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Visual hallucinations (VHs) are perceptions of objects or events in the absence of 
the sensory stimulation that would normally support such perceptions. Although 
all VHs share this core characteristic, there are substantial phenomenological 
differences between VHs that have different aetiologies, such as those arising 
from Neurodegenerative conditions, visual loss, or psychedelic compounds. Here, 
we examine the potential mechanistic basis of these differences by leveraging 
recent advances in visualising the learned representations of a coupled classifier 
and generative deep neural network—an approach we  call ‘computational 
(neuro)phenomenology’. Examining three aetiologically distinct populations in 
which VHs occur—Neurodegenerative conditions (Parkinson’s Disease and Lewy 
Body Dementia), visual loss (Charles Bonnet Syndrome, CBS), and psychedelics—
we identified three dimensions relevant to distinguishing these classes of VHs: 
realism (veridicality), dependence on sensory input (spontaneity), and complexity. 
By selectively tuning the parameters of the visualisation algorithm to reflect 
influence along each of these phenomenological dimensions we  were able 
to generate ‘synthetic VHs’ that were characteristic of the VHs experienced 
by each aetiology. We  verified the validity of this approach experimentally in 
two studies that examined the phenomenology of VHs in Neurodegenerative 
and CBS patients, and in people with recent psychedelic experience. These 
studies confirmed the existence of phenomenological differences across these 
three dimensions between groups, and crucially, found that the appropriate 
synthetic VHs were rated as being representative of each group’s hallucinatory 
phenomenology. Together, our findings highlight the phenomenological diversity 
of VHs associated with distinct causal factors and demonstrate how a neural 
network model of visual phenomenology can successfully capture the distinctive 
visual characteristics of hallucinatory experience.
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1 Introduction

Visual hallucinations (VHs) are perceptual experiences that occur 
in the absence of the sensory stimulation that would normally 
accompany such experiences. The decoupling of perceptual experience 
from sensation, together with the varied nature of VHs across different 
aetiologies, provides an opportunity to investigate the computational 
processes and neural mechanisms that may underlie them, with 
implications for those that may underlie visual experience in general.

VHs are commonly experienced as a result of Neurodegenerative 
disorders that share a common pathological accumulation of insoluble 
α-synuclein protein in neurons, nerve fibres or glial cells, which 
include Parkinson’s disease (PD; Fénelon et  al., 2000; Barnes and 
David, 2001; Mosimann et al., 2006; Boubert and Barnes, 2015) and 
Lewy Body Dementia (LBD; Harding et al., 2002). We use the term 
Neurodegenerative to specifically refer to PD and LBD populations in 
which VHs occur. They may also occur as the result of marked visual 
impairment, as in Charles Bonnet Syndrome (CBS; Schultz and 
Melzack, 1991; Teunisse et al., 1996; Ffytche, 2005; Abbott et al., 2007; 
Yacoub and Ferrucci, 2011; Nair et  al., 2015). VHs also occur in 
psychiatric conditions such as schizophrenia, although they are less 
frequent than auditory hallucinations (Bauer et al., 2011; Waters et al., 
2014). VHs are also common features of psychedelic states, such as 
those produced by the ingestion of classical hallucinogens such as 
LSD, psilocybin and DMT (Nichols, 2016). The VHs associated with 
each of these aetiologies have distinctive phenomenological 
(experiential) characteristics, raising the question of what aspects of 
the underlying neurophysiology and dynamics are responsible for 
these differences.

A popular approach to understanding the basis of VHs is through 
the lens of ‘predictive processing’ (PP) theories of perception and 
brain function (Rao and Ballard, 1999; Friston, 2005; Hohwy and Seth, 
2020). These theories view perception as an iterative process in which 
the brain is always trying to optimise an evolving ‘best guess’ (Bayesian 
posterior belief) about the most likely causes of the sensory inputs it 
encounters (Lee and Mumford, 2003; Knill and Pouget, 2004; Clark, 
2013). In standard PP, this is achieved by the reciprocal exchange of 
top-down perceptual predictions and bottom-up (sensory) prediction 
error signals in a continual process of prediction error minimisation, 
which approximates Bayesian inference on the causes of sensory 
signals. Importantly, the outcome of this (approximate) inference 
process depends on the relative influence of (top-down) predictions 
and (bottom-up) prediction errors, a balance which is mediated by the 
estimated precision (informally, the ‘reliability’) of sensory signals 
relative to perceptual predictions (Yuille and Kersten, 2006; Fletcher 
and Frith, 2009; Friston and Kiebel, 2009; Zarkali et al., 2019). Within 
this framework, VHs can be broadly understood as resulting from 
aberrant inference in which this balance is disrupted in some way 
(Friston, 2005; Powers et  al., 2016; Corlett et  al., 2019; Zarkali 
et al., 2019).

Such aberrant inference can take many different forms. Some 
researchers have interpreted Neurodegenerative VHs as resulting 
from overly strong perceptual predictions which overwhelm sensory 
prediction error signals (Powers et  al., 2016; O’Callaghan et  al., 
2017). Others have focused on psychedelic VHs and adopted a 
hierarchical perspective, suggesting that psychedelic hallucinations 
occur due to a relaxation of high-level perceptual predictions (or 
Bayesian ‘priors’), which has the effect of increasing the influence of 

bottom-up signalling on perceptual inference (Alonso et al., 2015; 
Swanson, 2018; Timmermann et  al., 2018; Carhart-Harris and 
Friston, 2019). However, despite accumulating empirical evidence 
linking perceptual experience to inference and prediction error 
minimization in both normal (Hardstone et  al., 2021) and 
hallucinatory (Powers et al., 2016; Carhart-Harris and Friston, 2019; 
Schartner and Timmermann, 2020) perception, the computational 
basis of phenomenological differences between different kinds of VH 
has remained unclear.

To shed light on this question, we  take a computational 
neurophenomenology approach (Suzuki et al., 2017; Ramstead et al., 
2022). Neurophenomenology emphasises the importance of capturing 
first-person descriptions of phenomena of interest (such as VHs) that 
are amenable to neurocognitive methodologies (Lutz, 2002; Lutz et al., 
2002; Gould et  al., 2014). This approach becomes computational 
neurophenomenology when computational modelling is used to 
simulate specific properties of perceptual experience (rather than, for 
example, the functions associated with perception, such as 
classification or discrimination), and where the computational models 
used have useful interpretations with respect to theories of perception 
or neurophysiological mechanisms [see also phenomenological 
approaches in robotics, e.g., Tani (2016)]. We  highlight that our 
implementation of this approach is not designed to map directly 
between the pathological mechanisms and variations in hallucinatory 
experience observed in different aetiologies.

1.1 Phenomenological variation in 
hallucinatory experience

Whilst there are substantial phenomenological differences in VHs 
both across and within different aetiological categories, we identified 
three dimensions which broadly characterise variations in VHs arising 
from Neurodegenerative, CBS and psychedelic origins. These 
dimensions are complexity, veridicality, and spontaneity.

1.1.1 Complexity
VHs can generally be categorised as being either simple (e.g., 

shapes, flashes or grid-like lattice patterns) or complex (e.g., well-
defined recognisable forms, such as objects or people). 
Neurodegenerative VHs are typically complex, featuring false 
perceptions of family, other people, or animals (Frucht and Bernsohn, 
2002; Mosimann et al., 2006; Papapetropoulos et al., 2008). In contrast, 
the most commonly reported class of VH in CBS are simple (Ffytche 
and Howard, 1999; Santhouse et al., 2000; Abbott et al., 2007), with 
complex VHs being reported less frequently (Schultz and Melzack, 
1991; Teunisse et  al., 1996). Psychedelic VHs also vary in their 
complexity. VHs arising from low doses are usually associated with 
visual distortion and/or simple VHs, such as brightly coloured 
geometric ‘form constants’ including lattices, cobwebs, tunnels and 
spirals (Kluver, 1926; Díaz, 2010; Studerus et al., 2011; Nichols, 2016), 
with complex VHs not as frequently reported (Studerus et al., 2011; 
Kometer et al., 2013; Schmid et al., 2015). At higher doses, complex 
VHs are more likely to occur, including fully formed VHs comprising 
visual scenes with elaborate structural content such as landscapes, 
cities, and galaxies, as well as specific forms including human figures 
and animals (Strassman et al., 1994; Shanon, 2002; Studerus et al., 
2011; Kometer et  al., 2013; Liechti, 2017). The rarity of complex 
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psychedelic VHs of this sort may reflect either their relative rarity and/
or the difficulties inherent in providing subjective reports in high dose 
situations (Studerus et al., 2011; Kometer et al., 2013; Kometer and 
Vollenweider, 2018).

1.1.2 Veridicality
Neurodegenerative and CBS complex VHs typically display a high 

degree of perceptual veridicality. That is, they are reported as being 
similar in visual quality to normal perceptual experience (Schultz and 
Melzack, 1991; Teunisse et  al., 1996; Barnes and David, 2001; 
Mosimann et al., 2006; Boubert and Barnes, 2015). There are some 
exceptions: for example, complex VHs in CBS are sometimes 
described as distorted or cartoon-like, however, the majority are 
described as vivid and life-like (Schultz and Melzack, 1991; Ffytche 
and Howard, 1999; Santhouse et al., 2000; Ffytche, 2005; Abbott et al., 
2007). In contrast, psychedelic complex VHs are typically reported to 
have a lower degree of veridicality, which may not be  surprising 
thanks to their dream-like qualities (for a review, see Sanz et al., 2018) 
and the prominence of visual distortion, unrealistic colours, patterns 
and kaleidoscopic imagery (Studerus et al., 2011; Carhart-Harris et al., 
2016; Preller and Vollenweider, 2018; Timmermann et  al., 2018). 
Indeed, some have suggested that the alterations in visual perception 
induced by psychedelics, such as psilocybin, rarely represent true 
hallucinations because, at least at moderate doses, they can be readily 
distinguished from real perceptions (Preller and Vollenweider, 2018).

1.1.3 Spontaneity
Neurodegenerative and CBS complex VHs typically occur 

spontaneously, that is, they are not experienced as being 
transformations of existing content within a perceived scene (Schultz 
and Melzack, 1991; Teunisse et al., 1996; Frucht and Bernsohn, 2002; 
Mosimann et al., 2006; Papapetropoulos et al., 2008). Spontaneous 
VHs, therefore, correspond closely to the folk-psychological idea of 
hallucination as perception in the absence of sensory stimulation. In 
contrast, anecdotal reports of psychedelic complex VHs describe them 
as frequently being driven by visual ‘seeds’ from within a perceived 
scene, bearing similarity to the everyday phenomenon of ‘pareidolia’—
or ‘seeing patterns in noise’ (Kometer and Vollenweider, 2018; Preller 
and Vollenweider, 2018; Swanson, 2018).

From this short review, it is possible to broadly characterise each 
aetiologically distinct category of VH in terms of complexity, 
veridicality, and spontaneity. Neurodegenerative VHs typically display 
high veridicality, are spontaneous, and are mainly complex in nature. 
CBS VHs also typically display high veridicality, and are also 
spontaneous, but can occur in both simple and complex forms. 
Psychedelic VHs generally display lower veridicality compared to 
Neurodegenerative and CBS VHs, they tend to not be spontaneous 
and can occur in both simple and complex forms. We used these 
phenomenological profiles to tune the parameters used to generate 
synthetic VHs representative of each category.

1.2 Simulating dimensions of hallucinatory 
phenomenology

To simulate these specific aspects of hallucinatory phenomenology, 
we used the coupled neural network architecture of Nguyen et al. 
(2016), which combines pre-trained classifier (DCNN) and generative 

(DGN) networks, to generate synthetic snapshots of aetiologically 
distinct VHs (see Materials and methods). Intuitively, within this 
architecture, the image fed into the model can be viewed as analogous 
to visual input and the synthetic image produced by the model, the 
resulting perceptual experience.

1.2.1 Veridicality
DCNNs trained for natural image recognition are highly 

complex, with many parameters and nodes, such that their analysis 
requires innovative visualisation methods. A popular solution to this 
challenge has been to use algorithms that visualise the information 
processed by a target neuron (or group of neurons) within a 
DCNN. Classical Activation Maximisation (ClassicalAM) is one 
such visualisation technique (Erhan et al., 2009; Mahendran and 
Vedaldi, 2014; Simonyan et  al., 2014). The core idea behind 
ClassicalAM is simple: generate an input image that maximises the 
activation of a target neuron(s) of interest. Instead of updating the 
weights between the neurons in the network as occurs during 
training, ClassicalAM modifies the image in a way that maximises 
the activity of the target neuron (see Supplementary material 1.1.2). 
This is done by defining an error function to return larger errors 
when the activation of the neuron is low and smaller errors when the 
activation is high. Repeating this process (iterating) gradually 
changes the image rather than altering the network to match the 
features of the image with what is represented by the target neuron. 
A slight modification of this approach is the well-known Deep-
Dream visualisation algorithm, which applies ClassicalAM across a 
user-defined layer of the DCNN instead of a single target neuron 
(Mordvintsev et al., 2015).

Previous studies using ClassicalAM have shown that it typically 
produces unrealistic, uninterpretable images (Erhan et  al., 2009; 
Mahendran and Vedaldi, 2014; Simonyan et al., 2014). This is due to 
the vast set of possible images that may excite a target neuron, making 
it likely that the image produced will not resemble the natural images 
that the neuron has learned to respond to.

To produce more ‘human-interpretable’ images, Nguyen et al. 
(2016) developed a new type of AM, called GenerativeAM, which 
combined a pre-trained Deep Generator Network (DGN) capable of 
generating realistic synthetic images with the same DCNN as used in 
ClassicalAM (Figure 1). For each iteration, GenerativeAM uses the 
learned natural image prior of the DGN to generate a new output 
image that maximises the activity of a target neuron within the 
DCNN, instead of updating the input image directly as in 
ClassicalAM (see Supplementary material 1.1.2). Using this approach 
Nguyen et  al. (2016) found that GenerativeAM produced output 
images that were much more realistic than those produced 
by ClassicalAM.

To simulate differences in the veridicality of aetiologically 
distinct VHs, we generated synthetic VHs both with (GenerativeAM; 
high veridicality), and without (ClassicalAM; low veridicality), the 
natural image prior provided by the DGN. We  reasoned that 
because GenerativeAM can produce realistic-looking, interpretable 
outputs it could be used to simulate the reported high veridicality 
of (complex and simple) Neurodegenerative and CBS VHs (Nguyen 
et  al., 2016). In contrast, our previous work using ClassicalAM 
demonstrated its suitability to simulate the reduced veridicality of 
both simple and complex psychedelic VHs (Figure 1, top; Suzuki 
et al., 2017).
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FIGURE 1

Schematic of the model architecture adapted from Nguyen et al. (2016). Left: The model consists of a DGN (left) that constrains the network towards 
producing realistic images that maximally activate a target neuron within the DCNN (right). Right: the three independent manipulations that we applied 
to simulate specific forms of hallucinatory phenomenology. AM Type (top), we used two forms of AM, that either iterated through just the DCNN 
(ClassicalAM) or through both the DCNN and DGN (GenerativeAM). Error Function (middle) returns errors at the terminated layer for either a single 
predetermined neuron (Fixed), all neurons activated by the input image (Deep-Dream) or the single neuron that is maximally activated by the input 
image (Winner-Take-All). Target Layers (bottom) allows the selection of the specific layer that the AM process terminates at within the DCNN and 
returns errors from this layer. Note that these three manipulations can be applied orthogonally.

For both types of AM, in order for the input image to be altered, 
the processes of the network must be repeated (iterated) many times. 
With each iteration the image is altered further. Therefore, generating 
synthetic VHs using increasing numbers of iterations provides an 
additional inbuilt method of manipulating veridicality, as the 
veridicality of synthetic VHs decreases with increasing iteration 
number. We leveraged this inherent feature of the networks to better 
capture natural variations in the veridicality of hallucinatory content 
within a specific hallucinatory population.

1.2.2 Spontaneity
A key challenge when designing network visualisation techniques 

centres on the parameters of the error function used to select target 
neuron(s). ClassicalAM and GenerativeAM both use a Fixed error 
function that returns an error for a pre-defined (randomly selected) 
target neuron, whilst all other neurons return zero errors (Figure 1, 
middle). Consequently, the output image is optimised to activate the 

selected target neuron only (usually representing a particular object 
category thanks to the DCNN/DGN training regime) regardless of the 
content of the input image. In contrast, the Deep-Dream error 
function, used in our previous simulations of hallucinatory 
phenomenology (Mordvintsev et al., 2015; Suzuki et al., 2017), returns 
errors for all the neurons within a selected layer of the DCNN that 
were activated by the visual features of the input image. Therefore, in 
this case the output image is dependent on the visual features 
contained within the input image and is modified by a dynamic 
interplay between these features and the neurons that are activated 
within the user-defined layer of the DCNN.

To simulate the reported differences in the spontaneity of VHs 
we therefore selectively altered the error function used to select the 
target neuron(s) within the DCNN. To simulate spontaneous VHs 
we used an error function that is not dependent on the input image 
(Fixed), and to simulate VHs that are driven by visual ‘seeds’ from 
within a perceived scene we used an error function that is dependent 
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on the input image (Deep-Dream) to represent the apparent 
dependency between visual input and hallucinatory content (i.e., the 
lower spontaneity) reported in psychedelic VHs.

Another reason we selected this approach is that it relates to the 
theorised disruption between (top–down) predictions and (bottom-up) 
prediction errors, which has been proposed to underlie VHs within PP 
accounts of perception (Alonso et  al., 2015; Swanson, 2018; 
Timmermann et al., 2018; Carhart-Harris and Friston, 2019). Within 
this framework, the use of a predetermined target neuron by the Fixed 
error function can be viewed as simulating the overly strong perceptual 
predictions thought to be the cause of Neurodegenerative/CBS VHs 
(Powers et al., 2016; O’Callaghan et al., 2017). The Deep-Dream error 
function can be  viewed as simulating the increased influence of 
bottom-up signalling on perceptual inference thought to underlie 
psychedelic VHs, because in this case the selected target neurons are 
dependent on, and driven by, the properties of the input image.

1.2.3 Complexity
Based on our previous research (Suzuki et al., 2017), we reasoned 

that simple hallucinatory phenomenology could be  simulated by 
restricting the layer that AM terminates to a lower layer of the DCNN, 
resulting in an overemphasis of low-level visual features extracted by 
these layers during training (Figure  1, bottom). Together with 
literature describing the characteristics of psychedelic VHs (Kluver, 
1926; Díaz, 2010; Studerus et  al., 2011; Nichols, 2016), and 
experimentation visualising activity within different lower layers, 
we found that lower layer conv4 produced synthetic VHs that were 
most representative of simple psychedelic VHs—for examples of how 
altering the lower layer AM terminates at affects image generation see 
Mahendran and Vedaldi (2016). In contrast, to simulate complex 
hallucinatory phenomenology, we  restricted the layer that 
AM terminates to the highest (categorical) layer of the DCNN.

Finally, to provide a benchmark of the Nguyen et  al. (2016) 
model’s performance against which the above simulations of 
hallucinatory phenomenology could be  compared, we  produced 
simulations of non-hallucinatory (veridical) perceptual 
phenomenology. Normal perceptual experience is naturally 
characterised by high veridicality and a close dependence between 
visual input and perceptual experience. To mimic these features, 
we used GenerativeAM and developed a new class of error function, 
which we  call Winner-Take-All (Figure  1, middle). In Winner-
Take-All, as with Deep-Dream, the user selects which layer of the 
DCNN the error function is to operate so that the target neuron is 
selected by the visual features of the input image, however, only a 
single neuron with the highest activation to the input is selected as the 
target neuron, whilst the errors of all the other neurons are set to zero, 
as with Fixed. In this way Winner-Take-All mimics the balance 
between sensory signals and perceptual predictions associated with 
normal perceptual experience. The idea of this benchmark is to create 
an image set using the same network architecture when it is not tuned 
to model a VH of any kind.

Figure  1 summarises the manipulations to AM: type of AM: 
(GenerativeAM or ClassicalAM), error functions (Winner-Take-All, 
Deep-Dream, or Fixed), and user-selected target layer for AM  to 
terminate within the DCNN [Higher (fc8) or Lower (conv4)].

Figure 2 provides illustrative examples of the effects of applying 
these three orthogonal manipulations on the output of the model. 

First, generating images with (GenerativeAM) or without 
(ClassicalAM) the natural image prior of the DGN produces output 
images with high and low veridicality, respectively. Second, selectively 
applying different Error Functions (Deep-Dream, Winner-Take-All, 
Fixed) alters the dependency between the input and output image, 
modulating spontaneity. Third, modifying the target layer at which 
AM terminates between a Higher Layer (fc8) and Lower Layer (conv4) 
alters the complexity of the output image.

Using the above approach, we  set out to test if the coupled 
DCNN-DGN neural network architecture of Nguyen et al. (2016) 
could be used to simulate three aspects of Neurodegenerative, CBS 
and psychedelic hallucinatory phenomenology: veridicality, 
spontaneity, and complexity. Summarising, we simulated these three 
phenomenological dimensions by the inclusion or omission of the 
natural image prior of the DGN (veridicality), altering the error 
function used to select the target neuron(s) within the DCNN 
(spontaneity), and restricting the level within the DCNN that 
AM  terminates to either the lower (conv4) or higher layer (fc8; 
complexity).

1.3 Do synthetic VHs provide an accurate 
representation of hallucinatory 
experience?

To draw conclusions about the validity of the synthetic VHs 
produced by this approach, it is important to establish the extent to 
which they match the subjective experience associated with each 
group’s hallucinatory experience. To investigate this question, 
we  performed two additional experimental studies. In the first 
in-person study we developed a semi-structured interview that was 
used to enquire about the visual phenomenology associated with CBS 
and Neurodegenerative VHs and how closely these reports matched 
the appropriate synthetic VHs. The second online study recruited 
participants with recent psychedelic experience to assess how closely 
a recalled psychedelic experience matched examples of the 
corresponding synthetic VHs. Both studies enquired about the general 
phenomenology, including specific questions regarding the 
complexity, veridicality, and spontaneity of their VHs and critically, 
also asked participants to directly rate the visual similarity between 
the appropriate synthetic VHs and their hallucinatory experiences.

2 Materials and methods

2.1 DCNN-DGN model

Here we  summarise the details of the coupled DCNN-DGN 
model architecture that we use without modifications, taken from 
Nguyen et al. (2016) (Figure 3). Modelling distinct classes of VH was 
instead achieved by applying the following modifications to the 
visualisation algorithm: (1) we added a function that allowed us to 
switch between the GenerativeAM and ClassicalAM visualisation 
algorithms. (2) we added a function that allowed us to use different 
error functions when optimising images for both forms of AM. (3) 
We modified both forms of AM so that they could be applied in a 
layer-specific manner to the DCNN.
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2.1.1 Model architecture
The DCNN used by Nguyen et  al. (2016) is the CaffeNet 

architecture (Jin, 2014), a minor variant of the AlexNet architecture 

(Krizhevsky et  al., 2017). The DCNN was pre-trained for image 
classification through supervised learning on a dataset of natural 
photographs, ImageNet (Russakovsky et al., 2015; Schmid et al., 2015; 

FIGURE 3

Coupled classifier (DCNN) and generative (DGN) neural network architecture used in this study, taken from Nguyen et al. (2016). The two networks, 
DCNN (labelled DNN) on the right, and DGN on the left are combined via the Image layer at the bottom of both networks (green). To synthesise a 
preferred input for a fixed target neuron (representing a ‘candle’) located in layer fc8 of the DCNN, the latent vector layer (red bar) of the DGN is 
optimised to produce an image that strongly activates the target neuron. The gradient information (blue-dashed line) flows from the layer containing 
the target neuron in the DCNN via backpropagation through the image to the latent vector layer of the DGN. This process generates a new image that 
maximally activates the target neuron within the DCNN. In GenerativeAM, the gradient information does not terminate at the bottom layer of the 
DCNN but is passed through the image layer to optimise the latent vector of the DGN, which is then used to generate a preferred image for the 
selected target neuron. Image adapted with permission from Nguyen et al. (2016).

FIGURE 2

Examples of input image transformations based on the three orthogonal manipulations in our model. (i) the inclusion or omission of the natural image 
prior of the DGN: GenerativeAM vs. ClassicalAM (left and right image columns in each panel, corresponding to veridicality). (ii) altering the error 
function used to select the target neuron(s) within the DCNN: Fixed, Winner-Take-All or Deep-Dream (rows, corresponding to spontaneity). (iii) 
restricting the level within the DCNN that AM terminates: Higher Layer (fc8) vs. Lower Layer (conv4; left panel vs. right panel. Corresponding to 
complexity and to the level at which AM terminates). Fixing higher layers (left panel) tends to produce output images similar to more complex 
hallucinations, whilst fixing lower layers (right panel) tends to create output images better resembling simpler geometric hallucinations. Including the 
natural image prior (GenerativeAM) leads to output images with higher veridicality than without this prior (ClassicalAM). Turning to the error functions, 
the far-left column illustrates how each error function operates based on the activation of the target layer and the errors generated. In the Deep-
Dream Error Function, errors are generated proportional to the activation of the target layer neurons. This may lead to the output image containing 
multiple categorical features. In the Winner-Take-All Error Function, only the neuron that is maximally activated by the input image remains activated. 
In the Fixed Error Function, the target neuron is pre-selected by the researcher and therefore only a single neuron returns the error. See 
Supplementary Figure S2 for more sample output images for all the combinations of model manipulations.
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Szegedy et al., 2015; Krizhevsky et al., 2017), based on the thousand 
categories of ImageNet. The CaffeNet architecture consists of five 
convolutional layers (c1–c5) and three fully connected layers (fc6, fc7, 
and fc8; Figure 3). The layer fc8 is the highest layer of the DCNN 
(pre-softmax) and has 1,000 outputs, each corresponding to one of the 
ImageNet categorical labels. During training, the visual characteristics 
of ImageNet photographs are extracted across all layers of the 
DCNN. The network learns via backpropagation to associate these 
features with distinct categorical labels. Consequently, the trained 
network implements a mapping from the pixel level of the input image 
to the respective categorical labels, represented as activation within 
specific neurons within the highest layer of the network (fc8).

The DGN used by Nguyen et  al. (2016) was pre-trained 
independently from the DCNN [DGN taken from Dosovitskiy and 
Brox (2016a,b)], using a Generative Adversarial Network (GAN) 
approach, combined with the representation learning method (see 
Supplementary material 1.1.1 for details of the GAN training). This 
DGN consists of nine up-convolutional (up-sampling and a 
subsequent convolutional) layers (u1–u9) one ‘reshape’ layer and three 
fully connected (fc) layers (Figure 3) which are designed to invert a 
convolutional network.

2.2 Parameters used to simulate 
aetiologically distinct VHs

Based on the phenomenological profile of each aetiologically 
distinct category of VH (in terms of their complexity, veridicality, 
and spontaneity; see Table 1), we applied specific manipulations to 
AM to simulate the hallucinatory phenomenology of each group: 
AM type (ClassicalAM or GenerativeAM), error functions (Fixed, 
Deep-Dream, or Winner-Take-All), and user-selected target layer 
for AM  to terminate within the DCNN [Lower (conv4) or 
Higher (fc8)].

For all simulations we ran the model for a total of 1,000 iterations. 
This value was derived from experimentation with the optimal 
number of iterations to allow GenerativeAM to converge on a stable 
output. After extensive piloting, we found that 1,000 iterations were 
sufficient to ensure the output image reached saturation, that is, it was 
not altered any further by subsequent iterations. For all further 
simulations we generated synthetic images following 10, 50, 100, and 
1,000 iterations. See Supplementary material 1.1.4 for details of the 

input images and minor optimisations used for all simulations and 
Supplementary Table S1 for the pseudo code used to generate all 
images. The code used to generate all synthetic images is freely 
available at https://github.com/ksk-S/ModellingHallucinations.

2.2.1 Benchmark simulations
To create a benchmark against which simulations of hallucinatory 

phenomenology could be compared, we used the model to simulate 
non-hallucinatory (veridical) perceptual phenomenology by applying 
GenerativeAM with the Winner-Takes-All error function and 
terminating the upward pass of AM at the top categorical layer of the 
DCNN (fc8).

2.2.2 Neurodegenerative VHs
To simulate complex Neurodegenerative VHs, we  used 

GenerativeAM (high veridicality), the Fixed error function 
(spontaneous) and terminated the upward pass of AM at the top 
categorical layer (fc8) of the DCNN. Five target neurons were 
randomly selected from layer fc8, resulting in the Fixed error 
function maximising the activity of the DCNN target neurons 
representing flower, bird, mushroom, lamp and volcano. Producing 
synthetic VHs using an increasing number of iterations provided 
an additional means of manipulating the veridicality of the image. 
We  found that using GenerativeAM with increasing iteration 
number resulted in a decrease in the veridicality of the synthetic 
VH, an effect that became saturated following approximately 200 
iterations. We  used the same parameters to simulate simple 
Neurodegenerative VHs except we terminated the upward pass of 
AM at the lowest layer (conv4) of the DCNN. Again, five target 
neurons were randomly selected from the conv4 layer of the 
DCNN. We found that unlike the critical role that a target neuron 
has in shaping the content of the synthetic complex VHs, the target 
neuron used to generate simple VHs did not have as much of an 
influence in shaping the resulting synthetic VHs. This is due to 
neurons within this layer representing similar low-level visual 
features of natural images.

2.2.3 CBS VHs
To simulate simple and complex CBS VHs we  used the same 

parameters as for Neurodegenerative VHs, except that we introduced 
representative features of the visual deficits associated with CBS 
(central blur) into the input image.

TABLE 1 Summary of phenomenological characteristics associated with Neurodegenerative, CBS and psychedelic VHs (clear) and the corresponding 
model manipulations (shaded) used to simulate these characteristics.

Type of visual 
phenomenology

Veridicality AM type Complexity Layer of 
DCNN

Spontaneity Type of error 
function

Benchmark High GenerativeAM Complex Highest layer (‘fc8’) Dependent Winner-Take-All

Neurodegenerative Complex VH High GenerativeAM Complex Highest layer (‘fc8’) Independent Fixed

CBS Complex VH High GenerativeAM Complex Highest layer (‘fc8’) Independent Fixed

CBS Simple VH High GenerativeAM Simple Lower layer (‘conv4’) Independent Fixed

Psychedelic Complex VH Low ClassicalAM Simple Lower layer (‘conv4’) Dependent Deep-Dream

Psychedelic Simple VH Low ClassicalAM Complex Highest layer (‘fc8’) Dependent Deep-Dream

Veridicality refers to the similarity in the visual quality of a given experience compared to normal visual experience. AM Type refers to the use of either GenerativeAM or ClassicalAM. 
Complexity refers to the occurrence of simple or complex visual experience. Layer of DCNN describes the level within the DCNN that AM terminates. Spontaneity refers to whether the visual 
experience is dependent or independent of sensory input. Type of Error refers to whether Fixed, Deep-Dream or WTA error function was used. To simulate CBS VHs, we manually blurred the 
centre of each input image to mimic the central visual deficit associated with CBS.
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2.2.4 Psychedelic VHs
To simulate complex Psychedelic VHs, we used ClassicalAM (low 

veridicality), the Deep Dream error function (dependent) and 
terminated the upward pass of AM at the top categorical layer (fc8) of 
the DCNN. Unlike GenerativeAM, we found that the synthetic VHs 
generated by ClassicalAM did not ever reach saturation and increasing 
the number of iterations resulted in a graded decrease in veridicality 
of the resulting synthetic VHs. We  used the same parameters to 
simulate simple Psychedelic VHs, except we terminated the upward 
pass of AM at a lower layer (conv4) of the DCNN.

2.3 Image similarity analysis

To provide an objective method of measuring the realism of our 
simulations of hallucinatory phenomenology we used a commonly 
applied method for assessing the realism of synthetic images 
produced by generative models: the Inception Score (IS; Salimans 
et  al., 2016). To calculate the IS an image is entered into an 
‘inception network’, a class of DCNN (e.g., GoogleNet), trained for 
image classification (Szegedy et al., 2015). An image produces the 
highest IS when it activates only a single neuron in the categorical 
layer of the DCNN, meaning that the features of the image converge 
into a single categorical label. We compared the IS between input 
images, benchmark, and all simulations of synthetic VHs.

To calculate the IS, we utilized the same five images for all 
simulations. Additionally, we selected 27 random image categories 
from CaffeNet and performed an internet search to find a single 
exemplar image of each category, using the specific CaffeNet label of 
each category (see Supplementary material section 1.1.4 for more detail 
and Figure S3 for the full set of images used). This led to a total of 32 
input images. For each image we then generated synthetic examples of 
non-hallucinatory and hallucinatory experience using the model 
parameters described in section 2.2, resulting in six main categories: 
(1) Non-hallucinatory (veridical) perceptual phenomenology (2) 
Simple CBS VHs, (3) Simple psychedelic VHs, (4) Complex 
Neurodegenerative VHs, (5) Complex Neurodegenerative VHs, (6) 
Complex psychedelic VHs (see Supplementary material 1.1.6 for all 
synthetic non-hallucinatory and hallucinatory images generated).

To provide a baseline IS for our model we first calculated the IS 
for the 32 input (unaltered) images. We then calculated the IS for each 
of the six categories. This resulted in a single IS score between 0 and 
32 for the baseline and six categories, with higher numbers denoting 
greater realism of the images.

2.4 Experimental studies: verifying the 
validity of synthetic VHs

To assess the ability of our model to accurately simulate etiologically 
distinct VHs, we conducted two separate studies: (i) an online survey that 
targeted participants with recent experience of classical hallucinogens, 
and (ii) a semi-structured series of phenomenological interviews in which 
patients with Lewy Body Dementia, Parkinson’s Disease or Charles 
Bonnet Syndrome described their VHs in detail.

2.4.1 Online psychedelic survey
This experiment was designed to assess how closely participants’ 

chosen psychedelic experiences matched the synthetic VHs produced 

by our model. We reasoned that if our simulations were successful in 
producing representative examples of psychedelic experience, 
participants would be more likely to select synthetic psychedelic VHs, 
compared to Neurodegenerative VHs, as most closely matching their 
experience. The experiment was carried out in accordance with 
approved guidelines provided by the University of Sussex, Research 
Ethics Committee, and was pre-registered using OSF.1 Here, we report 
abbreviated methods, for a full description of the experiment see 
Supplementary material 1.2.

2.4.1.1 Participants
Eighty-one participants completed the online survey who 

reported having taken a classical psychedelic hallucinogen (LSD, 
psilocybin, or DMT) within the previous 12 months.

2.4.1.2 Procedure
The experiment consisted of collection of background 

information, an image selection task, and assessment of hallucinatory 
phenomenology. It began by asking eligible participants to select a 
particular psychedelic experience from within the last 12 months, that 
they would use to answer all the questions in the survey, the type of 
classical hallucinogen this experience related to and the subjective 
potency of this experience using a scale from 0 (not potent at all) to 5 
(as potent as my most intense psychedelic experience).

Participants then completed 5 practice trials of the image selection 
task. Each trial of the image selection task presented 6 randomly 
selected synthetic VHs images (3 Neurodegenerative and 3 
psychedelic). Participants were asked to select which image (if any) 
that most closely resembled their chosen psychedelic experience (see 
Supplementary material 1.2 for more detail).2

The main experiment used the same trial structure as the practice 
session but consisted of a total of four blocks, each with 32 trials. Two 
blocks contained images simulating simple VHs (3 Neurodegenerative 
and 3 psychedelic), and two blocks contained images simulating 
complex VHs (3 Neurodegenerative and 3 psychedelic). Within each 
block, 2 catch trials were placed in random positions that contained 
task irrelevant instruction (e.g., click the top-right image), to maintain 
participants’ attention.

Following the main experiment, participants were asked to 
indicate if their chosen psychedelic experience contained simple, 
complex or both types of hallucinatory content. They were then asked 
separately about the veridicality [from 1 (identical) to 10 (completely 
different)], and the spontaneity [scale from 1 (completely dependent) 
to 5 (completely independent)] of each type of hallucinatory content 
in relation to their existing visual experience (see 
Supplementary Tables S3–S6 for actual questions).

2.4.1.3 Pre-registered analysis
We followed the analysis plan and exclusion criteria described in 

the pre-registration document (see text footnote 1). We  excluded 
participants who skipped more than 75% of the trials, those who had 
an average reaction time of less than 1 s, and those who did not meet 
the 1-min time limit for more than 50% of all trials. In addition to the 

1 https://osf.io/qu8xe

2 https://osf.io/nr4ke/files/osfstorage
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pre-registered exclusion criteria, we set post-hoc exclusion criteria in 
which participants who answered four or more of the eight catch trials 
incorrectly were excluded.

To investigate if synthetic psychedelic VHs were 
phenomenologically similar to psychedelic experiences, we used a 
one-tailed, one-sample t test using the test variable of the sample mean 
and a chance level of 0.5 (50%) to compare the ratio of responses 
between psychedelic and Neurodegenerative synthetic VHs for both 
simple and complex blocks separately. A resulting value of p equal to 
or less than 0.05 (p  ≤ 0.05) was interpreted as evidence that 
participants selected psychedelic synthetic VHs at a higher-than-
chance frequency. This standard t test was accompanied with a 
Bayesian t test. A Bayes Factor (BF) greater than 3 was taken to 
indicate sensitive evidence for the hypothesis that participants selected 
simulations of psychedelic VHs at a higher-than-chance frequency, 
whilst a BF < 1/3 was taken to indicate sensitive evidence for the null 
hypothesis. BFs between these two thresholds (>1/3 but <3) were 
taken as evidence that the data was insensitive (Jeffreys, 1939; 
Dienes, 2014).

2.4.1.4 Exploratory analysis
We performed two exploratory analyses which were not 

included in the pre-registration. First, to explore if any of the other 
image generation parameters used to produce the synthetic VHs 
affected how representative of psychedelic experience they were, 
we conducted two separate ANOVAs (simple VHs and complex 
VHs) for the most frequently selected hallucination type (either 
psychedelic or Neurodegenerative VHs) based on the pre-registered 
results, using image selection frequency as the dependent variable. 
For complex VHs we conducted a 3 × 2 ANOVA of image selection 
frequency, with factors iteration number (10, 100, or 1,000) and 
error function (WTA or Fixed). For simple VHs we  conducted 
another separate 3 × 2 ANOVA of image selection frequency, with 
factors iteration number (10, 100, or 1,000) and target layers (conv3 
or conv4).

Second, we examined the correlation across participants between 
the reported potency of the chosen psychedelic experience and the 
number of iterations used to generate the synthetic VHs again for the 
most selected hallucination type (either psychedelic or 
Neurodegenerative), reasoning that those participants who had 
reported a higher potency psychedelic experience would be more 
likely to select synthetic VHs produced by a higher number of 
iterations. First, for each participant, we ran a linear regression across 
all stimuli, plotting the iteration level of each stimulus against how 
frequently that stimulus was selected. The slope value (coefficient) of 
each regression reflects the iteration level preference for a participant, 
with a positive slope indicating a tendency to select a higher iteration 
value. We  then ran a one-tailed bivariate correlation (Pearson’s 
coefficient) across participants using the variables of ‘iteration 
preference’, taken from the slope of the regression, and potency 
rating (0–5).

2.4.2 Clinical semi-structured phenomenological 
interview

Twenty-two participants (13 female) took part in a semi-
structured interview designed to enquire about the visual 
phenomenology associated with CBS and Neurodegenerative VHs 
(PD and LBD, see S5; mean age = 67 years, SD 15.9). Nine participants 

had received a formal diagnosis of Parkinson’s Disease (PD), three a 
formal diagnosis of Lewy Body Dementia (LBD), and 10 reported 
visual loss resulting in a formal diagnosis of Charles Bonnet Syndrome 
(CBS). This experiment was carried out in accordance with approved 
guidelines provided by the University of Sussex, Research 
Ethics Committee.

All participants were interviewed by author D.J.S. by video 
conference call (zoom etc.) or telephone, and each interview lasted no 
longer than 45 min. After an introduction, and verbal consent was 
provided, the semi-structured interview began by collecting 
background information about general features of participants’ VHs, 
such as how long they had experienced visual hallucinations, how 
frequently they occurred, how long on average each VH lasted, the 
differing types of content of their VHs, the complexity of their VHs 
(simple/complex) and if they had ever confused their VHs as being 
real (reality monitoring; see Supplementary material 1.4 for the full 
interview material).

Each participant was then asked to describe in as much detail as 
possible their most recent (target) experience of a VH. We used open-
ended questioning to allow participants to answer in detail. For each 
target VH, the spontaneity of the VH was assessed by the context of 
the description. A VH was interpreted as being spontaneous if it was 
described as being a transformation of pre-existing aspects of a visual 
scene, as compared to occurring in the absence of any corresponding 
pre-existing content. If there was any ambiguity in participants’ 
descriptions regarding spontaneity, the interviewer guided the 
participant towards reporting on this aspect of their VH, by asking 
them specifically if their VHs occurred in the absence of pre-existing 
content within the visual scene.

Participants were then asked to rate the veridicality of the VH: ‘On 
a scale of 1–10, 10 being identical to normal visual experiences, 1 
being not at all like normal visual experience, how would you rate the 
visual quality of this VH?’. For CBS participants in which no vision 
was preserved, they were asked to compare the veridicality of the 
target VH to memories of their visual experience before the onset of 
eye disease. This procedure was repeated with other instances of VHs 
that the participant reported, up to a maximum of 5 descriptions.

Following this portion of the interview, each participant was 
shown 5 × 10 grids of images displaying examples of Neurodegenerative 
(GenerativeAM) and psychedelic (ClassicalAM) synthetic VHs. The 
first column displayed the 5 unaltered input images used in all 
simulations. Each successive column displayed synthetic complex 
GenerativeAM or ClassicalAM VHs following 5, 10, 50, 100, 200, 400, 
600, 800, and 1,000 iterations. The participants were instructed: ‘please 
select the column, if any, that displays the closest visual similarity to 
your experience of visual hallucinations’. If a participant reported 
simple VHs, they were also shown similar grids of Neurodegenerative 
(GenerativeAM) and psychedelic (ClassicalAM) simple synthetic 
VHs. Three CBS participants were too visually impaired to perform 
this task. See Supplementary Figure S12 for all images used in 
the interview.

3 Results

We simulated three distinct aspects of clinical and psychedelic 
visual hallucinatory phenomenology—their complexity, 
veridicality and spontaneity—by manipulating a pre-trained 
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FIGURE 4

Schematic of the model architecture and outputs simulating benchmark (non-hallucinatory) veridical perceptual phenomenology. (A) Schematic of 
model architecture and information flow for a single iteration. An initial arbitrary input image is passed forward through the DCNN, which extracts the 
visual features of the image across the layers of the network (Blue arrow). Using the Winner-Take-All error function, the neuron that responds 
maximally to the input image neuron is selected within the highest categorical layer of the DCNN. Using GenerativeAM the categorical information 
held within the selected target neuron is passed to the DGN, which updates the latent space of the DGN and creates a new synthetic image that 
maximises the activity of the selected target neuron (Red arrow). (B) The initial input images (5 images, left column) and visualisations of the network 
following 10, 50, 100 and 1,000 iterations.

coupled DGN-DCNN model. These distinct aspects were selected 
to reflect the reported phenomenology of VHs experienced by 
people with certain Neurodegenerative conditions, by people with 
visual loss, and by neurotypical people following the ingestion of 
classical psychedelics (see Table 1). We assessed the output of the 
model objectively by comparing the Inception Scores from our 
benchmark simulation of non-hallucinatory experience to all 

other simulations of hallucinatory phenomenology. The Inception 
Scores of all the simulation results are presented in Table  2. 
We  also conducted both questionnaire and semi-structured 
interview surveys with people from each of the above three groups 
to assess the subjective match between model output and 
reported experience.

3.1 Simulating non-hallucinatory 
perceptual phenomenology

To provide a benchmark of model performance, we first simulated 
non-hallucinatory (veridical) perceptual phenomenology. Note that if 
the performance of the model was perfect in simulating 
non-hallucinatory perceptual phenomenology, then the input and 
output should be  identical. Figure  4 shows the procedure and 
representative results from the benchmark simulation.

Using the Inception Score to measure the realism of the 
benchmark simulation we found that the synthetic outputs of this 
simulation displayed the highest Inception Score (22.59) of all the 
reported simulations when compared to the (unaltered) input 
images (28.54). We used these visualisations and Inception Score as 
a benchmark with which to assess the veridicality of 
further simulations.

TABLE 2 Comparison of Inception Scores for 32 arbitrary input images 
and synthetic outputs of the model for each simulation.

Image type Inception score (IS)

Input images 28.54

Non-hallucinatory perception 

(benchmark)

22.59

Neurodegenerative 19.92

CBS complex 22.40

CBS simple 6.68

Psychedelic complex 5.52

Psychedelic simple 3.42

A higher number denotes a greater degree of visual realism of the image set. Note that the 
maximum Inception Score is derived from the total number of images used in the 
calculation, i.e., 32.
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3.2 Simulating neurodegenerative visual 
hallucinations

Next, we  simulated the perceptual phenomenology associated 
with complex Neurodegenerative VHs (PD and LBD). Simulating 
complex Neurodegenerative VHs, here, we found the model’s 
visualisations displayed high veridicality (Figure  5), producing a 
relatively high Inception Score (19.92) when compared to the 
benchmark (22.59). In addition, due to the use of the Fixed error 
function and selection of an experimenter-determined target neuron, 
the resulting synthetic VHs were unrelated to the input image. Finally, 
due to selecting the highest layer of DCNN for Generative AM to 
terminate, the synthetic VHs contained complex recognisable forms. 
Together, these synthetic VHs display the key phenomenological 
characteristics of high veridicality, spontaneity and complexity that are 
typical of complex Neurodegenerative VHs.

3.3 Simulating visual hallucinations due to 
visual loss (CBS)

Next, we simulated the perceptual phenomenology of simple and 
complex CBS VHs by introducing a central ‘blur’ to the input image 
(see Figure 6) and keeping all other parameters the same as complex 
Neurodegenerative VHs (Figure  5). We found that the resulting 
synthetic VHs displayed high veridicality, which was confirmed by a 

high Inception Score (22.40) when compared to both our benchmark 
(22.59) and Neurodegenerative (19.92) simulations. Together, these 
synthetic VHs are in line with typical reports of complex VHs in CBS 
(Schultz and Melzack, 1991; Teunisse et al., 1996; Ffytche and Howard, 
1999; Menon et  al., 2003; Abbott et  al., 2007), displaying high 
veridicality and spontaneity.

To simulate simple CBS VH, we restricted the level within the 
DCNN that AM terminates to a lower layer (conv4) and allowed the 
DGN to synthesise new images based on the activity of a randomly 
selected target neuron within this layer (Figure  1, bottom). The 
resulting synthetic VHs contained low-level colours and textures 
associated with natural real-world objects, similar to the flashes of 
light, abstract shapes and repeating patterns commonly reported in 
simple CBS VHs (Teunisse et al., 1996; Ffytche and Howard, 1999; 
Menon et al., 2003; Abbott et al., 2007). Due to the predominance of 
low-level visual content of these synthetic VHs the resulting IS was as 
expected lower (6.68) than both benchmark and other simulations of 
complex VHs.

3.4 Simulating psychedelic visual 
hallucinations

Using the same model parameters as in our previous 
simulations of psychedelic hallucinatory phenomenology (Suzuki 
et al., 2017), we were able to simulate the reduced veridicality and 

FIGURE 5

Schematic of the model architecture and synthetic VHs simulating Neurodegenerative complex VHs. (A) Schematic of model architecture for a single 
iteration. An arbitrary input image (e.g., bird), is passed forward through the DCNN (Blue arrow). Irrespective of the input image, an experimenter-
determined target neuron is selected within the categorical layer of the DCNN (e.g., flower) using the Fixed error function. Using GenerativeAM this 
information is passed to the DGN and updates the latent space so that the generated image increases the activation of the target neuron (Red arrow). 
(B) The initial input images (left column) and synthetic VHs of the network following 10, 50, 100 and 1,000 iterations. From top to bottom, the 
experimenter-determined target neuron used in the Fixed error function was Flower, Bird, Mushroom, Lamp and Volcano.
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FIGURE 6

Schematic of the model architecture and synthetic VHs simulating simple and complex CBS VHs. (A) Schematic of the model architecture used in a 
single iteration. An arbitrary input image (e.g., bird) with representative features of the visual deficits associated with CBS (central blur), is passed 
forward through the DCNN (Blue arrow). A randomly-determined target neuron is selected in the DCNN output layer (e.g., flower) using the Fixed error 
function. With each iteration the DGN generates a new image that maximally activates the target neuron (red arrow). For simple CBS VHs, we restricted 
the level within the DCNN that AM terminates to a lower layer (Conv4). (B) Simulations of complex CBS VHs, iterating from an input image (left 
column) and outputs following 100 and 1,000 iterations. From top to bottom, the Fixed error function maximises the activity of the 5 randomly 
selected DCNN target neuron representing flower, bird, mushroom, lamp and volcano. (C) Simulations of simple CBS VHs iterating from an input 
image (left column) and outputs following 100 and 1,000 iterations. A randomly-determined target neuron is selected in the lower layer (conv4) of the 
DCNN using the Fixed error function. With each iteration, the DGN alters the image based on the learnt features specified by the selected target 
neuron in the conv4 layer of the DCNN.

dependency on sensory input (reduced spontaneity) associated 
with complex psychedelic VHs. The use of a consistent set of input 
images across all simulations in this paper enables the comparison 
of synthetic psychedelic VHs with aetiologically distinct 
synthetic VHs.

Compared to benchmark, Neurodegenerative and CBS synthetic 
VHs, simulations of complex psychedelic VHs displayed low 
veridicality, reflected by a low Inception Score (5.52). In addition, the 
complex hallucinatory content within these synthetic VHs can be seen 
as being driven by visual ‘seeds’ within the input image (Figure 7). 
These synthetic VHs also display hallucinatory transformations of the 
input image, for example, an input image of a mushroom or flower 
(2nd and 5th rows) was transformed into ‘fish’ or ‘bird-like’ 
hallucinatory content that still somewhat conforms to the global 
structural properties of the input image (Figure 7). Together, these 
synthetic VHs are in line with anecdotal reports of psychedelic 
complex VHs displaying lower veridicality and being driven by visual 
‘seeds’ within an observed scene.

Finally, to simulate simple psychedelic VHs, we used the same 
parameters as above but restricted the level within the DCNN that 
AM terminates (conv4; see Figure 8). In contrast to simulations of 
simple CBS VHs (Figure 6C), the resulting visualisations prominently 
included geometric shapes, patterns and rhythmic kaleidoscopic 

imagery similar to those often reported during psychedelic 
experiences (Tyler, 1978; Bressloff et al., 2001; Díaz, 2010; Cowan, 
2015; Nichols, 2016). The marked ‘hallucinatory’ quality of these 
visualisations was reflected by a reduced Inception Score (3.42), as 
compared to simple CBS VHs (6.68). Similar to our simulations of 
complex psychedelic VHs, these visualisations were also 
transformations of existing sensory input. As shown in Figure 8, some 
of the geometric features within each visualisation are clearly driven 
by the corresponding properties of the input image.

3.5 Clinical semi-structured 
phenomenological interview

A semi-structured phenomenological interview was used to 
enquire about the visual phenomenology associated with CBS and 
Neurodegenerative VHs (see Table  3) (See text footnote 2). 
Assessing the veridicality of complex VHs, we found that 92% of 
Neurodegenerative and 90% of CBS patients reported that their 
VHs appeared ‘as real’ or ‘similar to’ their normal visual 
experiences. In terms of spontaneity, 18 out of 20 participants (2 
CBS participants were severely visually impaired) reported that 
their VHs always occurred spontaneously, in the absence of 
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sensory cues, with two PD participants reporting that infrequently 
their VHs could be described as transformations of existing visual 
information within the observed scene. For example, one PD 
participant described an occasion in which their slippers had 
turned into rats that ran across the bathroom floor. Examining the 
complexity of the reported hallucinatory content, we found that 
92% of Neurodegenerative participants reported that their VHs 
were complex in nature, with only one participant reporting both 
simple and complex VHs. In contrast, 90% of CBS participants 
reported experiencing both simple and complex VHs, with only 
one participant reporting only complex VHs.

Next, to assess our model’s ability to produce representative 
visualisations of Neurodegenerative and CBS VHs we  showed 
participants a range of synthetic VHs generated using 
GenerativeAM or ClassicalAM and an increasing number of 
iterations and asked them to select which (if any) was the most 
representative of their hallucinatory experience (see 
Supplementary Figure S12 for images shown). Due to severe visual 
or cognitive impairment three CBS and two LBD patients were 
unable to complete this task. Supporting the validity of our synthetic 
VHs, we found that Neurodegenerative and CBS participants only 
selected images with high veridicality, that is, created using 
GenerativeAM, as being representative of their complex 
hallucinatory experience (Figure 9).

Next, we predicted that due to the high reported veridicality 
of Neurodegenerative and CBS VHs that participants would 

select the images generated by GenerativeAM with low iteration 
numbers. Pooling the images selected by Neurodegenerative 
participants and averaging each image’s iteration number resulted 
in an average iteration value of 3 (N = 10; SD = 4.3), suggesting 
that for this group of Neurodegenerative participants their VHs 
displayed high veridicality. In contrast, we  found an average 
iteration value of 18.6 for CBS complex VHs (N = 7, SD = 36.1), 
suggesting that for these participants their complex hallucinatory 
experience did not display as high a degree of veridicality as 
Neurodegenerative patients. Pooling data across both 
groups  resulted in the synthetic VHs produced following 10 
iterations as being the closest representation of both 
Neurodegenerative and  CBS complex VHs (see 
Supplementary Figures S12; Figure 9).

Investigating participants’ simple hallucinatory experience, 
we  again found that all participants only selected the 
Neurodegenerative synthetic VHs (GenerativeAM) as being 
representative of their simple VHs (Figure 9). In contrast to complex 
VHs, we predicted that participants who experienced simple VHs 
would select simple synthetic VHs with a high number of iterations, 
due to the abstract low-level visual features requiring more iterations 
to develop fully in the synthetic VHs. Indeed, on average, the single 
PD and four CBS patients who experienced simple VHs and were able 
to perform the task selected synthetic VHs following 760 iterations 
(N = 5; SD = 260) as being the most accurate representation of their 
simple VHs (Figure 9).

FIGURE 7

Schematic of model architecture and synthetic VHs simulating psychedelic simple VHs. Model. (A) Model architecture for a single iteration: the level 
that ClassicalAM terminates was restricted to a lower layer (conv4). An initial input image is passed forward through the DCNN. Using the Deep-Dream 
error function, errors are returned for all neurons within the conv4 layer of the DCNN that were activated by the input image. These errors are 
transmitted via backpropagation to alter the colour of each pixel within an input image to maximise activity within the activated target neurons. 
(B) Input images (left column) and visualisations of the network restricted to the conv4 layer of the DCNN, following 10, 50, 100 and 1,000 iterations. 
Note that this architecture is identical to that used in Suzuki et al. (2017).

https://doi.org/10.3389/fnhum.2023.1159821
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Suzuki et al. 10.3389/fnhum.2023.1159821

Frontiers in Human Neuroscience 14 frontiersin.org

3.6 Psychedelic survey

3.6.1 Pre-registered analyses
The number of participants for this study did not reach the 

pre-registered sample size of 200, therefore the following analysis 
is exploratory. No participants were excluded based on the 
pre-registered exclusion criteria for this study. Applying the 
post-hoc exclusion criteria (less than 4 correct answers to the 
catch trials), four participants were excluded (4.9% of all 
participants) out of the 81 participants who completed the 
online survey.

Out of the remaining 77 participants, 46 indicated that their 
reports related to the ingestion of psilocybin, 24 LSD, and 7 
DMT. When asked to rate the subjective potency of their hallucinatory 
experience on a scale of 0 (not potent at all) to 5 (as potent as my most 
intense psychedelic experience), average potency ratings were: 
psilocybin 3.6 (SD = 1.28), LSD 3.5 (SD = 1.1) and DMT 4.3 (SD = 0.76; 
Figure 10).

To investigate if synthetic images generated by ClassicalAM 
were representative of psychedelic experience, we first examined 
the results of the image selection task from the psychedelic 
survey (Figure  11). We  found that participants who reported 
complex VHs chose the images generated by ClassicalAM 
significantly more frequently than the images generated by 

GenerativeAM [one-tailed t test, t(76) = 13.02, p < 0.01, Cohen’s 
d = 3.80, BF10 = 1.92 × 1,018; Figure 11A]. Similarly, participants 
who reported simple VHs selected the images generated by 
ClassicalAM significantly more frequently than the images 
generated by GenerativeAM [t(76) = 12.26, p < 0.01, Cohens’ 
d = 3.75, BF10 = 9.51 × 1,016; Figure 11B]. These results suggest 
that, for this sample, synthetic VHs generated using ClassicalAM 
were most representative of both simple and complex 
psychedelic phenomenology.

3.6.2 Exploratory analyses
Next, to explore if the additional parameters used in the 

generation of the synthetic psychedelic VHs—the number of 
iterations, and DCNN level where AM  terminated—affected the 
likelihood of them being selected as representative of participant’s 
psychedelic experience we compared these factors for each category 
of synthetic VH: complex-psychedelic, and simple-psychedelic, using 
2 separate ANOVAs. For complex VHs the factors used in the 
ANOVAs were iteration level (3; 10, 100, 1,000) and AM Type (2; 
Figure 11A). For simple VHs the factors used were iteration level (3; 
10, 100, 1,000) and the layer of DCNN (2; Figure 11B).

Results of the ANOVAs revealed a significant main effect for 
iteration level only for Simple-psychedelic VHs [F(81,2) = 29.28 
p < 0.01, η2 = 0.12]. Additional post-hoc tests revealed that the 

FIGURE 8

Schematic of the model architecture and synthetic VHs simulating psychedelic complex VHs. (A) Model architecture used in a single iteration, using 
only the DCNN and the Deep-Dream error function. An initial input image is passed forward through the DCNN extracting the visual features of the 
image across the layers of the network. Using the Deep-Dream error function, errors are returned for all neurons within the highest layer (fc8) of the 
DCNN that were activated by the input image. Using Classical AM these errors are transmitted via backpropagation to alter the colour of each pixel 
within an input image to maximise activity within the activated target neurons. (B) Simulations of psychedelic complex VHs. The initial input images (left 
column) and generated synthetic VHs following 10, 50, 100 and 1,000 iterations. Note that this architecture is identical to that used in Suzuki et al. 
(2017).
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TABLE 3 Results of semi-structured clinical interviews, showing demographic information and characteristics of Neurodegenerative (PD and LBD) and 
CBS VHs.

Demographics PD/LBD CBS Frequency of VHs PD/LBD CBS

N = 12 10 Daily 58% 60%

Age 69 ± 8.61 72.1 ± 21.1 Weekly 17% 0%

Gender M = 7/F = 5 M = 2/F = 8 Monthly 25% 40%

Veridicality PD/LBD CBS How long VHs have 
occurred

PD/LBD CBS

Normal visual experience (9–10) 67% 30% <1 year 42% 0%

Similar (5–8) 25% 60% 1–10 years 50% 70%

Less clear (<5) 8% 10% >10 years 8% 30%

Spontaneity PD/LBD CBS Duration of VHs PD/LBD CBS

Spontaneous 83% 100% 1–5 s 8% 0%

Visual transformation 17% 0% 5–60 s 33% 30%

1–60 min 58% 70%

Complexity of VHs PD/LBD CBS

Simple only 0% 0% Content PD/LBD CBS

Complex only 83% 10% Adults 92% 90%

Both 17% 90% Children 33% 10%

Animals 50% 50%

Reality monitoring Scenes 8% 10%

Preserved 50% 75% Other objects 0% 30%

Not preserved 25% 25%

Variable 25% 0%

FIGURE 9

Matrices displaying the selection frequency of synthetic VHs by Neurodegenerative and CBS participants that displayed the closest visual similarity to 
their hallucinatory experience within the clinical interview. Based on the type of hallucinations reported by the participant, they were shown a matrix of 
either simple, complex or both types of synthetic VHs generated using either ClassicalAM or GenerativeAM with increasing numbers of iterations (see 
Supplementary Figure S12 for the full set of images). They were then asked to choose which column of synthetic VHs, if any, was similar in visual 
quality to their experience of simple or complex VHs. The top matrix displays the selection count for simple synthetic VHs generated using ClassicalAM 
and GenerativeAM and the number of iterations (01,000). All participants only selected ‘Neurodegenerative’ synthetic VHs (GenerativeAM) as being 
visually most similar to their simple VHs. We observed an influence of iteration number on participants selection preference for simple synthetic VHs, 
with the majority of participants selecting synthetic VHs with high iteration numbers as being most representative of their simple hallucinatory 
experience, suggesting that for this group their simple VHs displayed the low-level colours and textures associated with natural real-world objects. The 
bottom matrix shows the same information for Complex VHs. Again, all participants only selected ‘Neurodegenerative’ synthetic VHs (GenerativeAM) as 
being visually most similar to their VHs. Most participants selected the input image or synthetic VHs with low iteration numbers as being most 
representative of their complex hallucinatory experience, suggesting that for this group their complex VHs displayed high veridicality.
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FIGURE 10

(A) Classical hallucinogen taken by participants during their chosen psychedelic experience (left). (B) Reported potency of participants chosen 
psychedelic experience on a scale of 0 (not potent at all) to 5 (as potent as my most intense psychedelic experience ever). Each circle denotes an 
individual participant response.

FIGURE 11

(A) Matrix displaying the effect of the type of error function (Winner-Take-All, Fixed) and the number of iterations (10,100,1,000) used to generate 
complex synthetic VHs on image selection preferences within the psychedelic survey. As can be seen for complex synthetic VHs, these parameters did 
not dramatically affect image selection preferences, which were relatively similar across parameter combinations. (B) Matrix displaying the effect of the 
layer at which ClassicalAM terminates (conv3, conv4) and the number of iterations (10,100,1,000) used to generate simple synthetic VHs on image 
selection preferences within the psychedelic survey. We observed an influence of these parameter values on selection frequency for simple synthetic 
VHs. Synthetic VHs were selected more frequently as being representative of psychedelic experience that were generated using low iteration numbers, 
suggesting that for this group their simple VHs were relatively ‘mild’. All matrices display the selection frequency averaged across participants and the 
two respective blocks (simple, complex) for each class of image. Note that the maximum number of each cell is 16.

ratio of responses was significantly higher for 10 compared to 
both 100 [t(76) = 6.82, pbonf  < 0.01, Cohen’s d = 0.77] and 1,000 
iterations [t(76,2) = 6.41, pbonf  < 0.01, Cohen’s d = 0.70; see 
Figure 11B], suggesting that for these participants the majority of 
their simple VHs were relatively subtle in nature, consisting of 
low-level visual distortion and not the colourful kaleidoscopic 
patterning typically reported under psychedelics. See 
Supplementary material 1.3 for full results examining the effects 
of the number of iterations and error function on image 
selection frequency.

Examining the correlation between the reported potency of the 
chosen psychedelic experience and how frequently different types of 
synthetic VH were selected, we found a significant positive correlation 
between potency and the iteration level preference (the slope value of 
the regression line of image selection frequency against iteration 

level): participants with highly potent psychedelic experiences were 
more likely to select psychedelic complex synthetic VHs with higher 
iteration levels (Pearson’s r = 0.33, p = 0.003, BF10 = 10.34). We found 
the same pattern of results for simple synthetic VHs: a significant 
positive correlation between potency and the iteration level preference 
for simple synthetic psychedelic VHs (Pearson’s r = 0.31, p = 0.007, 
BF10 = 5.344). These results suggest that increasing the number of 
iterations used to produce synthetic VHs captures the visual 
characteristics of differing subjective intensities of psychedelic 
experience, with higher potency psychedelic experiences being better 
characterised by synthetic VHs produced using greater numbers 
of iterations.

Next, we assessed the veridicality of psychedelic complex VHs, by 
asking participants to rate how similar their VHs were to their normal 
visual experiences on a scale of 1 (identical, high veridicality) to 10 
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(completely different, low veridicality). Half the participants (38/77) 
reported that their psychedelic experience had included complex VHs 
and provided an average veridicality rating of 7.8 (SD = 2.1; 
Figure 12A). In line with previous findings (Studerus et al., 2011; 
Carhart-Harris et al., 2016; Preller and Vollenweider, 2018; Sanz et al., 
2018) these results suggest that for these participants their complex 
psychedelic VHs displayed relatively low veridicality.

We also asked the same participants to report the spontaneity of 
their complex VHs using a scale of 1 (completely dependent) to 5 
(completely independent). We found an average spontaneity rating of 
3.16 (SD = 1.50; Figure 12B), suggesting that psychedelic complex VHs 
can be both dependent on, and independent of, sensory input, with a 
slight tendency to be rated more spontaneous in nature. We found no 
significant correlations between the potency of the chosen psychedelic 
experience and the reported veridicality (Pearson’s r = 0.27, p = 0.10, 
BF10 = 0.76) or spontaneity ratings (Pearson’s r = 0.19, p = 0.27, 
BF10 = 0.37).

Next, we assessed the veridicality and spontaneity of the reported 
simple VHs using the same method (Figure 12A). All participants 
reported that they experienced simple VHs (one participant’s data was 

missing for these questions). We found an average rating for veridicality 
of 6.0 (SD = 2.6), suggesting that the majority of psychedelic simple 
VHs were distinct from normal visual experiences of simple patterning 
(Figure  12B). The average spontaneity rating was 2.3 (SD = 1.1), 
suggesting that psychedelic simple VHs were more likely to be rated as 
transformations of existing features within the visual scene, than as 
spontaneous in nature. As with complex VHs, we found no significant 
correlations between the potency of the chosen psychedelic experience 
and ratings of veridicality (Pearson’s r = 0.22, p = 0.06, BF10 = 0.80) or 
spontaneity (Pearson’s r = 0.17, p = 0.15, BF10 = 0.40).

3.7 Comparing the veridicality of complex 
VHs between clinical and psychedelic 
groups

To explore the veridicality of complex VHs between psychedelic 
(n = 38) and Neurodegenerative/CBS (n = 22) participants, we performed 
an exploratory analysis of the mean veridicality ratings between these 
groups. An independent sample t test revealed that Neurodegenerative/

FIGURE 12

Raincloud plots displaying veridicality and spontaneity ratings for all participants in the psychedelic survey for both simple and complex psychedelic 
VHs. (A) Average veridicality ratings for simple and complex psychedelic VHs. Participants were asked: On a scale from 1 (Identical) to 10 (Completely 
Different), how similar were your complex (and simple) hallucination experiences (perception of identifiable forms: faces; objects; figures; landscapes; 
scenery) to your normal visual experiences. (B) Average spontaneity ratings for simple and complex psychedelic VHs. Participants were asked: On the 
following scale from 1 (Completely Dependent) to 5 (Completely Independent), please indicate the extent to which the complex (and simple) aspects 
of your psychedelic hallucinatory experience (perception of identifiable forms: faces; objects; figures; landscapes; scenery) were dependent upon or 
independent of existing visual content. Each circle indicates the data point for a single participant.
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FIGURE 13

A confusion matrix of the selection frequency of simple and complex synthetic VHs, shown as a percentage, generated using ClassicalAM or 
GenerativeAM for the clinical interview (ND-CBS) and psychedelic survey. In the clinical interview, for both simple and complex VHs participants were 
shown a grid of images (see Supplementary Figure S12 for the full set of images) generated using either GenerativeAM (Neurodegenerative) or 
ClassicalAM (psychedelic) and were instructed: ‘please select the column of synthetic VHs, if any, that displays the closest visual similarity to your 
experience of visual hallucinations’. Both Neurodegenerative and CBS participants selected only synthetic ‘neurodegenerative’ VHs (GenerativeAM) as 
displaying the closest visual similarity to their hallucinatory experience. For the psychedelic survey, the percentages were calculated as an average count 
of selection frequency in the forced choice image selection task between ClassicalAM and GenerativeAM. As can be seen, participants with recent 
psychedelic experience chose synthetic ‘psychedelic’ VHs (ClassicalAM) with a much higher frequency than ‘Neurodegenerative’ VHs (GenerativeAM) for 
both simple and complex synthetic VHs. Note that within the forced choice image selection task participants had the option to skip a trial if none of the 
images presented matched their chosen psychedelic experience. Therefore, the selection frequency for this group does not equal 100%.

CBS participants rated the veridicality of their complex VHs significantly 
higher (M = 8.3, SD = 1.8) compared to the psychedelic participants 
[M = 3.2, SD = 2.1; t(58) = 9.505, p < 0.001, Cohens’d = 2.55, BF10 = 2.43e 
+ 10]. Note that the veridicality rating scale for the psychedelic group 
was inverted to match the scale used in the clinical interview.

3.8 Do the relevant synthetic VHs 
accurately capture clinical and psychedelic 
hallucinatory experience?

In two separate studies we investigated variations in hallucinatory 
experience in Neurodegenerative-CBS patients and people with 
recent psychedelic experience. We wanted to assess how closely the 
synthetic VHs were able to capture the specific visual characteristics 
of each group’s VHs. Using methods specific to each population, 
we  asked participants to select which class of synthetic VH 
(ClassicalAM or GenerativeAM) most accurately captured their 
hallucinatory experience. Using a clinical interview, we found that 
Neurodegenerative and CBS participants only selected synthetic 
‘Neurodegenerative’ simple and complex VHs (GenerativeAM) as 
displaying the closest visual similarity to their hallucinatory 
experience (Figure 13; Supplementary Table S7). In contrast, using a 
forced choice task method, participants with recent psychedelic 
experience selected synthetic ‘psychedelic’ simple and complex VHs 
(ClassicalAM) with a much higher frequency than 
‘Neurodegenerative’ VHs as being representative of their chosen 
psychedelic experience (Figure  13; Supplementary Table S7). 
Together these results establish that not only are we able to capture 
specific aspects of hallucinatory phenomenology (veridicality, 
spontaneity, and complexity) for each aetiology, but also that the 
relevant synthetic VHs are rated as being most representative of each 

group’s hallucinatory experience, compared to other synthetic VHs 
produced by the model.

4 Discussion

Visual hallucinations offer fascinating insights into the 
mechanisms underlying perceptual experience, yet relatively little 
work has focused on understanding the differences in the 
phenomenology of VHs associated with different aetiologies. 
Using a computational phenomenology approach we  first 
identified three dimensions of hallucinatory phenomenology 
which broadly characterise variations in VHs arising from 
Neurodegenerative, CBS and psychedelic origins: their 
veridicality, spontaneity, and complexity. Using a coupled 
DCNN-DGN neural network architecture, we generated synthetic 
VHs that captured the differences in these three phenomenological 
dimensions between Neurodegenerative, CBS, and psychedelic 
VHs. Each class of synthetic VH was generated by tuning the 
parameters of the visualisation algorithm to match the 
phenomenological dimensions represented in each group’s VHs. 
The parameters we manipulated were the inclusion or omission 
of the natural image prior of the DGN (corresponding to 
veridicality), altering the error function used to select the target 
neuron(s) within the DCNN (corresponding to spontaneity), and 
restricting the level within the DCNN that AM  terminates 
(corresponding to complexity).

We verified the validity of this approach experimentally in two 
separate studies that investigated variations in hallucinatory 
experience in Neurodegenerative-CBS patients and people with recent 
psychedelic experience. Both studies first verified that the three 
phenomenological dimensions usefully distinguished the different 
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kinds of hallucinations, and then asked whether the appropriate 
synthetic VHs were able to capture specific visual aspects of 
hallucinatory phenomenology for each aetiology. Critically, we found 
that Neurodegenerative-CBS patients only selected Neurodegenerative 
and not psychedelic synthetic VHs as displaying the closest visual 
similarity to both their simple and complex hallucinatory experience. 
In contrast, we found that people with recent psychedelic experience 
selected synthetic ‘psychedelic’ VHs with a much higher frequency 
than ‘Neurodegenerative’ VHs as being representative of their chosen 
simple and complex psychedelic experiences. Together, our findings 
highlight how deep neural network architectures can be used to shed 
light on the computational mechanisms underpinning atypical 
perceptual phenomenology.

4.1 Simulating neurodegenerative and CBS 
VHs

Typically, Neurodegenerative and CBS complex VHs are reported 
as being similar in visual quality to normal perception, that is, they 
display high veridicality (Teunisse et al., 1996; Fénelon et al., 2000; 
Frucht and Bernsohn, 2002; Mosimann et al., 2006; Papapetropoulos 
et al., 2008). The results of our phenomenological interview confirmed 
this aspect of hallucinatory phenomenology, with 92% of 
Neurodegenerative and 90% of CBS participants rating their VHs as 
being ‘as real’ or ‘similar to’ their normal visual experiences (Table 3). 
We used GenerativeAM to simulate this specific aspect of hallucinatory 
experience, finding that the learned natural image prior of the DGN 
resulted in synthetic VHs that displayed high veridicality (Figures 5, 6), 
which was reflected by a comparable Inception Score to the 
benchmark simulation of non-hallucinatory perceptual 
phenomenology (Figure 4).

Complex Neurodegenerative and CBS VHs are also reported to 
occur spontaneously—i.e., they are not transformations of content 
within a perceived scene (Schultz and Melzack, 1991; Teunisse et al., 
1996; Frucht and Bernsohn, 2002; Mosimann et  al., 2006; 
Papapetropoulos et  al., 2008). Indeed, we  found that 83% of 
Neurodegenerative and 100% of CBS participants reported that their 
hallucinatory experiences occurred spontaneously (Table  3). 
We  attempted to capture this phenomenological characteristic by 
using an error function for synthetic image generation that selects a 
target neuron independently of the input image (Fixed), resulting in 
the synthetic VH being based on the categorical information 
represented by the target neuron and not the visual features of the 
input image.

In terms of the complexity of the hallucinatory experience, 
Neurodegenerative VHs are most commonly reported as being 
complex in nature (Frucht and Bernsohn, 2002; Mosimann et al., 
2006; Papapetropoulos et al., 2008). Our results again confirmed this 
aspect of hallucinatory phenomenology, finding that 83% of 
Neurodegenerative participants reported that their VHs consisted of 
only complex VHs (see Table  2). We  simulated this aspect of 
hallucinatory phenomenology by restricting the hierarchical level 
used to create the synthetic image; specifically, by ensuring that 
AM  terminates at the highest categorical layer in the DCNN 
(Figure 2). In contrast, the most commonly reported class of VHs 
reported in CBS are simple in nature (Schultz and Melzack, 1991; 
Teunisse et al., 1996; Ffytche and Howard, 1999; Santhouse et al., 2000; 

Abbott et al., 2007). We found that 90% of CBS participants reported 
not only simple but also complex VHs. Restricting the AM termination 
level within the DCNN to a lower layer (conv4) resulted in synthetic 
VHs that displayed many indicative features of simple CBS VHs 
(Figure 6). This was due to the overemphasis of the visual features 
learnt by neurons in this layer during training, together with the 
influence of the learned natural image prior from the DGN, i.e., 
low-level colours and textures associated with natural real-
world objects.

Verifying the validity of our synthetic VHs, we found that both 
Neurodegenerative and CBS participants selected only synthetic VHs 
created using GenerativeAM, and not ClassicalAM, as providing the 
closest approximation of both their simple and complex hallucinatory 
experiences (Figure  13). In an exploratory analysis, we  examined 
which iteration value used to generate the synthetic VHs participants 
selected as being most representative of their complex VHs, where 
increasing iteration value corresponds to decreasing veridicality of the 
synthetic VH. Here, we found that, on average, Neurodegenerative 
participants chose synthetic VHs with a low number of iterations 
(high veridicality, average iteration value of 3). In contrast, CBS 
participants, on average, selected a higher iteration value (average 
iteration value of 18.6) as being the most representative of their 
complex VHs. Together these findings fit the intuition that for these 
groups, Neurodegenerative participants experience hallucinatory 
phenomenology that is close to, but not identical to, their normal 
perceptual experience, whilst CBS participants have complex 
hallucinatory experiences that exhibit reduced veridicality compared 
to Neurodegenerative VHs.

Summarising the performance of our model in simulating 
Neurodegenerative and CBS VHs, we found that the addition of the 
natural image prior of the DGN, combined with the Fixed error 
function, and altering the hierarchical depth at which AM terminates, 
allowed us to simulate three specific aspects of Neurodegenerative and 
CBS hallucinatory phenomenology: their veridicality, spontaneity and 
complexity. The results of the semi-structured interviews with these 
patients verified that these properties were distinct aspects of the 
perceptual phenomenology associated with their VHs and that only 
the appropriate synthetic VHs, produced using GenerativeAM, 
provided representative examples of both their simple and complex 
hallucinatory experience.

4.2 Simulating psychedelic VHs

In contrast to complex Neurodegenerative or CBS VHs, 
psychedelic VHs are typically reported as having reduced veridicality, 
due to their dream-like qualities and the inclusion of visual distortion 
and unrealistic colours and patterning (Studerus et al., 2011; Kometer 
et al., 2013; Carhart-Harris et al., 2016; Kometer and Vollenweider, 
2018; Preller and Vollenweider, 2018; Sanz et al., 2018; Timmermann 
et al., 2018).

To simulate the diminished veridicality associated with 
psychedelic VHs, we suppressed the influence of the learned natural 
image prior in the generation of synthetic VHs by removing the 
contribution of the DGN from the model (Figure 8). This resulted in 
the use of a visualisation method (ClassicalAM) that was identical to 
our previous simulations of psychedelic hallucinatory phenomenology 
(Suzuki et al., 2017). The resulting synthetic VHs displayed striking 
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‘hallucinatory’ qualities, bearing intuitive similarities to a wide range 
of psychedelic VHs reported in the literature (Studerus et al., 2011; 
Kometer et  al., 2013; Carhart-Harris et  al., 2016; Kometer and 
Vollenweider, 2018; Preller and Vollenweider, 2018; Timmermann 
et al., 2018).

The results of the psychedelic survey confirmed the diminished 
veridicality associated with psychedelic VHs, with participants rating 
their complex VHs as displaying low veridicality (Figure 12A). This 
finding was further supported by an exploratory analysis comparing 
the veridicality of complex VHs between psychedelic and 
Neurodegenerative/CBS groups, which found that complex 
psychedelic VHs were rated as displaying significantly lower 
veridicality than both Neurodegenerative and CBS VHs (see section 
3.7). The reduction in veridicality of this class of synthetic VH 
(Figure 8) was also reflected by a substantially reduced Inception 
Score compared to both benchmark and simulations of 
Neurodegenerative and CBS complex VHs (Table 2).

Complex psychedelic VHs are also commonly reported as being 
less spontaneous than Neurodegenerative/CBS VHs, often appearing 
to be transformations of existing information within a visual scene 
(Kometer and Vollenweider, 2018; Preller and Vollenweider, 2018; 
Swanson, 2018). We  simulated this aspect of hallucinatory 
phenomenology by using an error function that selected target 
neurons within the DCNN based on the visual features of the input 
image (Deep-Dream). However, the results of the online psychedelic 
survey revealed considerable heterogeneity in this aspect of 
hallucinatory phenomenology (Figure  12B). Psychedelic complex 
VHs were rated as being both dependent on or independent of sensory 
input, with a slight tendency to be  rated more frequently as 
spontaneous in nature. In contrast, simple VHs were more likely to 
be rated as not being spontaneous, i.e., as being transformations of 
existing visual input. One possible explanation for this variability is 
that there may be  a confound of dose-dependency, with both 
complexity and spontaneity of VHs increasing with dose. This would 
be in line with findings of the prevalence of complex hallucinations 
increasing with drug dose (Strassman et  al., 1994; Shulgin, 1997; 
Strassmann, 2001; Shanon, 2002; Studerus et al., 2011; Leptourgos 
et al., 2020). Examining the number of iterations used to produce 
synthetic psychedelic VHs, we found a significant positive correlation 
between iteration number (of selected images) and the potency of 
psychedelic taken, suggesting that, not only did our synthetic VHs 
closely resemble psychedelic experience, but synthetic VHs produced 
using differing numbers of iterations were able to capture variations 
in the intensity of the visual phenomenology of psychedelic experience.

Psychedelic VHs occur in both complex and simple forms. 
We simulated simple psychedelic VHs by restricting the hierarchical 
level within the DCNN that AM terminates (i.e., the level at which 
AM  terminates) to a lower layer (conv4; Figure  7). Compared to 
simulations of simple CBS VHs (Figure 6C), synthetic psychedelic 
VHs included a high prevalence of geometric shapes, colours and 
patterning, resembling typical reports of psychedelic simple VHs 
(Tyler, 1978; Bressloff et  al., 2001; Díaz, 2010; Cowan, 2015; 
Nichols, 2016).

Verifying the validity of psychedelic synthetic VHs using an 
online forced choice image selection task we found that participants 
who reported complex VHs selected synthetic ‘psychedelic’ VHs with 
a much higher frequency than ‘Neurodegenerative’ VHs as being 
representative of their chosen psychedelic experience. We found that 

the image generation parameters (iterations, error function) did not 
significantly affect image selection frequency for complex synthetic 
VHs (Figure 11A).

Participants who reported simple VHs chose simple psychedelic 
synthetic VHs (ClassicalAM) significantly more frequently than 
synthetic Neurodegenerative VHs (Figure  13) as most closely 
resembling their psychedelic experience. Out of participants who 
indicated they had experienced simple VHs (n = 81), we found that on 
average they were most likely to choose synthetic VHs generated using 
a low number of iterations (10; see Figure 11B), suggesting that for this 
sample their simple hallucinatory phenomenology was relatively 
subtle in nature, consisting of low-level visual distortion, rather than 
the colourful kaleidoscopic patterning usually associated with 
classical hallucinogens.

Summarising the performance of our model in simulating simple 
and complex psychedelic VHs, we found that suppressing the natural 
image prior (DGN), combined with the Deep-Dream error function, 
and constraining the hierarchical depth at which AM  terminates, 
produced synthetic VHs that resemble many aspects of psychedelic 
hallucinatory phenomenology, including their reduced veridicality, 
spontaneity, and differing levels of complexity. The results of the image 
selection task verified that synthetic VHs generated using ClassicalAM 
provided representative depictions of both simple and complex 
psychedelic hallucinatory experience. They also support the 
conclusion that psychedelic complex VHs display significantly 
reduced veridicality compared to Neurodegenerative or CBS VHs, and 
revealed that, unlike Neurodegenerative or CBS VHs, complex 
psychedelic VHs could be experienced as being both spontaneous and 
dependent on sensory input.

4.3 Predictive processing accounts of 
hallucinatory experience

By decoupling perceptual content from normal sources of sensory 
input, VHs exemplify the constructive nature of perceptual experience. 
They demonstrate that the brain is capable of generating rich, detailed 
and in some cases life-like perceptions irrespective of (or only partly 
constrained by) actual sensory input (dreams, of course, show this 
too). It is therefore natural to interpret VHs within ‘predictive 
processing’ (PP) accounts of perception and brain function (Rao and 
Ballard, 1999; Friston, 2005; Clark, 2013; Seth, 2014).

Indeed, considerable work has focused on understanding the 
computational origins of VHs within a PP framework. Such 
studies generally associate VHs—Neurodegenerative and clinical 
VHs in particular—with aberrant perceptual inference, usually 
appealing to overly strong perceptual priors (Friston, 2005; 
O’Callaghan et al., 2017; Powers et al., 2017; Corlett et al., 2019). 
For example, O’Callaghan et al. (2017) found that in PD, patients 
who experienced VHs displayed slow and inefficient sensory 
processing in a perceptual decision-making task. They interpreted 
this result within a Bayesian framework, suggesting that if visual 
information is accumulated slowly and inefficiently it will 
be deemed less informative, and may be down-weighted leading 
to an over-reliance on top-down expectations, resulting in the 
experience of VHs.

Whilst we acknowledge that the model used in this paper is 
not an explicit PP model, the architecture and visualisation 
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methods used here display many similarities to PP models in 
terms of hierarchical information processing. For example, the 
DCNN used here is a purely feedforward network, which 
we employed to generate synthetic VHs using both ClassicalAM 
and GenerativeAM. Both instances of AM  optimise the input 
image via backpropagation, which at least informally, mirrors 
certain aspects of the top-down signalling that is central to PP 
accounts of perception [see for example (Millidge et al., 2022), 
who show that predictive coding networks can implement an 
approximation of backpropagation].

Specific parallels to PP can also be identified in the parameters 
used to generate each type of synthetic VH. We  simulated the 
phenomenology of Neurodegenerative/CBS VHs using GenerativeAM 
and a Fixed error function. These parameters resulted in the input 
image being overwritten by synthetic hallucinatory content, based on 
the features represented by a single target neuron. From a PP 
perspective, this process bears intuitive similarities to theories that 
posit that this type of VHs occurs due to overly strong perceptual 
priors overwhelming sensory prediction error signals (Powers et al., 
2016; O’Callaghan et al., 2017).

Interpreting the contribution of the DGN within a PP framework, 
we emphasise that the natural image prior of the DGN should not 
be confused with perceptual priors. Instead, it can be thought of as a 
variety of hyperprior, which results in each layer and neuron of the 
network having a tendency to generate realistic interpretable images. 
Other examples of hyperpriors within a PP system include the physical 
constraints imposed by space and time, e.g., ‘that there is only one 
object (one cause of sensory input) in one place, at a given scale, at a 
given moment’, (Clark, 2013, p.  196). Such spatial and temporal 
hyperpriors narrow and restrict the range of possible hypotheses 
about the external objects causing incoming sensory input (Clark, 
2013), increasing the tractability of (approximate) inference 
(Tenenbaum et al., 2011; Blokpoel et al., 2012; Clark, 2013; Kwisthout, 
2014; Swanson, 2018; Baltieri, 2020). Similarly, the hyperprior of the 
DGN constrains the vast set of possible uninterpretable images that 
may excite a target neuron, forcing the network towards producing 
synthetic outputs that are both interpretable and that closely resemble 
natural images.

In contrast to clinical VHs, convergent evidence suggests that 
psychedelic VHs occur due to a reduction in top-down control 
and an increase in bottom-up information transfer 
(Muthukumaraswamy et  al., 2013; Alonso et  al., 2015; 
Timmermann et  al., 2018; Carhart-Harris and Friston, 2019; 
Schartner and Timmermann, 2020). Such relaxation of high-level 
priors has been proposed to allow ascending prediction errors 
from lower levels of the visual system to reach higher-than-
normal levels of the visual hierarchy and be  integrated into 
conscious experience (Carhart-Harris and Friston, 2019). Our use 
of the Deep-Dream error function and ClassicalAM to generate 
synthetic psychedelic VHs intuitively approximates this disruption 
in the balance between hierarchical information processing. From 
a PP perspective, compared to the Fixed or Winner-Take-All, the 
Deep-Dream error function has the effect of relaxing the 
perceptual priors imposed on incoming sensory data. The 
selection of multiple target neurons based on the visual 
characteristics of the input image by this error function lowers the 
precision of the perceptual prior, effectively increasing bottom-up 
information transfer.

4.4 Alternative machine learning models 
for computational neurophenomenology

The coupled DGN-DCNN network we used served to capture 
some of the core features of a PP architecture in a way well suited to 
synthetic image generation. Whilst PP architectures such as predictive 
coding (PC) networks offer a model of cortical function that exhibits 
many similarities to our present understanding of human visual 
perception (Rao and Ballard, 1999; Friston, 2005), current limitations 
of this class of model, such as the scalability of local learning rules 
(Bartunov et al., 2018), their restriction to low-dimensional images 
and narrowly focused datasets, preclude their use in simulating visual 
phenomenology. In contrast, machine learning models such as 
DCNNs are highly scalable and, when coupled with DGNs, have the 
potential to shed new light on the neural mechanisms underlying 
visual phenomenology in a way that reflects key principles of theories 
of predictive perception.

DCNNs have long been utilised as models of the human visual 
system. Their utility is exemplified by close correspondences between 
activity within layers of DCNNs and activity in regions along the 
ventral visual stream. For example, a comparison of internal 
representational structures of trained DCNNs and the human visual 
system performing similar object recognition tasks has revealed 
similarities between the representational spaces in these two distinct 
systems (Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; 
Grossman et  al., 2019). However, others have argued that the 
correspondences between brain and model activity involve shared, not 
task-relevant, variance and more rigorous tests are required to provide 
a stricter measure of the correspondence between these two systems 
(Sexton and Love, 2022).

More fundamentally, the prevalence of top-down connectivity 
in the human visual system points to a fundamental difference 
with DCNNs, which implement top-down influence purely 
through the learning algorithm (typically backpropagation). A 
productive direction for future research would therefore be  to 
address the current limitations in using PP-like architectures—
such as predictive coding (PC)—for generating 
simulated phenomenology.

One promising possibility is raised by work demonstrating certain 
functional equivalences between backpropagation and predictive 
processing (Whittington and Bogacz, 2017; Millidge et al., 2022). 
Here, the bottom-up classification process employed by DCNNs are 
viewed as predictions from data to labels, and the error 
backpropagation that refines the network weights are viewed as 
‘prediction errors’. Based on this work, a recent ‘hybrid predictive 
coding’ network architecture has been proposed (Tschantz et al., 2023) 
in which predictions and prediction errors flow bidirectionally in 
hierarchical networks, to adaptively balance ‘fast’ and ‘slow’ inference. 
Hybrid predictive coding networks combine ‘amortised inference’—
which performs ‘fast and cheap’ approximate perceptual inference for 
familiar data—with the iterative inference implemented in standard 
predictive coding. By combining fast and slow inference, hybrid 
predictive coding networks are well suited for shedding light on the 
biological relevance of the feedforward sweeps and iterative recurrent 
activity observed in the visual cortex during perceptual tasks. Future 
work could also examine how adaptations of hybrid predictive coding 
could be  used to provide insights into aspects of 
hallucinatory phenomenology.
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4.5 Limitations

There are several limitations worth highlighting in the current 
investigation. First, the benchmark performance of the model did not 
succeed in producing output images that were identical to the input 
images. This finding may have been due, in part, to the synthetic 
images generated by the DGN being based on the compressed latent 
vectors within higher layers of the DGN and not the pixel values of the 
input image. The compression of the features of the input image has the 
effect of diminishing the realism of the output image. Another 
contributing factor is likely to be the number of separate categories the 
DCNN has been trained to classify, which whilst relatively large (1,000 
classes), is trivial compared to the human brain. This constraint means 
that when presented with an arbitrary (untrained) input image the 
model cannot generate an output that displays a fine-grained visual 
similarity to the input image. Using larger training-set data would 
ameliorate this problem.

Another important limitation that should be considered when 
interpreting these results is the relatively small sample sizes in both 
studies investigating the phenomenology of different hallucinatory 
experiences. We acknowledge the conclusions drawn here are limited 
to these specific groups of participants. Further work is required to 
establish if the phenomenological differences in VHs found here, both 
across and within different aetiological categories, apply to 
wider populations.

In an attempt to assess how representative our synthetic VHs 
were of aetiologically distinct hallucinatory experiences 
we employed different methodological approaches, enquiring about 
the general phenomenology of a person’s VHs, including specific 
questions about the complexity, veridicality, and spontaneity of 
their VHs. Our model also allowed us to ask participants to directly 
rate the visual similarity between the appropriate synthetic VHs and 
their hallucinatory experiences. The flexibility of our model allowed 
us to create a wide range of images produced using differing 
number of iterations or constraining the hierarchical depth at which 
AM terminated. Whilst we highlight the potential of this approach, 
we  also acknowledge the inherent challenges in assessing how 
closely an individual’s private subjective experience is captured by 
a synthetic VHs.

Our use of the Fixed error function was intended to simulate the 
overly strong perceptual predictions thought to play a role in 
Neurodegenerative and CBS VHs (Powers et al., 2016; O’Callaghan 
et al., 2017). In a loose sense, our use of a Fixed target neuron could 
therefore be viewed as simulating the tendency of these populations 
to hallucinate specific categories of hallucinatory content, primarily 
people, with fewer reports of animals (Frucht and Bernsohn, 2002; 
Mosimann et  al., 2006; Papapetropoulos et  al., 2008). However, 
we acknowledge that this approach is an oversimplification of these 
populations’ hallucinatory experience, as a Fixed target neuron would 
always generate the same synthetic VH, based on the categorical 
information held by the target neuron.

As discussed above, there is increasing evidence highlighting 
the lack of biological plausibility of the architecture and learning 
rules used by DCNNs. Future studies attempting to generate 
simulations of phenomenology should consider using 
PP-like architectures.

Finally, we highlight that our simulations were designed to capture 
the specific variations in phenomenology of VHs arising from 

neurodegenerative, CBS and psychedelic origins and as such were not 
designed to map directly between the pathological mechanisms and 
variations in hallucinatory experience observed in these different 
aetiologies. Future research should explore this interesting avenue of 
research using combinations of the biologically plausible models 
outlined here.

5 Conclusion

We have described a novel method for simulating altered 
visual phenomenology associated with Neurodegenerative, CBS 
and psychedelic VHs. Using a coupled deep convolutional neural 
network (DCNN) and deep generator network (DGN) 
we  leveraged recent advances in visualising the learned 
representations of these networks to simulate three dimensions 
relevant to distinguishing aetiologically distinct VHs: their 
realism (veridicality), their dependence on sensory input 
(spontaneity), and their complexity. By selectively manipulating 
the parameters of the algorithm used to generate the synthetic 
VHs, we  were able to capture differences in these 
phenomenological characteristics across distinct VH populations. 
Two experimental studies confirmed the existence of variations 
in these phenomenological dimensions across groups and 
critically, that the appropriate synthetic VHs were representative 
of the hallucinatory phenomenology experienced by 
Neurodegenerative-CBS and psychedelic groups.

Overall, our findings highlight the phenomenological 
diversity of VHs associated with distinct causal factors, and the 
need for a more fine-grained mapping between computational 
mechanisms and specific hallucinatory phenomenology. We have 
shown here how a coupled machine learning network and specific 
visualisation algorithms can be used as a step towards this goal, 
by demonstrating that such models can successfully capture the 
distinctive visual characteristics of hallucinatory experience. 
Future research could usefully apply this approach using more 
biologically plausible predictive processing architectures to test 
computational hypotheses about the origins of specific 
hallucinatory phenomenology and validate their results within 
appropriate hallucinatory populations. In this way, it would 
be  possible to further close the loop between hallucinatory 
experiences and their computational mechanisms.
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Glossary

Activation Maximisation: (ClassicalAM) - A method which maximises 
the activity of a particular neuron (group of neurons or an entire layer) 
within a (D)CNN by adjusting the network’s input (e.g., through 
backpropagation), whilst keeping the weights and outputs of the 
network fixed. AM  is a widely used approach to visualise the 
representations learned by a specific neuron (or neurons) within a (D)
CNN. Because the form of AM that we use is restricted to a DCNN 
we refer to it as ClassicalAM.

Backpropagation - Short for ‘backward propagation of errors’; 
backpropagation (or backprop) is a widely used algorithm for the 
training of artificial neural networks using gradient descent. Given a 
network and an error function, it enables the calculation of the 
gradient of the error function with respect to the weights in the 
network. Each weight is then adjusted in proportion to how much it 
contributes to the overall error so that the network improves its 
performance over successive iterations.

Computational (neuro)phenomenology - We use computational 
phenomenology to describe the use of computational modelling to 
model phenomenological properties, rather than (or in addition to) 
function or behaviour. This approach becomes computational 
neurophenomenology when the computational models can 
be related to neural mechanisms, either by interpretation or through 
generating experimental predictions (Suzuki et al., 2017; Ramstead 
et al., 2022).

(Deep) Convolutional Neural Network ((D)CNN) - A class of (deep) 
neural networks with an architecture specifically designed to process 
pixel-wise data of two-dimensional images. DCNNs are trained via 
backpropagation to classify the content of a set of training images into 
distinct categories, creating a feature map that summarises the 
presence of the detected features within an input image. DCNNs have 
been used primarily for applications such as object detection and 
image classification.

Deep Generator Network (DGN) - A class of deep neural network that 
is used to generate synthetic data. In this paper, we use the term DGN 
to refer to a specific type of deep generator network that has been 
pre-trained using the generative adversarial network (GAN) 
framework.

Deep Generator Network Activation Maximisation (GenerativeAM) 
- A novel form of AM proposed by Nguyen et al. (2016). Instead of 
directly optimising the image to maximise the activity of a target 
neuron within a DCNN as in ClassicalAM, Nguyen et al. (2016) used 
the learned natural image prior of a pre-trained DGN in combination 

with ClassicalAM to synthesise a new image that maximised activity 
in a target neuron within a DCNN, resulting in realistic and 
interpretable output images.

Error Function - A method used in machine learning to minimise the 
error between a predicted value and an actual value, which is 
commonly used to evaluate the performance of the model. For 
example, in supervised learning for image recognition, an error 
function calculates the discrepancy between the actual label of an 
image, and the model’s estimation of this value. The network then 
attempts to minimise the error for each iteration using (for example) 
backpropagation.

Generative Adversarial Network (GAN) - The GAN is a learning 
framework in which a ‘generator’ and ‘discriminator’ network are 
pitted against each other in an adversarial manner. A generative neural 
network is used to generate synthetic data (e.g., images) that resemble 
a training data set. The discriminator network (e.g., a DCNN) is then 
trained to distinguish images produced by the DGN from those in the 
actual training data. The two networks are trained together in an 
adversarial zero-sum game in which the DGN tries to ‘fool’ the 
discriminator, whilst the discriminator tries to keep from being fooled. 
GANs are widely used in image processing to generate realistic 
synthetic images.

Gradient descent - A popular class of optimization algorithms in 
which the local minimum of a function is found by iteratively moving 
in the direction of the steepest descent as defined by the negative of the 
gradient. In machine learning, gradient descent is often used to update 
the parameters (weights) of a neural network, as for example 
in backpropagation.

Inception Score (IS) - A widely used objective approach to assess the 
realism of synthetic images produced by generative models, such as a 
GAN (Salimans et al., 2016).

Iteration - a term used in machine learning to indicate the number 
of times a function or process is repeated, in which the output of 
each step is used as the input for the next iteration.

Natural Image Prior - A common method used to constrain optimization 
of a (D)CNN towards generating synthetic images that resemble natural 
images, for example by minimising the colour difference between 
adjacent pixels (hand-designed natural image prior). Recently, Nguyen 
et al. (2016) used the learned natural image priors acquired by a DGN 
during GAN training to constrain the output of the DCNN to generate 
synthetic images that closely resembled natural images.
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