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Introduction: In the field of upper limb brain computer interfaces (BCIs), the

research focusing on bilateral decoding mostly based on the neural signals from

two cerebral hemispheres. In addition, most studies used spikes for decoding.

Here we examined the representation and decoding of different laterality and

regions arm motor imagery in unilateral motor cortex based on local field

potentials (LFPs).

Methods: The LFP signals were recorded from a 96-channel Utah microelectrode

array implanted in the left primary motor cortex of a paralyzed participant. There

were 7 kinds of tasks: rest, left, right and bilateral elbow and wrist flexion.

We performed time-frequency analysis on the LFP signals and analyzed the

representation and decoding of different tasks using the power and energy of

different frequency bands.

Results: The frequency range of <8 Hz and >38 Hz showed power enhancement,

whereas 8–38 Hz showed power suppression in spectrograms while performing

motor imagery. There were significant differences in average energy between

tasks. What’s more, the movement region and laterality were represented in

two dimensions by demixed principal component analysis. The 135–300 Hz

band signal had the highest decoding accuracy among all frequency bands and

the contralateral and bilateral signals had more similar single-channel power

activation patterns and larger signal correlation than contralateral and ipsilateral

signals, bilateral and ipsilateral signals.

Discussion: The results showed that unilateral LFP signals had different

representations for bilateral motor imagery on the average energy of the full array

and single-channel power levels, and different tasks could be decoded. These

proved the feasibility of multilateral BCI based on the unilateral LFP signal to

broaden the application of BCI technology.

Clinical trial registration: https://www.chictr.org.cn/showproj.aspx?proj=

130829, identifier ChiCTR2100050705.

KEYWORDS

bilateral decoding, brain computer interface, local field potential, motor imagery,
unilateral motor cortex
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1. Introduction

Brain computer interface (BCI) provides a direct
communication connecting the brain and external devices
(Kawala-Sterniuk et al., 2021). A number of studies have shown
that the kinematic information of limbs can be extracted from the
neural signals of the motor cortex (Vilela and Hochberg, 2020).
Regardless of whether limbs are in motion or motor imagery, these
neural signals show different representation patterns for different
movements (Miller et al., 2010). Through the decoding methods,
external devices can be controlled such as computer cursors and
robotic limbs (Hatsopoulos and Donoghue, 2009; Vilela and
Hochberg, 2020).

The research of neural signal during limb movement has often
focused on the contralateral cortex. After a number of studies have
proved that the movement types, movement trajectories and other
parameters can be represented and decoded by signals recorded
from the contralateral cortex, some scholars turned their attention
to ipsilateral neural signals. Cisek et al. (2003) demonstrated that
when monkeys move their arms in the center-out tasks, 55% of
the neurons in primary motor cortex (M1) are tuned during the
movement of either contralateral or ipsilateral arm. However, the
preferred directions of these neurons were different between two
arms and there was a greater discharge rate during contralateral
arm movement. Ganguly et al. (2009) found that when monkeys use
exoskeleton to do center-out tasks, it is feasible to use spike activity
to continuously decode the kinematic information of the ipsilateral
arm. Bundy et al. (2018); Bundy and Leuthardt (2019) found
that the electrocorticography (ECoG) signals in ipsilateral human
cortex encode the three-dimensional arm movement kinematics.
Furthermore, a BCI was implemented based on ipsilateral neural
signals. Willett et al. (2020) used the spike signals of paralyzed
patients, which were recorded from the hand knob area in one
cerebral hemisphere, to successfully decode different contralateral
and ipsilateral attempted movements of different limbs, namely,
realized the multi-movement classification of limbs on both sides
using unilateral spike signals. Some studies have further explored
the relationship between neural signals in the contralateral and
ipsilateral cortex. Ames and Churchland (2019) reported that the
standard deviation of the firing rate across times and conditions
showed no difference when the same task was performed by one
arm of monkeys versus the other. Similarly, the muscle activity
of one arm could be decoded equally well from the signals on
either side of cerebral hemispheres (Ames and Churchland, 2019).
However, the information in the two cerebral hemispheres were
very different at the level of single neurons. For certain neurons,
the activations caused by the two arms were essentially irrelevant.
Heming et al. (2019) found that the representations of two limbs
in primary motor cortex are independent, neural activity for the
contralateral limb can be extracted without interference from the
ipsilateral limb.

There are also some studies that have explored the
representation of neural signals when both arms are moving
simultaneously. Donchin et al. (2001, 2002) found that compared
with unilateral arm movement, the activation of neural signals is
not the same in bilateral arm movement, whether it is movement-
evoked potentials or single-unit activity. Furthermore, this
phenomenon could not be explained by the linear combination

of unilateral arm movements. Although the neural signals of
unilateral and bilateral arm movements have been shown to
be different, there are less studies focusing on differentiating
neural signals resulted from ipsilateral, contralateral, and bilateral
movements. Choi et al. (2018) implemented a four-category
classification for monkeys, which distinguished the four tasks of
rest state and movements of pressing a button using left, right and
both hands. Ifft et al. (2013) designed a BCI that allowed monkeys
to control the movement of two robotic arms simultaneously.
However, these research of bilateral movements is all based on
the neural signals from two cerebral hemispheres. It is not clear
whether the signal from unilateral cerebral cortex can be used to
distinguish the movements of ipsilateral, contralateral and bilateral
arms. In addition, due to the high-precision and spatiotemporal
resolution characteristics of spike signals, most studies focusing
on ipsilateral and bilateral movements are based on spikes
(Collinger et al., 2013; Wodlinger et al., 2014; Willett et al., 2020;
Dongrong et al., 2023). Local field potential (LFP) signals have
also been proven to contain much movement information and
show performance comparable to but lower than spikes (Heldman
et al., 2006; Nason et al., 2020). In addition, the stability of LFP
is much better than that of spike (Jackson and Hall, 2017). Wang
et al. (2014) demonstrated that LFP can still decode kinematic
information even when no spike can be recorded. Therefore,
further studies are needed for the representation and decoding of
contralateral, ipsilateral and bilateral movements using LFP signals
to improve the application of BCI technology in long-term use and
rehabilitation.

In terms of cerebral function related to movement, left and right
hemispheres are not exactly the same. The left hemisphere reveals
a better across-arm generalization while the right hemisphere
concentrates more on the contralateral movements. In clinical
trials, limb apraxia is the best known example of such left
hemisphere dominance for action (Haaland, 2006). Haaland
demonstrated that the incidence of limb apraxia is greater in
patients with left hemisphere lesion than right hemisphere lesion
(Haaland, 2006). In the analysis of unilateral movement, Merrick
et al. (2022) also demonstrated the left hemisphere dominance.
They analyzed the neural representations of contralateral and
ipsilateral movements in two hemispheres in human and found
stronger bilateral encoding in the left hemisphere (Merrick et al.,
2022). In the analysis of bilateral movement, Blinch et al. (2019)
found left hemisphere dominance in the bimanual symmetric
movements.

In this study, the LFP signals recorded from unilateral cerebral
cortex were used to characterize and decode the arm motor
imagery of different laterality and regions. The tasks included
ipsilateral, contralateral and bilateral movements of elbows and
wrists. A paralyzed patient participated and was asked to look at
the virtual arms on the front screen in the experiment. During the
motion tasks, the participant needed to do motor imagery following
the movement of virtual arms since he could not move his arms
autonomously. The LFP signal was recorded from the primary
motor cortex in the left cerebral hemisphere of the participant.
First, the average power of different frequency bands of LFP
signals were analyzed. Then demixed principal component analysis
(dPCA) was used to find the two dimensions that separately
characterize the laterality and region information. Second, the
average power of 5 frequency bands in the range of 0.3–300 Hz
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were used as features to classify different tasks, respectively,
and good performances were obtained. Finally, single-channel
LFP signals were analyzed. The activation patterns in different
tasks were explored, which helped to optimize the channels for
classification. The signal correlations between different motion
tasks were also analyzed, which showed the similarity of LFP
responses for ipsilateral, contralateral, and bilateral movements.
This study demonstrates the abundant information contained in
LFP signal, and there is a great potential for it to characterize and
decode movements of different laterality and body parts.

2. Materials and methods

2.1. Participant

The participant recruited for the experiment was a male
paralyzed patient who suffered a traumatic cervical spine injury
at C4 level. The body parts below his neck were unable
to move. The participant had normal cognitive function and
could well understand and complete all tasks (Wang et al.,
2022). All the procedures were followed from the guide and
approved by Institutional Review Board for Human Studies of
the Second Affiliated Hospital of Zhejiang University School of
Medicine. The participant and his immediate family members
verbally agreed to participate in the experiment after detailed
explanation, and the informed consent was signed by his legal
representative.

2.2. Microelectrode implantation and
neural recording

Two 96-channel Utah microelectrode arrays (4 mm × 4 mm,
Utah Array with 1.5 mm length, Blackrock Microsystems, Salt Lake
City, UT, USA) were implanted in the participant’s left cerebral
cortex, one was placed in the hand knob area of M1, and the other
was implanted in the arm area of M1 about 2 mm away from
the previous one. The specific placement was shown in previous
work (Qi et al., 2022). The participant was asked to image hand
and elbow movement during fMRI scanning to determine the area
before implantation. In this study, only the signals recorded from
the array in arm area were analyzed. The other array could only
record a few spike signals, the neural signals might not be well
recorded.

Neural signals were recorded with the Neuroport system
(Blackrock Microsystems). The LFP signals were recorded at a
sample rate of 1 kHz for each channel. The 50 Hz interference
induced by the electrical power system in the signal was removed
by software filtering during the recordings, thus the 50 Hz
notch filter was no longer used in the subsequent signal pre-
processing.

2.3. Experimental paradigms

In the experiment, a screen was placed in front of the
participant. A model (FPS Handy Hands, Unity Asset Store) of the

left and right upper limbs was presented on the screen, including
hands, forearms and upper arms. The model was created based on
the real morphology of arms and positioned from a first-person
perspective. The participant could imagine this model as his own
upper limbs, which was conducive to motor imagery (Figure 1).

There were 7 motor imagery tasks in the experiment, which
were rest, left elbow flexion, right elbow flexion, bilateral elbow
flexion, left wrist flexion, right wrist flexion, and bilateral wrist
flexion. 3-category, 4-category, and 7-category experiments were
carried out throughout the whole experiment period and only
4-category and 7-category data were used in this study. The 3-
category experiment included 3 kinds of tasks of rest, left and
right wrist flexion. The 4-category experiment included 4 kinds
of tasks of rest, left, right and bilateral elbow flexion. The 7-
category experiment included all tasks. The number of each task
was the same in a session and all tasks appeared randomly. A total
of 1–4 sessions were carried out per day according to the status
of the participant. A total of 32 sessions with 2,215 trials of
signals were collected.

Each trial had 5 phases in the experiment, which were “Begin
Trial,” “Go,” “Interval,” “Return,” and “Inter Trial” (Figure 1). The
last 800 ms in “Begin Trial” phase was called “Prepare” phase. In
the “Begin Trial” phase, the arm model was placed naturally. In the
“Go” phase, the model moved slowly with constant velocity until
it reached the maximum angle of flexion according to the current
type of movement. We mainly explored the neural signals of motor
imagery, regardless of the velocity. The use of constant velocity not
only eliminates the effect of velocity change, but also facilitates the
motion setting of the model. In the “Interval” phase, the model
remained at the maximum flexion angle, and then slowly returned
to the initial position in the “Return” phase. In the “Inter Trial”
phase, the model stayed in the initial position again and waited for
the next trial. There was also text above the arm model to indicate
the movement phase and task. The participant remained relaxed
in the “Begin Trial” and “Inter Trial” phases and performed the
corresponding motor imagery while watching the movement of the
arm model in the other three phases. In the rest task, the arm model
remained stationary in all 5 phases and the participant remained
relaxed. The durations of “Begin Trial” and “Inter Trial” phases
were not fixed, which were 1.2–1.8 s and 2.4–3.6 s, respectively. The
durations of “Go,” “Interval” and “Return” phases were 1.5, 1, and
1.5 s, respectively.

2.4. Signal pre-processing

The raw data recorded in the experiment were first filtered by
an eight order Butterworth bandpass filter between 0.3 and 480 Hz
offline to obtain valid LFP signals. The data from 800 ms before
(“Prepare” phase) to 1,500 ms after (“Go” phase) the movement
onset were used. Then signals with obvious artifacts in all trials and
channels were selected through visual observation. The artifacts
may be caused by sudden interference or poor quality electrodes,
which were shown in Figure 7. In the subsequent neural decoding,
the input features of these contaminated signals were set to 0, and
in other analysis, these signals were directly excluded.

Data was analyzed using Matlab and Python, the dPCA code
referred to Kobak’s code (Kobak et al., 2016).

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1168017
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1168017 June 7, 2023 Time: 13:47 # 4

Lin et al. 10.3389/fnhum.2023.1168017

FIGURE 1

Experimental paradigms. There are 5 phases in each trial with corresponding time shown in the figure. The two pictures at the bottom show two of
the seven tasks in the experiment, which are left elbow flexion and right wrist flexion.

2.5. Analysis of spectrogram

The LFP signal of each trial was divided into several 300 ms
windows with 100 ms overlap. The multitaper power spectral
density estimate method was used for the signal of each window to
obtain spectrogram. To observe the power change of signals during
motor imagery more clearly, the spectrograms were normalized.
Figure 2 shows each step and its output. For each task, first, the
averaged spectrogram across all trials and channels was obtained
(Figure 2A). Then we calculated the average power of each
frequency value in the “Prepare” phase, as the baseline power value
of this frequency value (Figure 2B). Next, each power value in
the spectrogram was divided by the baseline power value of the
corresponding frequency to obtain the normalized spectrogram
(Figures 2C, D). In this study, the average power change over time
of a certain frequency band in the normalized spectrogram was
called the average power signal, which had 23 values in a trial and
would be used in the following analysis.

2.6. Data structure for DPCA

A common dimensionality reduction method for multi-label
high-dimensional data is dPCA. It maximizes the variance of
the original high-dimensional neural data for each parameter
according to different parameter types (Kobak et al., 2016). The
average power signal was used for the analysis of dPCA. Before
applying dPCA, a data set had to be created, which including all
the information of channels, laterality, regions, time and repetition
times. The structure of the data set was Data = C∗L∗R∗T∗M, where
C represented the number of channels (C = 96), L represented
laterality (L = 3), which were ipsilateral, contralateral and bilateral
sides, R represented regions (R = 2), which were elbow and wrist,
T represented the number of time windows of the average power
signal (T = 23) and M represented the number of repetitions of

each task in a session, which was determined according to the
experimental paradigm.

2.7. Feature extraction and classification

The average power signals of “Go” phases were used as the
features for decoding. We gathered all the features of 96 channels
together as the features of a trial. Leave-one-out cross validation
method, which could divide most of the data into the training set
and was suitable for classification tasks with small sample sizes, was
used for the neural signal decoding. Suppose there are n samples,
leave-one-out cross validation takes turns using each sample as
the testing sample and the other n-1 samples as training samples.
In the calculation process, n classifiers and n classification results
can be obtained, and then these n results are averaged to get the
final classification accuracy. The decoding result calculated by this
method is deterministic due to the fixed division of the training set
and testing set.

The classification algorithm used in this study is random
forest, which has the characteristics of high accuracy, simple
implementation process and strong anti-overfitting ability.
Furthermore, the capacity of random forest to deal with data with
many features is suitable for the data set in this study.

3. Results

3.1. Power change in spectrograms

Spectrograms were drawn to observe the power changes of
different frequency components of LFP signals before and during
rest, left, right, and bilateral elbow flexion tasks in Figure 3A.
Each small graph shows an average spectrogram across all channels
and trials, and the power values are normalized (see section “2.

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1168017
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1168017 June 7, 2023 Time: 13:47 # 5

Lin et al. 10.3389/fnhum.2023.1168017

FIGURE 2

The flow chart of the normalization process of spectrograms. Data of left elbow motor imagery trials were used. (A) The averaged spectrogram
across all trials and channels. (B) Baseline power value was calculated by averaging the power of each frequency value in the “Prepare” phase.
(C) Each power value in the spectrogram was divided by the baseline power value of the corresponding frequency. (D) The normalized spectrogram.

Materials and methods”). The vertical black lines represent the time
of movement onset. The power change of rest task was relatively
unobvious in the spectrogram, whereas in the condition of three
motion tasks, the power changed obviously after movement onsets.
The modulation for the rest might be caused by sensory input.
In the “Go” phase, there was text prompt on the screen. In the
beginning of the “Go” phase, there was sound prompt. They all
prompted the subsequent movement tasks. The frequency range of
<8 Hz and >38 Hz showed power enhancement, whereas the range
of 8–38 Hz showed power suppression. Combined with the division
of frequency bands in other studies (Jin et al., 2016), the LFP signal
was partitioned into 5 frequency bands, which were 0.3–8, 8–38,
38–70, 70–135, and 135–300 Hz, for the following analysis.

The average power changes over time in 0.3–8, 8–38, 38–70, and
135–300 Hz frequency bands were plotted in Figure 3B. Among
them, the curves of 0.3–8, 38–70, and 135–300 Hz frequency bands
have obvious peaks after movement onsets in motion tasks. In the
8–38 Hz frequency band, average power is suppressed. The error
bands of average power curves in different tasks overlap a lot with
unobvious distinction. Since it was explored in the literature that
the high frequency band of LFP signal contained more information
(Li et al., 2014), this study mainly focused on the bands of high
frequency and with obvious power changes.

3.2. Energy in different movements

To conduct a more specific analysis of the energy difference
under different tasks, the average energy of “Go” phase in different
frequency bands were calculated in Figure 4. The recorded data

were divided into four groups, namely, elbow, wrist, ipsilateral and
contralateral motor imagery. The analysis of variance (ANOVA)
was used to analyze the significant differences of average energy
under different tasks in each group. The elbow and wrist groups
explored the energy difference between different lateral tasks,
whereas the ipsilateral and contralateral groups explored the
difference between different regions. In Figure 4, the energy of
0.3–8, 8–38, and 135–300 Hz frequency bands were analyzed
respectively. Among the three frequency bands, the energy of
signals in the 135–300 Hz band had the best discrimination
for different tasks. What’s more, the elbow motions of different
laterality were easier to distinguish than wrist motions. When
performing motor imagery, the energy in 8–38 Hz band reduced
obviously compared with rest state, however, no significant
differences were shown between two motion tasks. The information
related to kinematics might be suppressed in this band. The
p-values of ANOVA were shown in Table 1.

We also performed the analysis in Figure 4 on the signals of
“Prepare” phase and found that there were only two conditions
that had significant differences. One was the significant difference
between rest and left elbow flexion task in the analysis of elbow
group using the energy of 8–38 Hz frequency band (ANOVA,
p < 0.05); the other was between rest and right wrist flexion task
in the analysis of ipsilateral group using the energy of 135–300 Hz
frequency band (ANOVA, p < 0.05). Therefore, a lot of energy
changes only occurred during the “Go” phase.

Now that we proved that LFP signals of unilateral cerebral
cortex had different representations during motor imagery not only
on different sides, but also on different body regions, especially
in the 135–300 Hz frequency band. To explore whether the
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FIGURE 3

Time-frequency analysis of LFP signals from 4-category experiments. (A) Spectrograms of LFP signals. The labels “Rest”, “L-E”, “R-E”, and “Bi-E” in the
graphs represent rest task and left, right and bilateral elbow flexion motor imagery tasks, respectively. The left four small graphs show the overall
power changes of the 0.3–480 Hz frequency band, whereas the right four small graphs highlight the details of power changes in the 0.3–100 Hz
frequency band. Each graph is an average normalized spectrogram of all trials of the corresponding task on all electrodes. (B) The average power
curves over time in 0.3–8, 8–38, 38–70, and 135–300 Hz frequency bands. The shaded areas are error bands. The vertical black lines represent the
time of the movement onset.

FIGURE 4

Significant differences in the average energy of “Go” phase under different tasks in 0.3–8, 8–38, and 135–300 Hz frequency bands. “L-W”, “R-W”, and
“Bi-W” represent left, right and bilateral wrist motor imagery, respectively. All tasks were divided into four groups of elbow, wrist, ipsilateral and
contralateral motor imagery. Significant differences between the tasks in each group were analyzed. The data used for the analysis of elbow group
were from the 4-category experiments, and data used for the other three groups were from the 7-category experiments. Significant differences
analysis was performed by ANOVA, ∗represents p < 0.05, ∗∗represents p < 0.01.

representations of body regions and laterality were in different
dimensions, we applied dPCA to reduce the dimensionality of data
(see section “2. Materials and methods”).

Figure 5A shows the dimensionality reduction results for
different parameters. The graphs in the left column are components
with the largest variance, and the graphs in the right column are
components with the second largest variance. The four graphs
above show the dimension related to laterality, and it can be found
that the signal difference between elbow and wrist is small, but the
signals of different sides can be clearly distinguished. T-test was
used to explore the significant differences of 135–300 Hz frequency

band in dimension 1. The p-values representing the differences
of left elbow and right elbow task, left elbow and bilateral elbow
task, right elbow and bilateral elbow task were 6.8437 × 10−11,
2.7506 × 10−11 and 0.0011, respectively. The p-value representing
the difference of left elbow and left wrist task was 0.9908. The
four graphs below show the dimension related to regions. The
elbow and wrist signals can be clearly distinguished, whereas the
left, right, and bilateral signals are all mixed together. The p-value
representing the difference of left elbow and left wrist task of 135–
300 Hz frequency band in dimension 1 was 6.3854 × 10−13. In
addition, the dPCA results of 135–300 Hz frequency band signals
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TABLE 1 The p-values of the significant differences analysis in Figure 4.

Frequency
band/Hz

Group P-value

0.3–8 Elbow 0.3344 0.0030 8.5806 × 10−5 0.0838 0.0086 0.2966

Wrist 0.3729 0.6857 0.5326 0.0982 0.8676 0.2585

Ipsilateral 3.3650 × 10−4 0.3729 2.6423 × 10−4

Contralateral 0.0381 0.6857 0.0069

8–38 Elbow 0.0193 0.0331 0.0097 0.8930 0.9901 0.8764

Wrist 9.0419 × 10−4 0.0118 0.0010 0.6837 0.4975 0.3683

Ipsilateral 8.5017 × 10−4 9.0419 × 10−4 0.7570

Contralateral 3.8641 × 10−4 0.0118 0.5799

135–300 Elbow 4.8727 × 10−4 7.4396 × 10−9 1.1784 × 10−9 0.0070 0.0017 0.5547

Wrist 1.4147 × 10−4 9.7873 × 10−6 5.1440 × 10−6 0.5503 0.7300 0.7454

Ipsilateral 4.2757 × 10−4 1.4147 × 10−4 0.1227

Contralateral 1.1608 × 10−4 9.7873 × 10−6 0.0099

The significant differences were analyzed by ANOVA. The six p-values from left to right in elbow group represent the differences of rest and left elbow task, rest and right elbow task, rest and
bilateral elbow task, left elbow and right elbow task, left elbow and bilateral elbow task, right elbow and bilateral elbow task. The order of p-values in other groups is similar.

are more distinguishable than that of 0.3–8 Hz signals. For example,
compared to the p-values listed above, the p-values of 0.3–8 Hz
frequency band in dimension 1 representing the differences of
left elbow and right elbow task, left elbow and bilateral elbow
task, right elbow and bilateral elbow task were 1.4105 × 10−14,
0.0557 and 0.0012, respectively. The results demonstrated that there
existed region-related dimension for distinguishing the moving
region, and the laterality-related dimension to identify which side
of the limb was in motion. Figure 5B shows the percentage of
overall variance which the three dimensions capture. The different
conditions significantly separated in these dimensions and the
variance of region dimension was larger than laterality dimension.

3.3. Decoding performance

In Figure 6, average power signals (see section “2. Materials
and methods”) in the “Go” phase were used as features to
classify different tasks, and the classification accuracy reflected the
richness of the motion information in the signal to some extent.
Figure 6A shows the decoding performance of 4-category elbow
(left, right and bilateral elbow flexion), 4-category wrist (left, right
and bilateral wrist flexion) and 7-category tasks. For comparison,
signals from 5 frequency bands were extracted for classification.
The highest accuracy reached to 0.91 ± 0.06, 0.74 ± 0.07, and
0.72 ± 0.03 in the 135–300 Hz frequency band, respectively. These
results showed that the LFP signal not only performed well in
the decoding of different sides, but also had a good performance
in mixed tasks with different laterality and regions. In the low
frequency band of 0.3–8 Hz, there were also relatively good
decoding performances, but in the power suppression band of
8–38 Hz, the accuracies were the lowest.

Figures 6B–D further shows the specific classification results
of one session in the three classification tasks, respectively. The
135–300 Hz frequency band signals were used since they led to the
highest accuracies. For 4-category elbow task, 301 trees were used in
the random forest classifier, and the average layer and node of trees

were 4 and 12. For 4-category wrist task, 95 trees were used, and the
average layer and node of trees were 4 and 14. For 7-category task,
262 trees were used, and the average layer and node of trees were
7 and 30. The accuracy of 4-category elbow (B) was higher than
that of 4-category wrist (C), and for the 7-category task (D), the
errors in elbow tasks were fewer than that in wrist tasks. Therefore,
elbow tasks were easier to distinguish than wrist tasks in this study.
What’s more, contralateral and bilateral tasks were most likely to be
confused and brought the decoding performance down.

In general, the results demonstrated the feasibility of using LFP
signals of unilateral cerebral cortex to decode motor imagery tasks
of different laterality and regions, and contralateral and bilateral
movements were the easiest to confuse.

3.4. Single-channel analysis

For signals recorded by multi-channel electrode arrays,
analyzing single-channel signals could often get more detailed
information than averaging the signals of all channels. We also
compared the classification accuracies using the features obtained
by two methods in this study. One of the methods was averaging
the average power signals obtained from the 96 channels on the
array as the features, and the other one was splicing the average
power signals of all channels, which was the method used in the
previous decoding analysis. In all frequency bands, the accuracy
of the latter methods were mostly higher than that of the former
methods. Therefore, the signal recorded by each channel in the
electrode array was further analyzed.

Figure 7A shows the ratios of the average energy in 135–
300 Hz frequency band of “Go” phase to that of “Prepare” phase
for each channel under different tasks and identifies the channels
with significant differences (ANOVA) in energy in the two phases.
In general, during motor imagery, only a small number of channels
had significant energy activation compared with the rest state,
and they were concentrated on the right side of the array in
this study. Comparing the energy activation while performing
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FIGURE 5

DPCA results of LFP signals in 0.3–8 and 135–300 Hz frequency bands. (A) The graphs in the left column are components with the largest variance,
and the graphs in the right column are components with the second largest variance. The four graphs above show the dimension related to laterality,
and the four graphs below show the dimension related to regions. The solid and dotted lines in the graphs represent LFP signals during elbow and
wrist motor imagery, respectively. The vertical black lines represent the time of the movement onset. (B) The variance of three dimensions.

motor imagery in different body regions, it could be found that
the energy activation of the elbow was larger than that of the
wrist, and the number of channels with significant differences
was more than that of the wrist. During the motor imagery of
elbows, there was obvious activation in the upper right corner
of the array, but there was no such activation during the motor
imagery of wrists. The location of the upper right corner is
closer to the midline and closer to the central sulcus. Comparing
the energy activation between different lateral motor imagery, it
could be found that the motor imagery of the right and bilateral
sides had obvious activation in the lower right corner, but there
was no such activation during the motor imagery of the left
side.

Figure 7B shows the number of channels with significant
differences and the activation state of all these channels under
different tasks. It could be found that the activation channels of the
same region had a great overlap when two unilateral movements
were performed, and the range of significant activation during
bilateral movement was larger than the superposition of two
unilateral movements.

While performing motor imagery, there were only 30 channels
that had significant differences in energy compared to the rest state.
Did these channels contain most of the motion information? We
further tested whether the classification accuracy obtained using
only the features of these 30 channels was equivalent to the original
one. As shown in the section “2. Materials and methods”, we
also used the average power signals of “Go” phases (15 values)
of a specific frequency band as the features extracted from one
channel. We gathered the features of 30 channels as the input of
the classifier. The 135–300 Hz signal with the highest classification
accuracy in the 7-category tasks was used, and the classification
accuracy obtained by using only the features of these 30 motion-
related channels was 0.824. Compared with the accuracy rate, 0.735,
obtained by classifying the features of all channels, only considering
the features of motion-related channels could get better decoding
performance. It could be seen that during motor imagery, several
channels contained a large amount of motion information and
could be used to achieve better decoding results. This was of great
significance for optimizing the brain computer interface algorithm
and improving the decoding performance.
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FIGURE 6

Decoding performance of LFP signals in different frequency bands. (A) The classification accuracy of 4-category elbow, 4-category wrist, and
7-category tasks in different frequency bands. The 4-category elbow tasks are rest, left, right and bilateral elbow flexion motor imagery. The
4-category wrist tasks are rest, left, right and bilateral wrist flexion motor imagery. The 7-category tasks contain all tasks. (B) The specific
classification results of each category of one session in the 135–300 Hz frequency band of the 4-category elbow tasks. The data were obtained
from 4-category experiments. (C,D) The specific classification results of 4-category wrist and 7-category tasks. The data were obtained from
7-category experiments. The accuracy indicated on the upper right are average accuracy of each category.

The 30 channels that had significant activation while moving
compared with rest state were further analyzed by comparing
the correlation of signals between different lateral movements of
elbows. The data used were average power signals of “Prepare”
and “Go” phases in the frequency bands of 0.3–8 and 135–300 Hz
of 7-category experiment. The absolute correlation coefficient of
each channel between two movements was calculated. Figure 8
shows the number of channels corresponding to each correlation
coefficient. It could be seen that in the two frequency bands, the
correlation coefficients of the contralateral and bilateral movements
were the largest. This further illustrated that the activation patterns
of contralateral and bilateral arms during motor imagery were the
most similar. For the same two tasks, the correlation coefficients
of the 0.3–8 Hz frequency band were larger than that of the 135–
300 Hz band. It showed that the low frequency signals were more

similar, which was consistent with the results that the accuracy of
the decoder using low frequency signal was lower than that of the
high frequency signal.

4. Discussion

In this study, LFP signals recorded from unilateral cerebral
cortex were analyzed for the representation and decoding of
arm motor imagery in different sides and regions. The results
showed that in 135–300 Hz frequency band, there were significant
differences in the power of LFP signals between tasks of different
laterality and regions, and the lateral and regional information
were characterized in two dimensions. Among all frequency bands,
the 135–300 Hz band signal had the best decoding performance.
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FIGURE 7

Single-channel analysis. (A) All the channels were arranged according to the actual distribution on the electrode array, and the average energy of the
“Go” phase and “Prepare” phase of each channel were calculated, averaged across all trials during each task. The color in every small square
represents the ratio of the average energy of the “Go” phase to that of the “Prepare” phase. “∗” Represents significant difference in the energy of the
two phases on the corresponding electrode (ANOVA, p < 0.01), and “o” represents a channel that does not exist or has poor signal quality. The signal
data came from the 135–300 Hz frequency band of the 7-category tasks. (B) The number of channels with significant differences in different tasks
and the activation state of all these channels under different tasks.

The movements could be accurately distinguished even in the 7-
category tasks mixing with different laterality and regions, and
the confusion mainly occurred between contralateral and bilateral
movements. The low frequency band signal of 0.3–8 Hz also had
relatively high accuracy. From the analysis of the single-channel
LFP signals, it could be seen that the activation intensity and range
of different movements were not the same, whereas the LFP signals
of contralateral and bilateral arm movements were more similar.
What’s more, using the features of motion-related channels only
could improve the decoding performance.

4.1. The representation of different lateral
movements using unilateral LFP signals

The origin of ipsilateral signals in the cerebral cortex has its
structural basis. Current research (Nyberg-Hansen and Rinvik,
1963; Brus-Ramer et al., 2009) generally believes that the activation
of the ipsilateral cortex is related to the corticospinal tract and

the corpus callosum. Although most of the neural fibers in the
corticospinal tract project to the contralateral cortex, a small part
of them still projects directly to the ipsilateral cortex (Lacroix
et al., 2004). The corpus callosum connects the corresponding parts
of the cerebral hemispheres on both sides, so that the activation
of the contralateral cortex can affect the ipsilateral cortex (Brus-
Ramer et al., 2009). Therefore, the kinematic information of both
the ipsilateral and contralateral movements can be reflected in
the ipsilateral cortex. In the bilateral movement, the signals from
both sides may affect each other. This lays the foundation for
the representation and decoding of the contralateral, ipsilateral
and bilateral movements based on the ipsilateral neural signals.
What’s more, the bilateral representation ability might also related
to the dominance of left hemisphere since the electrode array was
implanted in the left M1.

According to the activation in the electrode array and the
number of channels that had significantly different energy between
the motor imagery and rest state in Figure 7, although the
representation of the contralateral and ipsilateral movements in
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FIGURE 8

The number of channels corresponding to each correlation coefficient between two movements. (A) The results of signals in 0.3–8 Hz frequency
band. (B) The results of signals in 135–300 Hz frequency band. The average power signals from the 7-category experiment were used to calculate
the correlation coefficients. The numbers near the black lines in the graphs represent the average correlation coefficients of all 30 channels.

the motor cortex had some similarity, there were also obvious
differences between them. Many channels activated both during
the contralateral and ipsilateral movements, but a few channels
activated only during one of the movements. The neurons involved
in the two movements might not be exactly the same. Previous
studies have also reported that although the contralateral and
ipsilateral signals could decode the movement of the same limb,
they were still very different at the level of single-neuron signals
(Ames and Churchland, 2019). In this study, we showed the
differences in neural signals between the contralateral, ipsilateral
and bilateral motor imagery, at the level of single-channel LFP
signals.

Donchin et al. (1998) used single unit activity to find that
in the M1 area, more neurons were directionally selected during
contralateral hand movement than ipsilateral hand movement,
and more neurons exhibited activity in bilateral movement than
unilateral movement. There was also the similar condition in the
number of significantly activated channels of the LFP signal of
different lateral movements (Figure 7B). This also indicated that
bilateral movement was not a superimposition of two unilateral
movements. Donchin et al. (2002) got the similar conclusion using
spikes by comparing the neural signals of bilateral movement and
the similar movement of one arm while the other was stationary.
Some LFP signal channels were only related to bilateral movement
and might have some coordination functions in the bilateral
movement. Realizing the specific role of these neurons played
needed further research. Moreover, according to the correlation of

neural signals during different lateral movements, it could be found
that the neural signals of bilateral and contralateral movements
were more similar. This might because that the cerebral cortex
mainly controlled the contralateral limb, which was in line with the
classic theory of the cross control from the brain to limbs.

It could be found In Figure 5 that the LFP signals represented
the laterality and regions of movement in two dimensions. There
were similar results in the study of Willett et al. (2020), which
were obtained using spike signals. Willett et al. (2020) found that
the movement and laterality were distributed in two independent
dimensions, and thus proposed a compositional coding hypothesis
indicated as movement-coding and effector-coding dimensions.
Our research proved this hypothesis from the perspective of
LFP signals and at the same time supplemented it. Willett et al.
(2020) only explored that in the lateral dimension, the spike
signals of ipsilateral and contralateral movements could be well
distinguished. Our research found that even if bilateral signals were
added, these three types of lateral signals were distinguishable.
This demonstrated that in the coding of movement laterality, not
only single limb could be coded, the simultaneous movement of
multiple limbs could also be distinguished. In general, based on the
compositional coding hypothesis, the representations of different
lateral movements had a certain similarity because of the code of
movement regions, whereas the code of movement laterality made
them possible to distinguish.

However, since the participant was a long-term paralyzed
patient and had no voluntary arm movement, it was inevitable that
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there existed neural plasticity changes in his brain, which could
affect the conclusion of the experiment. More participants may be
recruited to rule out this possibility in the future.

4.2. Decoding analysis of different
frequency bands

In this study, spectrograms of the LFP signals were drawn
and decoding performance in different frequency bands were
calculated. In the spectrograms, different power characteristics of
enhancement or suppression were shown in different frequency
bands. The pattern was similar to that obtained by Rickert et al.
(2005) using the LFP signals obtained during the center-out tasks of
monkeys. In terms of decoding performance in different frequency
bands, many studies have found that the decoding ability of alpha
and beta frequency bands was poor, whereas low frequency (<5 Hz)
and high frequency (>50 Hz) bands could decode a lot of kinematic
information (Jackson and Hall, 2017). This was consistent with the
decoding performance of different frequency bands in this study,
and our study supplemented the comparison in LFP signals from
human during motor imagery.

Rickert et al. (2005) also found that the LFP activity was
not modulated with the direction of movement in the ≈30 Hz
frequency band with reduced amplitude in the spectrogram, but
obvious cosine-like tuning could be seen in other frequency bands
with increased amplitude. Miller et al. (2010) also found in the
ECoG signals from human that in the 8–32 Hz frequency band, the
ranges of energy drop caused by the motor imagery of the hand and
tongue were wide and overlapping, in contrast, the energy increase
ranges of higher frequency band were concentrated and non-
overlapping. Therefore, we considered that the information related
to kinematics might be suppressed in the 8–38 Hz frequency band.
The signal contained some general motion information, rather than
specific motion details such as laterality and regions. This also
explained why alpha and beta frequency bands were commonly
used for EEG signals when studying motor imagery, but did not
perform well in LFP decoding. In the decoding of EEG signals,
whether a body part moved was often took into consideration,
and no specific kinematic information or the distinction of moving
parts in a small area was involved.

In this study, the average power signal of the high frequency
band (135–300 Hz) had the best discrimination for different
laterality and regions of the motor imagery (Figure 4) and had the
best classification accuracy in the 4-category and 7-category tasks
(Figure 6). In previous study, high frequency band LFP signals
also had good performance in the decoding of unilateral movement
of monkeys. Zhuang et al. (2010) divided the frequency range
of 0.3–400 Hz into 7 different bands and studied the decoding
performance of these bands on the kinematic information of
monkeys when they freely reached and grasped moving objects.
The results showed that the neural decoding of the broad high-
frequency LFP band (200–400 Hz) exceeded all other bands.
Therefore, the high-frequency LFP signal might contain more
kinematics information. In addition, in the 7-category task, the
decoding performance of the wrist was not as good as the elbow.
This might be due to that the electrode array covered more arm
area in the motor cortex instead of wrist or hand area. This was also

reflected in the activation diagram of the single-channel electrode
(Figure 7A). The activation of the elbow was greater than that of
the wrist during motor imagery.

Low-frequency (0.3–8 Hz) signals also had relatively good
decoding performance in this study. Liu et al. (2020) found that
the movement-related cortical potential (MRCP) signals at C3 and
C4, filtered by 0.01–3 Hz bandpass filter, both showed different
characteristics when the left hand and right hand moved, which
indicated that the MRCP of the unilateral cerebral cortex carried
some lateral information. However, few studies have distinguished
between the signals during bilateral and unilateral movements. In
addition, Gunduz et al. (2016) studied ECoG signals during 8-
target center-out movement task and found that the classification
accuracy based on high-frequency signals was higher than that
of low-frequency signals, and did not improve by adding low-
frequency signal features. Therefore, the low-frequency signals of
unilateral brain cortex might be able to distinguish the ipsilateral
and contralateral movements, but the detailed information of the
movement in them were not so much as the high-frequency signals.

Since the signals of different frequency bands have different
physiological processes behind them, and they also represent
different information, choosing a suitable frequency band of LFP
signals can effectively improve the performance of BCI. For further
interpretation of signals in various frequency bands, more research
in neuroscience and other fields is needed.

4.3. Bilateral BCI based on unilateral LFP
signal

Our results proved the feasibility of bilateral BCI based on
the unilateral LFP signal, which broadened the application of BCI
technology. First, it is possible to control bilateral prostheses or
machines to move based on unilateral signals. In this way, the
convenience of the BCI system for patients with bilateral limb
disorders can be further increased without increasing the injury.
Second, the LFP signal itself has many advantages. Compared
with spikes, it has low bandwidth and can maintain high stability
and decoding accuracy for a long period of time. These features
make it possible for small, low power consumption and long-term
BCI applications.

However, the bilateral movement in this study was somewhat
simple and the two arms were studied as two separate parts.
The coordination of the arms, which plays an important role in
daily life, has not been studied in depth. Downey et al. (2020)
explored the ability for human to control two virtual arms. The
neural mechanism of the coordinated movement of bilateral limbs
is not clear enough, and the neural signal processing method
that can realize the coordinated movement of the external device
need further study. Furthermore, to make BCI restore a more
naturalistic motor performance, it is relevant to include a key
cognitive component of action control, for example, inhibitory
control (Mirabella, 2014). Such a need had been suggested
previously in the framework of the evolution of newer BCIs
capable of decoding the neural activity underpinning decision-
making processes bringing to goal-directed actions (Mirabella and
Lebedev, 2017). Interestingly, it has been recently shown that even
one domain of motor inhibitory control (Bari and Robbins, 2013),
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for example, reactive inhibition, the ability to stop outright a
movement at the presentation of a stop signal, might be coded
mainly by the left hemisphere (Mancini and Mirabella, 2021). Thus,
recording neural activity from the M1 of the left hemisphere, as was
done in the present study, might potentially represent an optimal
solution for providing more effective BCI. How to implement a BCI
system that can smoothly control bilateral prostheses or devices and
put it into use is still an important topic, and a lot of efforts from
various fields are needed.
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