i+τ ), . . . ,π(xc,i+(d−1)τ )] represents

a permutation of the numbers 1, 2, . . . , d. These permutations we

consider as nodes in a directed network graph. The nodes we

connect with directed edges and create from consecutive points.

The so-created transition network results with fewer nodes than

the initially analyzed EEG channel time series since there might

be many i for which the delay vectors υi result in the same

permutation π . The final OPN receives weights to each node

representing a count of time points i representing the same

permutation. At our project’s current stage, we characterize each

EEG channel c with a number of nodes and edges modeling

each experimental trial (the so-called EEG epoch). The open-

source package OPyN (Varley et al., 2021) has been used in our

project to compute network neuroscience applications to EEG

time series.

2.4. Unsupervised machine learning for
network features visualization and
dimensionality reduction

Unsupervised machine learning methods allowing for a

datasets dimensionality reduction and visualization such as a

uniformmanifold approximation and projection (UMAP;McInnes

et al., 2018) assume the available features (in the current project

case, those are network node and edge counts from analyzed

EEG electrode time-series separately as explained in Section 2.3;

thus the final inputs to unsupervised model contain eight-

node and edge counts obtained from each EEG responses and

concatenated together, resulting in 16-dimensional feature vectors)

are uniformly distributed across a topological manifold. The

manifold could be approximated from these finite network features

and projected to a lower-dimensional space. In the presented

study, we apply the UMAP technique first in unsupervised

learning mode to visualize EEG-derived network neuroscience

features (Varley et al., 2021; Varley and Sporns, 2022) separability

with results presented in Section 3.2. Next, a supervised learning

mode of UMAP (McInnes et al., 2018) is applied for the network

neuroscience features’ dimensionality reduction in a leave-one-

out-subject cross-validation classification to prove further the

proposed methodology validation for future healthy cognitive

aging vs. MCI early diagnostics with results discussed in

Section 3.2.

2.5. Supervised machine learning models
for leave-one-out-subject cross-validation
of healthy aging vs. MCI EEG classification

In order to finally evaluate the usability of the proposed

network neuroscience application to EEG time series for the

early onset dementia (MCI with MoCA ≤ 25) elucidation, we

employ several machine learning models in the leave-one-out-

subject cross-validation (LOOS) setting. Similarly, as in the case

of the unsupervised model discussed in Section 2.4 here, initial

supervised machine learning input features are likewise composed

of the network node and edge counts concatenated for all analyzed

EEG electrode time-series separately as explained in Section 2.3

creating 16-dimensional integer-value-features, which are next

reduced to eight dimensions using a supervised version of UMAP

methodology explained in Section 2.4. The LOOS approach allows

for keeping in each cross-validation step all data of a single subject

and training a model using all the remaining subjects; thus, the

procedure could be repeated for all the available subjects and

final accuracies are concatenated and averaged, with a standard

deviation calculation as discussed in Section 3.3.

In the reported study, we first applied UMAP supervised

dimensionality reduction (McInnes et al., 2018) and next the

following machine learning models (see Table 1 for details),

available in the scikit-learn ver. 1.2.0 (Pedregosa et al., 2011)

for classification: logistic regression (LR), linear discriminant

analysis (LDA), linear kernel support vector machine (linearSVM),

random forest classifier (RFC), deep fully connected neural

network (DFNN).

3. Results

The results of the present study could be summarized three-

fold. Firstly, we have shown that the network neuroscience

approach to EEG time series resulted in statistically significantly

differing node and edge counts. Secondly, applying the

unsupervised machine learning clustering UMAP technique

visualized a clear separation of network neuroscience application

to EEG time series features from healthy cognitive aging and MCI

participants in three simple cognitive experimental tasks. Finally,

the leave-one-out-subject cross-validation evaluation of supervised

machine learning classifiers resulted in mean classification

outcomes that were significantly above chance levels.

3.1. Network neuroscience node and edge
distribution results

Results of EEG time-series analysis with the OPN technique

described in Section 2.3 were summarized in the form of

the network node and edge count distributions as shown in

Figure 1. For all introduced in this paper, experimental cognitive

tasks of facial emotion assessment learning (Section 2.1.1) and

evaluation (Section 2.1.2), as well as reminiscent interior images

(Section 2.1.3), healthy cognitive aging participants resulted in

significantly higher results comparing to MCI cases as evaluated in
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FIGURE 3

Bar plots with 95% confidence intervals of mean accuracies in leave-one-subject-out (LOOS) cross-validation setting of MCI vs. healthy aging
cognition subjects using logistic regression (LR), a linear discriminant analysis (LDA), linear support vector machine (linearSVM), random forest (RFC),
and deep fully-connected neural network (DFNN) classifiers. AUC, f1-scores, precision, recall, and Wilcoxon rank-sum test for significance pr-values
(all non-normal distributions) of the accuracy distributions above training set chance levels (denoted in parentheses for all experimental settings
separately), which we listed above the bar plots, further supported good results of the proposed methodology. (A) Emotion assessment learning. (B)
Emotion assessment evaluation. (C) Reminiscent interior oddball.
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TABLE 1 Supervised machine learning models employed in the study for

binary classification of healthy aging cognition vs. early onset dementia

(MCI) (Pedregosa et al., 2011).

Machine learning (ML)
model name

Parameters

LR—logistic regression Liblinear solver

LDA—linear discriminant analysis Solver using least-squares

linearSVM—linear support vector
machine

Squared hinge loss; l2−penalty

RFC—random forest classifier Maximum depth of 15

DFNN—deep fully connected neural
network

Six layers of 8, 256, 245, 128, 32, 16
ReLU units (RU);

two softmax units; early stopping;
ADAM optimizer

non-parametric Wilcoxon rank-sum tests at pr ≪ 0.01, except for

Pz electrode for which pr < 0.05 for nodes in emotion assessment

tasks. All results did not follow normal distributions (normality

tests failed with pn < 0.05 for all); thus, non-parametric statistical

significance outcomes we supported by reliable common-language-

effect-size (CLES) (McGraw and Wong, 1992) and area under

the ROC curve (AUC) (Hanley and McNeil, 1982) evaluations

indicated above all panels in Figure 1. The Pz electrode location

has been known for difficulties in clear EEG recording due to

larger hair volumes, especially in female subjects, who were a

majority in the reported experiments. Limiting the number of EEG

electrodes shall also contribute to a more comfortable experimental

setup for the older adult participants. The significantly higher

node and edge network counts refer to higher consciousness levels

as previously reported by Varley et al. (2021) in anesthetized vs.

awake animals. In the current study, the MCI subject EEG analysis

resulted in significantly lower node and edge numbers than the

healthy cognition participants, as shown in Figure 1. In previous

animal study (Varley et al., 2021), results reported in anesthesia-

modulated consciousness also resulted in lower network node and

edge counts of analyzed brainwaves in lower awareness. Therefore,

we hypothesize that the MCI group’s EEG in our study might

suggest lower stages of participant awareness than the healthy aging

cognition group. The results also illustrated a less predictable EEG

signal structure in healthy cognitive aging participants or more

flexible than in MCI cases.

3.2. Unsupervised UMAP clustering results

A subsequent application of unsupervised UMAP clustering

technique resulted in the majority of cases separation as

visualized in Figure 2 for all three experimental tasks described

in Sections 2.1.1–2.1.3. The very encouraging results on a still

limited participant group of 27 in emotion assessment learning

(Section 2.1.1), 24 emotion assessment evaluation (Section 2.1.2),

and 23 in the final reminiscent interior oddball (Section 2.1.3)

supported the project hypothesis of network neuroscience

methodology feasibility as a strong candidate for early onset

dementia neuro-biomarker development. In order to address the

problem of imbalanced datasets (almost double of MCI cases

compared to healthy participants), we resembled results with data

augmentation steps using majority under- and minority class over-

sampling steps as implemented using a synthetic minority over-

sampling technique (SMOTE; Chawla et al., 2002; Lemaître et al.,

2017). We summarized the still easily separable clustering results

in Supplementary Figures 5, 6. Future research steps shall confirm

the preliminary findings with a more extensive and preferably

multicultural research group focusing on dementia level regression

or multi-class or -cluster approaches.

3.3. Supervised leave-one-out-subject
cross-validation classification of MCI vs.
healthy aging cognition cases

The very encouraging results in the LOOS setting modeled a

future real-world neuro-biomarker application, in which amachine

learning model would be trained on a known, limited dataset

and next applied to an unknown brainwave dataset for diagnostic

purposes. The LOOS supervised machine learning accuracy results

applied to four shallow- and one deep-learning models, as

explained in Section 2.5, were summarized in Figure 3. Here again,

to address the problem of imbalanced datasets (almost double

of MCI cases compared to healthy participants), we resembled

results with data augmentation steps using majority under-

and minority class over-sampling steps as implemented using

a synthetic minority over-sampling technique (SMOTE; Chawla

et al., 2002; Lemaître et al., 2017). The data augmentation-based

class balancing results did not vary significantly, as summarized

in Supplementary Figures 7, 8. For the case of the facial emotion

assessment learning (Section 2.1.1), mean accuracies were safely

above chance levels of 67% as imposed by training data imbalance

and summarized in the top panel of Figure 3 with following

results: ACCLR = 81.63% (83.24% for class-balance over-sampling

and 83.31% for under-sampling), ACCLDA = 81.63% (83.24%

for class-balance over-sampling and 83.08% for under-sampling),

ACClinearSVM = 81.69% (83.24% for class-balance over-sampling

and 83.08% for under-sampling), ACCRFC = 81.64% (83.24%

for class-balance over-sampling and 83.08% for under-sampling),

ACCDFNN = 81.34% (83.24% for class-balance over-sampling and

83.08% for under-sampling); for all the cases median accuracies

were at 100% level for LR, LDA, linearSVM, RFC, and DFNN

(see Section 2.5 for details), respectively. Similarly, mean accuracy

results in the facial emotion assessment evaluation task (see

Section 2.1.2 for details) were safely above chance levels of 65%

as imposed by training data imbalance and summarized in the

middle panel of Figure 3 with following results: ACCLR = 91.53%

(92.56% for class-balance over-sampling and 92.82% for under-

sampling), ACCLDA = 91.57% (92.56% for class-balance over-

sampling and 92.61% for under-sampling),ACClinearSVM = 91.78%

(92.56% for class-balance over-sampling and 92.61% for under-

sampling), ACCRFC = 91.78% (92.56% for class-balance over-

sampling and 92.82% for under-sampling), ACCDFNN = 91.53%

(92.56% for class-balance over-sampling and 92.61% for under-

sampling); for all the cases median accuracies were at 100% level for

LR, LDA, linearSVM, RFC, and DFNN (see Section 2.5 for details),

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1155194
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Rutkowski et al. 10.3389/fnhum.2023.1155194

respectively. Finally, mean accuracy results in the reminiscent

interior oddball task (see Section 2.1.3 for details) were safely

above chance levels of 69% as imposed by training data imbalance

and summarized in the bottom panel of Figure 3 with following

results: ACCLR = 94.94% (95.81% for class-balance over-sampling

and 95.48% for under-sampling), ACCLDA = 95.20% (93.74%

for class-balance over-sampling and 95.48% for under-sampling),

ACClinearSVM = 95.02% (95.81% for class-balance over-sampling

and 95.48% for under-sampling), ACCRFC = 95.09% (95.72%

for class-balance over-sampling and 95.48% for under-sampling),

ACCDFNN = 94.84% (95.53% for class-balance over-sampling and

95.48% for under-sampling); for all the cases median accuracies

were at 100% level for LR, LDA, linearSVM, RFC, and DFNN

(see Section 2.5 for details), respectively. The excellent supervised

learning and LOOS cross-validated accuracy results with median

accuracies reaching 100% levels for all the proposed cognitive tasks

further supported a choice of network neuroscience approaches as

the very reliable dementia neuro-biomarker prospects.

4. Discussion

Previous application of network neuroscience analysis to

brainwave time series resulted in consciousness level association

with network edge and node numbers (Varley et al., 2021) in

anesthetized animals. Higher consciousness levels were associated

with the larger node and edge numbers modeling brainwave

time series, pointing to higher complexity and more brain

microstates associated with those cognitive states (Varley et al.,

2021). Consciousness is closely related to awareness (Ehret and

Romand, 2022); thus, results presented in the current study with

conscious (awake) subjects clearly show significantly lower network

node and edge counts in MCI participants, indicating lower

awareness levels compared to healthy cognitive aging older adults.

In the presented study, more significant numbers of node and edge

numbers in networks modeling EEG in healthy cognitive aging

participants elucidated those brains characterized by more affluent

microstates during cognitive tasks designed for the current study.

Three different experimental tasks introduced in the study resulted

in a larger number of modeling network nodes and edges for

healthy cognitive aging vs. MCI older adults, further confirming a

stable neuro-biomarker candidate, as summarized in Section 3.1.

The reproduced results in three cognitive tasks also elucidate

potentially sound characteristics of the network neuroscience

neuro-biomarker prospect. The statistical significance of network

node and edge distribution differences was also confirmed with

the unsupervised machine learning clustering UMAP approach as

presented in Section 3.2.

The resulting unsupervised clusters formed easily separable

quantities for most analyses used in the study. The final LOOS

cross-validation experiment presented in Section 3.3 indicated a

possible subsequent candidate for the following study with a more

significant number of participants to infer all MoCA or other

cognitive scores and not only binary healthy vs. MCI stages, as in

the currently reported project.

The inherent study limitation has been a still low number of

subjects (27, 24, and 23 in the three evaluated tasks) and unbalanced

class membership (double the number of MCI compared to healthy

cognitive aging). A single male participant also limited the study

from the gender impact evaluation perspective. A near-future

project with better gender-balanced subjects and possibly in cross-

cultural settings shall be conducted to reproduce and validate

the results. Another limitation of the current study, due to a

low number of participants, has been a binary class membership

(MCI vs. healthy cognitive aging). A subsequent study with more

participants shall aim at continuous cognitive state estimation

by predicting (regressing) exact MoCA or other cognitive state

evaluations. A final limitation of the current study was a lack of

relation of the predicted MCI stages based on only MoCA scores.

The proposed neuro-biomarker shall be further validated with PET

and cerebrospinal fluid (CSF) biomarkers for AS or structural MRI

for vascular dementia evaluation.

5. Conclusions

This work discusses how network neuroscience methods’

application to EEG time series can elucidate the separation between

two distinct states of age-related healthy cognition and MCI. To

assess each EEG channel’s temporal dynamics, we assemble discrete

state-transition graphs employing the ordinal partition networks

approach, demonstrating how the brain evolves through state space

in time. We discover that the healthy cognitive aging condition

is characterized by a high degree of within each EEG channels

interactions. Additionally, a less predictable EEG signal structure,

or more flexible, is observed in healthy cognitive aging participants

compared to MCI. Finally, unsupervised and supervised machine

learning approaches allow us to separate and classify network

neuroscience features for possible subsequent diagnostics of early

onset dementia (MCI with MoCA ≤ 25) onset. The work is a step

forward in developing a low-cost, home-based neuro-biomarker to

monitor cognitive interventions and dementia care management.
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and Otake-Matsuura, M. (2022b). “Passive BCI oddball paradigm for dementia
digital neuro-biomarker elucidation from attended and inhibited ERPs utilizing
information geometry classification approaches,” in 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (Prague: IEEE Press), 2657–2662.
doi: 10.1109/SMC53654.2022.9945159

Rutkowski, T. M., and Mori, H. (2015). Tactile and bone-conduction auditory brain
computer interface for vision and hearing impaired users. J. Neurosci. Methods 244,
45–51. doi: 10.1016/j.jneumeth.2014.04.010

Rutkowski, T. M., Narebski, S., Bekier, P., Komendzinski, T., Sugimoto, H., and
Otake-Matsuura, M. (2022c). “Cross-cultural evaluation of dementia passive BCI
neuro-biomarker candidates,” in 2022 Joint 12th International Conference on Soft
Computing and Intelligent Systems and 23rd International Symposium on Advanced
Intelligent Systems (SCISISIS) (Ise-Shima), 1–5.

Rutkowski, T. M., Toshihisa, T., Cichocki, A., andMandic, D. P. (2008). “Clustering
EMD components for muscular interference separation from EEG—a time/frequency
approach with different distance measures,” in Proceedings of 23rd SIP Symposium
(Kanazawa: IEICE), 52–57.
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