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meta-analysis

Cheng Gong1,2†, Hao Hu1,2†, Xu-Miao Peng1,2, Hai Li2,3,4, Li Xiao2,3,4,

Zhen Liu2,3,4, Yan-Biao Zhong2,3,4*, Mao-Yuan Wang2,3,4* and

Yun Luo2,3,4*

1Gannan Medical University, Ganzhou, Jiangxi, China, 2Department of Rehabilitation Medicine, First

A�liated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China, 3Ganzhou Intelligent

Rehabilitation Technology Innovation Center, Ganzhou, Jiangxi, China, 4Ganzhou Key Laboratory of

Rehabilitation Medicine, Ganzhou, Jiangxi, China

Background: In recent years, repetitive transcranial magnetic stimulation (rTMS)

has emerged as a noninvasive and painless treatment for post-stroke cognitive

impairment (PSCI). However, few studies have analyzed the intervention

parameters of cognitive function and the e�ectiveness and safety of rTMS

for treating patients with PSCI. Thus, this meta-analysis aimed to analyze the

interventional parameters of rTMS and evaluate the safety and e�ectiveness of

rTMS for treating patients with PSCI.

Methods: According to the PRISMA guidelines, we searched the Web of

Science, PubMed, EBSCO, Cochrane Library, PEDro, and Embase to retrieve

randomized controlled trials (RCTs) of rTMS for the treatment of patients with

PSCI. Studies were screened according to the inclusion and exclusion criteria, and

two reviewers independently performed literature screening, data extraction, and

quality assessment. RevMan 5.40 software was used for data analysis.

Results: 12 RCTs involving 497 patients with PSCI met the inclusion criteria. In

our analysis, rTMS had a positive therapeutic e�ect on cognitive rehabilitation

in patients with PSCI (P < 0.05). Both high-frequency rTMS and low-frequency

rTMS were e�ective in improving the cognitive function of patients with PSCI by

stimulating the dorsolateral prefrontal cortex (DLPFC), but their e�cacy was not

statistically di�erent (P > 0.05).

Conclusions: rTMS treatment on the DLPFC can improve cognitive function in

patients with PSCI. There is no significant di�erence in the treatment e�ect of

high-frequency rTMS and low-frequency rTMS in patients with PSCI between

high-frequency and low-frequency rTMS.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=323720, identifier CRD 42022323720.
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Introduction

Post-stroke cognitive impairment (PSCI) refers to a type

of cognitive impairment caused by stroke with cerebrovascular

insults and neurodegenerative changes, resulting in progressively

decreased function in attention, memory, execution, and other

cognitive domains, which can progress further to dementia

(Mijajlović et al., 2017). PSCI is the leading cause of massive

vascular cognitive impairment syndrome, including post-stroke

mild neurocognitive disorder that do not fulfill the criteria for

dementia and post-stroke dementia (PSD) (Mijajlović et al., 2017).

Previous studies have reported the prevalence of PSCI to be 24–

53.4% (Douiri et al., 2013; Lo et al., 2019), with the prevalence

of post-stroke dementia (PSD) ranging from 11 to 42% and post-

stroke mild neurocognitive disorder ranging from 14 to 29%

(Munthe-Kaas et al., 2020). Patients with PSCI experienced a

significantly higher mortality rate than those without. According to

the researchers, the 5-year survival rate for patients with PSD is only

39% compared to 75% for stroke patients of the same age without

dementia (Danovska et al., 2012). PSCI is associated with increased

disability, dependency, and mobility, posing a major burden to

patients, caregivers, and healthcare systems (Rohde et al., 2019;

Huang et al., 2022).

The main current approaches to treating PSCI include

pharmacotherapy and cognitive rehabilitation. Pharmacological

treatment with cholinesterase inhibitors (donepezil, galantamine,

etc.) improves patients’ cognitive function and daily living activities

(Wilkinson et al., 2003; Craig and Birks, 2006). However, many

studies have shown that drug-only treatment usually suffers from

unsatisfactory efficacy, inconsistent patient tolerance and excessive

negative effects, which is not recommended as a priority treatment

in practice guidelines (Crane and Doody, 2009; Tricco et al., 2013;

Fitzpatrick-Lewis et al., 2015; Petersen et al., 2018). Cognitive

rehabilitation training is a common rehabilitation treatment to

promote the cognitive recovery of patients. However, cognitive

rehabilitation training has poor patient cooperation, prolonged

time, and effort, resulting in a slow treatment effect.

In recent years, transcranial magnetic stimulation (TMS)

has been widely used in the treatment of neuromodulation of

the brain because of its efficacy in modulating the activity of

cortical areas (Mehta et al., 2019; Blech and Starling, 2020; Chung

et al., 2020; Mimura et al., 2021). The therapeutic mechanism

of TMS is to generate subthreshold or suprathreshold currents

in the human cerebral cortex through electromagnetic induction

(Lefaucheur et al., 2014; Rossini et al., 2015), thereby modulating

the excitability of the cerebral cortex. According to the stimulation

frequency, TMS can be divided into high-frequency (>1Hz)

TMS and low-frequency (≤1Hz) TMS. Studies have shown that

high-frequency TMS can increase the excitability of the cerebral

cortex in the stimulated area, while low-frequency TMS can

inhibit the excitability of the cerebral cortex (Fitzgerald et al.,

2006). TMS can be divided into single-pulse, double-pulse and

repetitive transcranial magnetic stimulation (rTMS), depending

on the stimulation pulse. And rTMS also includes two special

stimulation modes: intermittent theta burst stimulation (iTBS) and

continuous theta burst stimulation (cTBS). Among them, rTMS has

been proposed as an emerging non-invasive and painless treatment

to improve patients’ cognitive function (Magavi et al., 2017). In

recent years, many researchers are trying to improve the cognitive

function of patients with PSCI by modulating the excitability of

the cortical areas responsible for cognitive control through rTMS

(Randver, 2018).

However, the role of rTMS in PSCI remains unclear. Some

studies found (Liberati et al., 2009; Randver, 2018; Liu et al., 2021; Li

et al., 2023) that rTMS improved the cognitive function of patients

with PSCI, while others showed that rTMS did not improve the

cognitive function in patients with PSCI (Sterne et al., 2019). The

first systematic review and meta-analysis with a small sample size

was published in 2021 (Higgins et al., 2003) and found that rTMS

have a positive effect on improving the cognitive ability of stroke

patients. Recently, six new RCTs (Guyatt et al., 2011; Mercuri et al.,

2018; Cumpston et al., 2019; Yin et al., 2020; Li et al., 2021, 2022;

Chu et al., 2022) have been published. As a result, an updated

systematic review and meta-analysis is needed to provide high-

quality evidence about the effect of rTMS on PSCI. At the time

of writing our manuscript, a new systematic review and meta-

analysis (Tsai et al., 2020) has been published. However, we have

a theoretical concern on the data analysis of that study because

the authors only extracted the post-intervention data and ignored

the pre-intervention difference, which might yield an unreliable

conclusion. Thus, in this meta-analysis, we included the latest

randomized controlled trials (RCTs) to analyze the interventional

parameters of rTMS and evaluate the effectiveness and safety of

rTMS for treating patients with PSCI.

Methods

Protocol and registration

Our systematic review was designed and implemented based on

the Preferred Reporting Items for Systematic Reviews and Meta-

analysis (PRISMA) guideline (Liberati et al., 2009). The study has

been registered with Prospero (CRD 42022323720).

Retrieval strategy

Searches were made in the below databases on Web of

Science, PubMed, EBSCO, Cochrane library, PEDro, and Embase,

from the initial availability date to 6 April 2023, to identify

articles to be included in the quantitative analysis. The main

search terms for this study were “Stroke,” “Cognitive impairment,”

“Attention,” “Memory,” “Executive Function,” and “Repetitive

Transcranial Magnetic Stimulation.” In addition, we manually

searched other relevant literature, such as studies included in

some systematic reviews and meta-analyses, to broaden the search

for eligible articles. For instance, the following search strategy

was used for PubMed: ((Stroke) OR (Cerebrovascular Accident)

OR (Brain Vascular Accident) OR (Cerebrovascular Accidents))

AND (Cognitive impairment) OR (Cognitive dysfunction) OR

(Cognitive Function) OR (Cognitive Functions) OR (Attention)

OR (Memory) OR (Executive Function)) AND ((Repetitive

Transcranial Magnetic Stimulation) OR (Transcranial Magnetic

Stimulation) OR (TMS) OR (rTMS) OR (iTBS)). A similar search

strategy was used for the other databases.
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Inclusion and exclusion criteria

Inclusion and exclusion criteria for literature screening

were predetermined to allow for more rigorous literature

screening. Inclusion criteria of the literature: (1) patients

diagnosed with PSCI by clinical examination; (2) trial group

received rTMS treatment intervention with cognitive function

training; (3) control group received sham rTMS treatment

or cognitive function training only; (4) outcome indicators

of cognitive function were assessed by relevant scales, such

as the Mini-Mental State Examination (MMSE), Loewenstein

Occupational Therapy’s Cognitive Assessment (LOTCA), Montreal

Cognitive Assessment (MoCA); (5) The experimental design was

a randomized controlled trial;(6) the language was restricted

to English.

Exclusion criteria of the literature: (1) animal experiments;

(2) cognitive impairment due to other etiologies (e.g.,

cranial trauma, Alzheimer’s disease, Parkinson’s disease,

etc.); (3) experimental groups received interventions other

than rTMS with cognitive function training; (4) full-text

content was not available; (5) experimental data were missing

or duplicated.

Study selection

We imported all retrieved studies into the document

management system of Endnote 20 and removed duplicate

studies using software management features. Two researchers

(CG and HH) perused the title and abstract of each study

simultaneously and then screened studies based on the criteria we

had previously developed. For further screening, two reviewers

downloaded and viewed the full text to remove articles that did

not meet the inclusion criteria and to confirm their eligibility.

If there was disagreement in the screening process, a consensus

was reached through the advice provided by the principal

investigator (YL).

Data extraction

Two reviewers (CG and HH) independently extracted

the following data and items from the included literature:

the first author of the study, year of publication, sample

size, age of patients, gender, disease duration, type of stroke,

stroke site, interventions, and outcome indicators of the

trial. Specific stimulation parameters, including stimulation

site, frequency, intensity, and the number of pulses per unit,

were also recorded in detail for the intervention method. In

addition, when two reviewers (CG and HH) encountered

unclear or complicated extraction of complete literature data

during data extraction, the original authors of the literature

would be contacted to obtain the complete experimental data.

After three consecutive emails are sent, the study will be

defined as missing data if no response is received from the

original author.

Quality assessment and risk of bias
assessment

Quality assessment of the literature studies was completed

independently by two researchers (CG and HH), followed by

a discussion to produce consistent results. Risk bias assessment

was conducted using the Cochrane Risk of Bias tool (Review

Manager 5.40). Items were assessed from seven areas: blinding

of participants and personnel, blinding of outcome assessments,

allocation concealment, random sequence generation, incomplete

outcome data, selective reporting, and other biases. Each risk bias

was graded as high risk, low risk, or unclear (Sterne et al., 2019).

The assessment of risk bias in each study’s re-risk bias assessment

item was recorded by mapping the risk bias assessment.

Heterogeneity between studies was statistically analyzed by

Revman 5.40. The size of heterogeneity was expressed as I2, and

heterogeneity was judged as high heterogeneity when I2 ≥ 75%,

moderate heterogeneity when 75% > I2 ≥ 50%, low heterogeneity

when 50% > I2 ≥ 25%, and no heterogeneous heterogeneity if I2 =

0% (Higgins et al., 2003).

The quality of evidence for outcome indicators was

assessed using the Grading of Recommendations Assessment,

Development, and Evaluation (GRADE) system, which examines

areas, such as study limitations, intermittency, inconsistency,

and imprecision of results (Guyatt et al., 2011; Mercuri et al.,

2018). The results were assessed by grading the evidence

for the outcome indicators as “high,” “moderate,” “low,”

or “very low,” and the strength of the recommendations

was divided into two levels: strong and weak (Guyatt et al.,

2011).

Statistical analysis

For statistical and analytical purposes, extracted study data

were entered into Revman 5.40 software. Depending on the

magnitude of heterogeneity, the decision was made to use a fixed-

effects model or a random-effects model for the meta-analysis.

When I2 ≥ 50%, a random effects model was used; when I2

< 50%, a fixed effects model was used (Cumpston et al., 2019).

We report 95% confidence intervals (CI) and mean difference

(MD) to express the effect size. The effect size of different units

of the same outcome index was measured by standardized mean

difference (SMD).

Results

Research result

Relevant literatures were searched from the six databases

and the initial search yielded 3,611 studies. After screening for

duplicate studies using the software deletion function, 3,029 studies

remained. Then, two reviewers read the titles and abstracts of

these studies and screened out 2,897 irrelevant to the topic.

The remaining 132 studies were assessed by full text and 120

studies excluded, including 11 reviews, 4 case reports, 8 study

protocols, 10 conference abstracts, 45 studies with no relevant
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FIGURE 1

Flow graph of selection and exclusion.

interventions, 39 non-randomized controlled trial studies, and

3 studies unable to retrive with no data. Ultimately, 12 eligible

studies were included in this study (Du and Wu, 2005; Fregni

et al., 2006; Kim et al., 2010; Lu et al., 2015; Liu, 2017; Liu

et al., 2020; Li et al., 2020, 2021, 2022; Tsai et al., 2020; Yin

et al., 2020; Chu et al., 2022). One study (Tsai et al., 2020)

did not use any of the same outcome indicators as the rest

studies, so only 11 studies were included for quantitative analysis

(Figure 1).

Characteristics of the trials

Clinical characteristics and interventional parameters were

extracted of the 12 included RCTs are summarized in Tables 1, 2,

respectively. A total of 497 patients eligible for the study were

included, with sample sizes ranging from 15 to 65 per RCT, with

differences in the hemisphere of stroke site, type, and duration.

The number of PSCI patients treated with rTMS was 258, with

an additional 239 receiving placebo or cognitive function training

only. The intervention characteristics of rTMS treatment, such

as stimulation site, intensity, frequency, number of pulses, and

duration, are excerpted in Table 2. In our meta-analysis, five

studies (Du and Wu, 2005; Fregni et al., 2006; Kim et al., 2010;

Lu et al., 2015; Li et al., 2021) with a total of 112 patients

received low-frequency transcranial magnetic stimulation, and 8

studies (Kim et al., 2010; Liu, 2017; Liu et al., 2020; Li et al.,

2020, 2022; Tsai et al., 2020; Yin et al., 2020; Chu et al., 2022)

with a total of 159 patients received high-frequency transcranial

magnetic stimulation.

Quality assessment result

The risk of bias of the 12 included RCTs were assessed

according to the Cochrane Risk of Bias Assessment Tool (Revman

5.40). One studies (Kim et al., 2010) failed to give data variation

for all assessments in the reporting of study results and had a high

risk of attrition bias. One study (Li et al., 2020) was not reasonably

blinded in the assessment of outcome indicators, leaving it with a

high risk. None of the rest studies had high-risk bias items in the

assessment of bias risk. Overall, the risk of bias in our included

RCTs was low (Figures 2, 3).
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TABLE 1 The main characteristics of the reviewed studies.

References Sample size (n) Sex (M/F) Age (years),
M ± SD

Type of
stroke

(hemorrhagic/
ischemic)

stroke site
(left/ right/
bilateral)

Disease
duration

Outcome Adverse
events

1. Du and Wu (2005) G1:30

G2:30

34/26 57.6± 10.8 – 15/10/5

16/10/4

– MMSE

MBI

No

2. Kim et al. (2010) G1:6

G2:6

G3:6

2/4

4/2

4/2

68.3± 7.4

53.5± 16.9

66.8± 17.2

1/5

2/4

1/5

– 404.4± 71.7days

241.2± 42.5day

69.7± 39.0days

MBI No

3. Lu et al. (2015) G1:19

G2:21

12/7

13/8

42.5± 12.3

47.3± 11.8

11/8

11/10

1/8/0

1/10/0

67± 30days

56± 30days

LOTCA

MoCA

Dizziness

4. Liu (2017) G1:18

G2:18

11/7

9/9

65.33± 7.05

62.61± 9.98

13/5

12/6

– 253.2± 53.7 days

279.9± 49.2 days

MMSE No

5. Liu et al. (2020) G1:29

G2:29

10/19

16/13

58.6± 6.2

57.7± 7.3

9/20

15/14

11/18/0

14/15/0

8.7± 1.8 months

8.6± 1.8 months

MMSE NR

6. Yin et al. (2020) G1:16

G2:18

14/2

16/2

56.7± 12.9

58.2± 11.3

5/11

6/12

4/6/6

6/7/5

52± 38.3 days

55± 39.5 days

MoCA No

7. Li et al. (2020) G1:15

G2:15

7/8

9/6

65.5± 3.7

64.5± 4.7

– 5/10/0

6/9/0

22.7± 8.1days

19.1± 7.9 days

MMSE

MoCA

Dizziness

Headaches

8. Tsai et al. (2020) m G1:11

G2:15

G3:15

9/2

11/4

13/2

57.5± 12.3

60.1± 14.1

56.2± 12.0

3/8

7/8

10/5

11/0/0

15/0/0

15/0/0

33.3± 26.4 months

18.8± 20.2 months

38± 7.9 months

RBANS No

9. Li et al. (2021) G1:33

G2:32

12/21

19/13

61.8± 5.5

59.5± 6.6

22/11

18/14

15/18/0

13/19/0

28.6± 12.6 days

27.8± 11.0 days

MoCA

MBI

No

10. Fregni et al. (2006) G1:10

G2:5

8/2

3/2

57.70± 11.2752.60

± 12.56

– 8/2/0

4/1/0

105.6± 87.9 days

119.1± 79.2 days

MMSE Anxiety

Tiredness

mild

headache

11. Chu et al. (2022) G1: 21

G2: 20

18/3

13/7

57.24± 14.03

66.75± 12.23

8/13

8/12

12/9/0

13/7/0

4.00± 5.00 months

6.00± 4.00 months

MBI

LOTCA

No

12. Li et al. (2022) G1:28

G2:30

16/12

18/12

69.5± 12.7

66.0± 15.6

10/18

16/14

12/16/0

6/24/0

25± 9.19 days

25± 8.49 days

MMSE Sneezing

G1, group 1; G2, group 2; G3, group 3; n, number; M, male; F, female; LF, low frequency; “–”, not given; NR, not reported, MMSE, Mini-Mental Status Examination; MBI, Modifed Barthel Index; MoCA, Montreal Cognitive Assessment; RBANS, Repeatable Battery

for the Assessment of Neuropsyehological Status.
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TABLE 2 Main intervention parameters of rTMS.

References Intervention
method

Stimulation position Intensity
(%MT)

Frequency
(Hz)

Total pulses Number of
sessions (day)

Duration of
intervention

Cognitive
training

1. Du and Wu (2005) G1: rTMS

G2: sham-rTMS

DLPFC (Bilateral) 60 0.5 100 20 4w, 5d/w Yes

2. Kim et al. (2010) G1: rTMS

G2: rTMS

G3: sham-rTMS

L-DLPFC (unilateral) LF: 80

HF: 90

LF: 1

HF: 10

LF: 900

HF: 450

10 2w, 5d/w Yes

3. Lu et al. (2015) G1: rTMS

G2: sham-rTMS

R-DLPFC (Unilateral) 100 1 600 20 4w, 5d/w Yes

4. Liu (2017) G1: rTMS

G2: sham-rTMS

L-DLPFC (unilateral) 100 10 700 20 4w, 5d/w Yes

5. Liu et al. (2020) G1: rTMS

G2: sham-rTMS

L-DLPFC (Unilateral) 100 10 700 20 4w, 5d/w Yes

6. Yin et al. (2020) G1: rTMS

G2: sham-rTMS

L-DLPFC (Unilateral) 60 10 2,000 20 4w, 5d/w Yes

7. Li et al. (2020) G1: rTMS

G2: sham-rTMS

L-DLPFC (Unilateral) 90 5 2,000 15 3w, 5d/w Yes

8. Tsai et al. (2020) G1: rTMS

G2: iTBS

G2: sham-rTMS

L-DLPFC (Unilateral) 90 5

50/5

5

600 10 2w, 5d/w Yes

9. Li et al. (2021) G1: rTMS

G2: sham-rTMS

DLPFC (contralateral) 90 1 1,000 20 4w, 5d/w Yes

10. Fregni et al. (2006) G1: rTMS

G2: sham-rTMS

M1 100 1 1,200 5 1w, 5d/w Yes

11. Chu et al. (2022) G1: iTBS+ Cognitive training

G2: Cognitive training

L-DLPFC (unilateral) 70 50/5 600 30 6w, 5d/w Yes

12. Li et al. (2022) G1: iTBS

G2: sham-iTBS

L-DLPFC (unilateral) 100 50/5 600 10 2w, 5d/w Yes

LF, low frequency; HF, high frequency; R-DLPFC, the right side of the dorsolateral prefrontal cortex; L-DLPFC, the left prefrontal cortex; DLPFC, the dorsolateral prefrontal cortex; M1, primary motor cortex M1 area.
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FIGURE 2

Risk of bias graph: judgements about each risk of bias item presented as percentages.

FIGURE 3

Risk of bias summary: judgements about each risk of bias item for each included study.

We evaluated the GRADE evidence level recommendations for

the main outcome indicators of MMSE, MoCA, LOTCA, and MBI

(Modified Barthel Index) (Table 3). Due to the small sample sizes

involved in the outcome indicators of MMSE, MoCA, and LOTCA

(n < 200), we rated the risk of imprecision for these 3 outcome

indicators as “severe” with an intermediate level of evidence.

Because of the small sample size (n < 200) and high heterogeneity

(I2 > 80%) of the studies with MBI as an outcome indicator, the

risk of imprecision and Inconsistency for MBI outcome indicators

were both rated as “severe” with a low level of evidence. However,

no serious risks were identified in the rest of the items assessed,

and therefore the overall GRADE evidence recommendation for

this study was “strong.”

Results of statistical analysis

Six studies (Du andWu, 2005; Fregni et al., 2006; Liu, 2017; Liu

et al., 2020; Li et al., 2020, 2022) used MMSE to assess the cognitive

function of patients with PSCI by calculating the heterogeneity

between studies with I2 < 50%, therefore a fixed effects model

was used for data analysis. Of them, four studies were treated

with high-frequency rTMS and two studies were treated with low-

frequency rTMS. Compared to controls, high-frequency rTMS

stimulation of patients’ dorsolateral prefrontal cortex (DLPFC)

showed significant improvement in improving MMSE scores in

patients with PSCI [MD = 2.41, 95% CI (1.13, 3.69), I2 = 0%, P

< 0.05, Figure 4], and low-frequency rTMS stimulation of patients’
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DLPFC similarly promoted cognitive function in patients with

PSCI [MD = 1.88, 95% CI (0.68, 3.09), I2 = 93%, P < 0.05,

Figure 4] treatment improved the cognitive function of patients

with PSCI, respectively. In addition, there was no statistical

difference in the efficacy of the two frequencies of rTMS (P

> 0.05).

Four studies (Lu et al., 2015; Li et al., 2020, 2021; Yin

et al., 2020) rated the cognitive function of patients by the

MoCA rating scale, and by calculating the heterogeneity between

studies, I2 < 50%, so a fixed-effects model was used for

data analysis. Compared to controls, DLPFC in patients with

high-frequency rTMS stimulation was effective in improving

cognitive function in patients with PPSCI [MD = 3.15, 95%

CI (1.34, 4.97), I2 = 0%, P < 0.05, Figure 5], and DLPFC

in patients with low-frequency rTMS stimulation was equally

effective in enhancing cognition in patients with PPSCI [MD

= 2.63, 95% CI (1.53, 3.72), I2 = 0%, P < 0.05, Figure 5].

In addition, subgroup analysis showed no statistical difference

in the efficacy of rTMS between the two frequencies (P

> 0.05).

Two studies (Lu et al., 2015; Chu et al., 2022) rated the

degree of loss of cognitive function in patients using the

LOTCA scale. And by calculating the heterogeneity between

studies, I2 < 50%, so a fixed-effects model was used for

data analysis. Data analysis of the forest plot showed that

rTMS stimulation of patients’ DLPFC significantly improved

LOTCA scores in patients with PSCI compared with controls

[MD = 6.52, 95% CI (3.79, 9.52), I2 = 0%, P < 0.05,

Figure 6].

Four studies (Du and Wu, 2005; Kim et al., 2010; Li

et al., 2021; Chu et al., 2022) used the MBI scale to assess

the ability of patients with PSCI to perform activities of daily

living, and by calculating the heterogeneity between studies,

I2 > 50%, therefore a random effects model was used for

data analysis. The results of the forest plot analysis showed

that rTMS stimulation of patients’ DLPFC was effective in

improving patients’ activities of daily living compared with controls

[MD = 12.2, 95% CI (0.46, 23.94), I2 = 81%, P < 0.05,

Figure 7].

Adverse event reporting results

Among the included studies, 11 studies (Du and Wu,

2005; Fregni et al., 2006; Kim et al., 2010; Lu et al., 2015;

Liu, 2017; Li et al., 2020, 2021, 2022; Tsai et al., 2020; Yin

et al., 2020; Chu et al., 2022) documented adverse effects when

rTMS was administered to patients with PSCI, but only three

studies reported the occurrence of adverse events. Four studies

(Fregni et al., 2006; Lu et al., 2015; Li et al., 2020, 2022)

reported the presence of transient vertigo and headache after

patients received rTMS, and 1 study (Li et al., 2022) reported

that patients induced sneezing when receiving rTMS. Based

on the results reported in all studies, no patients withdrew

from the experimental studies because they exhibited excessive

adverse effects.
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FIGURE 4

Forest plot analysis of rTMS based on MMSE scores.

FIGURE 5

Forest plot analysis of rTMS based on MoCA scores.

Discussion

Main meta-analysis results

Both low-frequency and high-frequency rTMS on DLPFC were

effective in improving cognitive function and enhancing the ability

of daily activities in patients with PSCI. The subgroup analysis

showed that there was no significant difference between low-

frequency and high-frequency rTMS in improving the cognitive

function of patients.

Comparison with previous studies

Compared to previous studies we included the most recent

RCTs for meta-analysis. Moreover, our data analysis was performed

on the amount of change in the rated indicators before and

after the trial, not just on the values of the outcome indicators

after the experimental intervention. We also supplemented the

study of Liu et al. (2021) with an analysis of the effectiveness

of rTMS in improving the activities of daily living in patients

with PSCI. And compared to the Li et al. study (Li et al., 2023),

we additionally added the data analysis of LOTCA score as an

outcome indicator to improve the reliability of the overall analysis

results. Finally, we also added the neglected safety analysis of

rTMS for PSCI patients. In addition, our subgroup analysis of

the difference in efficacy of rTMS at different frequencies in

patients with PSCI yielded results inconsistent with the study

of Li et al. Li et al. showed that low-frequency rTMS did

not improve patients’ MoCA scores compared with controls.

However, our subgroup analysis showed that low-frequency rTMS

improved the MoCA scores of patients and that there was no

statistical difference in efficacy compared with high-frequency

rTMS. In this regard, we have explored in more depth the

theoretical mechanisms of rTMS in the treatment of patients

with PSCI.
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FIGURE 6

Forest plot analysis of rTMS based on LOTCA scores.

FIGURE 7

Forest plot analysis of rTMS based on MBI scores.

Studies indicate that rTMS can produce an electric field in

the brain based on the principle of electromagnetic induction,

which induces depolarized neurons to regulate cortical excitability

(Thibaut et al., 2019). And the best application of rTMS as

a neuromodulatory capability for different stroke patients is

worth exploring in depth. The theoretical mechanisms of rTMS

reported in published studies are mostly based on the “hemispheric

competition model” (Rossi et al., 2021). In humans, both cerebral

hemispheres are in a state of mutual inhibition equilibrium under

normal physiological conditions, often referred to as “transcallosal

mutual inhibition.” However, the cerebral hemispheric equilibrium

of mutual inhibition can be disrupted in stroke patients with

brain damage. For example, it was found that the dorsolateral

prefrontal cortex (DLPFC) is the higher control area that controls

cognition (Ma et al., 2022). When patients with damage to the

left dorsolateral prefrontal area experience cognitive dysfunction,

it leads to decreased inhibition of the right cerebral hemisphere.

This situation further leads to the overactivation of the right

cerebral hemisphere and increased inhibition of the left cerebral

hemisphere by the right cerebral hemisphere, disrupting the

balance of inhibition in both hemispheres and affecting the

cognitive function recovery in patients with PSCI. It is vital to

regulate the excitability of the cerebral cortex on both sides to

correct the imbalance between the two cerebral hemispheres, and

rTMS can achieve this. It has been found that high-frequency rTMS

increases cortical excitability and low-frequency rTMS decreases

cortical excitability (de Aguiar et al., 2015; Hara et al., 2015).

Through this mechanism, rTMS can regulate the imbalance in

both cerebral hemispheres (Julkunen et al., 2009; Takechi et al.,

2014; Pastuszak et al., 2016) and foster plasticity changes in the

cerebral cortex, thus promoting cognitive recovery in patients with

PSCI. However, some researchers have found that the theoretical

model of interhemispheric competition dominates in patients with

less severe hemispheric damage, but is less relevant in patients

with more severe hemispheric damage (Werhahn et al., 2003;

Johansen-Berg, 2007; Seghier, 2008; Johansen-Berg et al., 2010). In

light of these findings, Di Pino et al. (2014) proposed a bimodal

balance-recovery model for the clinical use of non-invasive brain

stimulation (NIBS) in stroke patients, which suggested that when

treating stroke patients with rTMS, a high priority should be given

to the “structural reserve” (the extent to which neural pathways

and connections are preserved after stroke) of stroke patients. Di

Pino et al. showed that a high structural reserve in stroke patients

predicted recovery better with an interhemispheric competition

model, and a low structural reserve predicted recovery better with

a hemispheric compensatory model. The theoretical mechanism of

the hemispheric compensation model is that when the hemispheric

damage is too severe and the structural reserve is low, rTMS

excitation of the patient’s hemispheres is no longer sufficient to

provide adequate functional compensation, but rather excitation

of the healthy hemispheres should be increased to achieve a better

treatment outcome by expanding the functional compensation of

the healthy hemispheres. Nair et al. (2007) have also demonstrated

the important role that the healthy hemisphere plays in the recovery

of stroke patients.

Previous randomized controlled trials have reported different

degrees of facilitation of cognitive function in PSCI patients by

rTMS (Kim et al., 2010; Tsai et al., 2020), and these experimental

studies used different frequencies of rTMS to treat PSCI patients.

To clarify the effects of different rTMS frequencies on cognitive

function in PSCI patients, we performed a subgroup analysis of

the differences in the efficacy of g high-frequency rTMS and
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low-frequency rTMS. The results showed that both high and

low frequencies of rTMS positively improved cognitive function

in PSCI patients. There was no significant difference in the

improvement of cognitive function between the two frequencies,

which is consistent with the findings of Kim et al. (2010).

However, it is noteworthy that Kim et al. found that high-frequency

rTMS was more effective than low-frequency rTMS in reducing

depression when they analyzed the treatment effects of different

rTMS frequencies. Kim’s study suggests to us that although there

was no significant difference between low-frequency and high-

frequency rTMS in improving the scores of cognitive function in

patients with PSCI, the treatment effects were not exactly similar in

treating depression. In this regard, we believe it is necessary to take

into account the presence of depression, among other things, when

selecting different frequencies of rTMS for the treatment of patients

with PSCI.

There are three studies (Tsai et al., 2020; Chu et al., 2022;

Li et al., 2022) among our included studies that used iTBS for

the treatment of patients with PSCI, but because the outcome

indicators were inconsistent among these three studies, we could

only perform a systematic review and analysis. iTBS as a special

stimulation mode of rTMS, has a shorter treatment time and better

tolerability than conventional rTMS (Wu et al., 2018). Li et al.

(2022) reported the positive contribution of iTBS to improved

cognitive function in patients with PSCI, especially the executive

and memory functions of patients. Tsai et al. (2020) further

compared the efficacy of rTMS, iTBS, and sham stimulation in

patients with PSCI. They reported that the 5-Hz rTMS group was

significantly better than the sham stimulation group regarding the

total Repeated Battery for Assessment of Neuropsychological Status

(RBANS) scores, especially for attention and memory. The iTBS

group also showed better improvements in the total RBANS scores

and delayed memory than the sham stimulation group. However,

regarding attention, the 5-Hz rTMS group showed a better reflex

effect than the iTBS group. Furthermore, in the Tsai study,

patients’ mood disorders did not significantly improve after rTMS

treatment, reinforcing the idea that rTMS treatment improves

patients’ cognitive function rather than because of changes in

their mood disorders. Because of the lack of sufficient RCTs and

uniformity in outcome indicators, we could not perform further

subgroup analyses of both iTBS and conventional rTMS treatment

modalities to compare the differences in their efficacy. However,

the results obtained from the analyzed studies indicate that iTBS is

equally effective in treating cognitive dysfunction in patients with

PSCI. This finding is also well-supported by the same mechanism

of action in rTMS and the positive role of iTBS in cognitive

dysfunction caused by other diseases such as Parkinson’s disease

and Alzheimer’s disease. More randomized controlled trials related

to iTBS vs. conventional rTMS for cognitive dysfunction in patients

with PSCI should be encouraged to inform the clinical treatment

of PSCI.

In our included RCTs, the majority of rTMS stimulation sites

in the intervention group were in the prefrontal cerebral cortex

(DLPFC), and only one study (Fregni et al., 2006) used the M1 area

as the stimulating site. Several studies (Gaudeau-Bosma et al., 2013;

Parkin et al., 2015; Alcalá-Lozano et al., 2018) have shown that the

DLPFC is related to the control of cognition, such as operational

sequencing, attention and memory. Moreover, the DLPFC plays

an important role in the central executive network, which is

responsible for a high degree of control of cognitive functions, such

as attention and working memory (Bressler and Menon, 2010).

However, in patients with PSCI, the choice of stimulation site for

rTMSwhen the lesion site is in the left or right cerebral hemisphere,

or even bilateral cerebral hemispheres, the choice of stimulation

site for the left DLPFC (L-DLPFC), or right DLPFC (R-DLPFC)

or bilateral DLPFC was not uniform in these studies. Of these, 8

studies (Kim et al., 2010; Liu, 2017; Liu et al., 2020; Li et al., 2020,

2022; Tsai et al., 2020; Yin et al., 2020; Chu et al., 2022) chose L-

DLPFC as the stimulation site, one study (Lu et al., 2015) chose

R-DLPFC and one study selected bilateral cerebral hemispheres

(Du and Wu, 2005). Although most investigators used L-DLPFC

as the stimulation site, there was no evidence that this choice of

stimulation site was more advantageous. In addition, because these

studies were not scored using uniform outcomemetrics, the studies

we included were not equipped to perform subgroup analyses of

this aspect of the stimulation site. However, optimal stimulation

site selection and accurate localization of rTMS are key factors in

improving the efficacy of rTMS treatment. Therefore, more RCTs

with large sample sizes using different rTMS stimulation sites and

multicenter studies are needed to further investigate the effect of

different stimulation sites on the efficacy. The aim is to find the

optimal stimulation site to improve the clinical efficacy of rTMS

for patients with PSCI.

Adverse events reported for clinical use of rTMS include

seizures, transient syncope, perceived transient hearing changes,

and transient headache adverse reactions (Rossi et al., 2009; Hu

et al., 2012). Only 4 of the included RCTs reported adverse

reactions during rTMS treatment, comprising transient dizziness

and headache that resolved with rest. No patient withdrew from

the study due to adverse reactions. Therefore, rTMS treatment

of patients with PSCI by professional therapists according to the

treatment parameters recommended in the rTMS safety guidelines

(Rossi et al., 2021) is generally safe after adequate assessment of the

patient’s physical condition and exclusion of contraindications.

Limitations

There are several limitations to this meta-analysis that should

be considered. First, the sample sizes of the RCTs we included were

small (n < 100), and too small a sample size could easily bias

the assessment of treatment effects and overestimate the efficacy

of rTMS. Second, our included studies used different cognitive

functioning rating scales, such as the MMSE, LOTCA, MoCA,

and Repeated Battery for Assessment of Neuropsychological Status

(RBANS), which focus on different aspects of cognitive impairment

and elevate the heterogeneity between studies to some extent.

Third, although our studies all showed the positive efficacy of

rTMS in patients with PSCI, these studies did not report follow-

ups of patients to further confirm the long-term effects of rTMS.

Fourth, our included studies differed in terms of stimulation site,

intensity, frequency, and the number of pulses. The number of

available studies did not allow for a more detailed subgroup

analysis. Therefore, in the future, more multicenter follow-up,

double-blind, randomized controlled trials should be conducted

to facilitate longitudinal and cross-sectional comparisons of
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different stimulation parameters of rTMS, to determine the optimal

treatment protocol, and to improve the clinical efficacy of rTMS in

patients with PSCI.

Conclusions

The current analysis of the evidence suggests that rTMS safely

and effectively promotes cognitive recovery in patients with PSCI,

with a few transient adverse effects occurring during treatment,

but all within the patient’s tolerance range and with no significant

negative effects on the patient. Both high-frequency rTMS and

low-frequency rTMS stimulation of DLPFC in PSCI patients were

effective in accelerating the improvement of cognitive function and

enhancing the ability of patients to perform activities of daily living.

There is no significant difference in the treatment effect of high-

frequency rTMS and low-frequency rTMS in patients with PSCI. In

addition, given the small sample size currently included, regarding

rTMS for PSCI, more multicenter RCTs with large sample sizes are

needed in the future to explore the selection of optimal stimulation

sites and stimulation parameters to provide more effective and

precise treatment for patients with PSCI.
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