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There are increasing epilepsy patients suffering from the pain of seizure onsets,

and effective prediction of seizures could improve their quality of life. To obtain

high sensitivity for epileptic seizure prediction, current studies generally need

complex feature extraction operations, which heavily depends on the artificial

experience (or domain knowledge) and is highly subjective. To address these

issues, in this paper we propose an end-to-end epileptic seizure prediction

approach based on the long short-term memory network (LSTM). In the new

method, only the gamma band of raw electroencephalography (EEG) signals is

extracted as network input directly for seizure prediction, thus avoiding subjective

and expensive feature design process. Despite its simplicity, the proposed method

achieves the mean sensitivity of 91.76% and false prediction rate (FPR) of 0.29/h

on Children’s Hospital Boston-MIT (CHB-MIT) scalp EEG Database, respectively,

when identifying the preictal stage from the EEG signals. Furthermore, different

from traditional methods that only consider the classification of preictal and

interictal EEG, we introduce the postictal stage as an extra class in the proposed

method. As a result, the performance of seizure prediction is further improved,

obtaining a higher sensitivity of 92.17% and a low FPR of 0.27/h. The mean warning

time is 44.46 min, which suggests that sufficient time is reserved for patients to

take intervention measures by this prediction method.

KEYWORDS

EEG, gamma band, epileptic seizure prediction, long short-term memory network, deep
learning

1. Introduction

Epilepsy is a kind of chronic disease caused by the transient abnormal discharge of brain
neurons, which leads to temporary brain dysfunction (Jordans et al., 2017). The epileptic
seizures are long-term recurrent and unexpected, which could seriously damage the physical
and mental health of patients. There are four main stages of an epileptic seizure, including
preictal, ictal, postictal, and interictal period. Normally, patients are in the interictal state,
from which if preictal phase could be identified, an imminent seizure may be avoided by
medical treatment (Usman et al., 2019; Maimaiti et al., 2022).
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Electroencephalography (EEG) is an important diagnostic
indicator for epileptic seizures, but it is difficult to observe
a significant change before a sudden onset of epilepsy from
EEG signals. Therefore, the current prediction algorithms mainly
focused on classification of preictal EEG and interictal EEG.
It is found that EEG tends to exhibit some kinds of complex
and patient-specific patterns before seizures (Herkes et al., 1993;
Mormann et al., 2007). In time domain, significant differences of
some statistical measures such as variance, skewness and kurtosis
between preictal EEG and interictal EEG have been reported
in several seizure prediction studies (Mormann et al., 2005;
Aarabi et al., 2009). In the frequency domain, EEG spectral band
power has been proved to be effective in classification, and has
been successfully applied in prediction. In addition, connectivity
measures of functional brain network based on graph theory
(Rubinov and Sporns, 2010; Tsiouris et al., 2018), and some
non-linear dynamical parameters such as correlation dimension
(Lehnertz et al., 2001), dynamic similarity index (Quyen et al.,
1999), correlation entropy and Lyapunov exponent were also
extracted as features (Aarabi and He, 2017; Xu et al., 2022).
However, some features have high computational complexity
and lack of reproducibility and reliability (Mormann et al.,
2005; Elger and Lehnertz, 2007; Assi et al., 2017; Sánchez-
Hernández et al., 2022; Assali et al., 2023). Furthermore, the
accuracy of these prediction algorithms needs to be improved.
Usman et al. concluded that Support Vector Machines (SVM)
and Convolutional Neural Networks (CNN) achieved better
classification performance by comparing the results of seizure
prediction approaches proposed before 2019 (Usman et al., 2019).
As a popular deep learning algorithm, CNN, improved CNN and
Gashis-transformer are designed for image processing (Chen et al.,
2021; Zhang et al., 2021; Li et al., 2022). However, it fails to directly
deal with EEG signals that are non-linear and non-stationary
time series. Therefore, Truong et al. (2018) converted EEG into
time-frequency graph by Short-Time Fourier Transform (STFT)
as the input of CNN and obtained a sensitivity of 81.4%. CNN in
this approach, however, only learns time-frequency information of
EEG, which could not fully describe preictal and interictal EEG
patterns. Recently, another deep learning model Long Short-Term
Memory (LSTM) network has started to attract attention in seizure
prediction. Because LSTM is superior in processing temporal
information of brain activity, Tsiouris et al. (2018) input 643
commonly used EEG features into a LSTM network for prediction
and reached 99.63% sensitivity when 1-h preictal window was
used. However, deep neural networks applied in seizure prediction,
regardless of CNN or LSTM, mainly play a role in classifier. If
the features of preictal patterns could not be comprehensively
extracted, the classification performance will be affected.

In addition, current prediction algorithms, which mainly
focused on classification of preictal EEG and interictal EEG,
ignored the analysis of postictal EEG. Postictal phase is a
transitional period in which the brain returns to an interictal state
from a seizure and it is different from the interictal phase (Büyükakr
et al., 2020). Unfortunately, there is no general criterion for dividing
the preictal, interictal, and postictal phase. If the postictal period is
predefined for a short time, the next period of EEG may be classified
as preictal state by current binary classification algorithms, which
will cause false alarm in practical application. If the specified time
period of postictal phase is too long, the next incoming epileptic

seizure may be ignored. Consequently, the identification of a
postictal state also needs to be taken into account for the prediction
method. Teixeira C. et al. (2014) and Bandarabadi et al. (2015)
took two classes (preictal and non-preictal period) into account
for seizure prediction. Specifically, non-preictal period includes
ictal, postictal, and interictal states. Furthermore, their research
also considered four classes (preictal, ictal, postictal, and interictal
period) to predict seizures (Teixeira C. A. et al., 2014; Direito et al.,
2017). These are more reasonable than using only preictal and
interictal periods.

In this paper, the filtered EEG signals are directly input into
LSTM to learn deep features, which results in an end-to-end seizure
prediction approach. It could not only preserve the epileptic-related
information in EEG signals as much as possible, but also reduce
the complexity of the manual feature extraction/design. Moreover,
the identification of postictal state is taken into account in this
study. Despite its simplicity, the proposed method tends to achieve
encouraging performance in seizure prediction.

The remainder of the work is organized as follows. In section “2.
Materials and methods,” we introduce the information of database
used in this paper and the proposed scheme, respectively. In
addition, performance evaluation and seizure prediction are shown
in this section. In section “3. Results,” we present experiments
results. In section “4. Discussion,” we discuss different seizure
prediction methods in the same data set. Finally, we conclude this
paper in section “5. Conclusion.”

2. Materials and methods

2.1. EEG dataset

The Children’s Hospital Boston-MIT (CHB-MIT) scalp EEG
Database (Shoeb, 2010) is the only open dataset with long-term
continuous scalp EEG recordings which have been applied by many
studies for evaluation of seizure prediction algorithms (Zandi et al.,
2010; Myers et al., 2016; Khan et al., 2017; Detti et al., 2018; Usman
et al., 2021). The EEG data were collected from 22 pediatric subjects
including 5 males and 17 females. All EEG signals were sampled at
the rate of 256 Hz and most of them were recorded by 23 electrodes
with bipolar montage according to International 10–20 System. The
start and end time of each seizure were manually annotated by
clinical experts with visual inspection. More detailed description
could be found on www.physionet.org.

Some seizures which are very close in time were excluded,
because this study only focuses on prediction of leading seizures
that occur more than 60 min after the previous seizure. There
is no gold standard for defining the length of four stages
(preictal, ictal, postictal, and interictal stage). In order to avoid
any potential contamination between interictal and preictal EEG
signals, interictal EEG recordings are selected from at least 5 h after
an epileptic seizure and 3 h before the next seizure. The preictal
period covered 1 h prior to each leading seizure. Ictal state is
annotated by clinical experts. The period within 1 h after the ictal
phase is defined as a postictal phase. Based on these considerations
and definitions, 13 patients have sufficient data for analysis of
preictal and interictal state, which are shown in Table 1. Sufficient
postictal EEG could only be obtained from 7 out of the 13 subjects.
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TABLE 1 Details of the CHB-MIT dataset used in this work.

Subjects Gender Age
(Years)

No. of
channels

No. of
seizures

Duration of
recordings

(hh: mm: ss)

1 F 11 23 6 40:33:08

2 M 11 23 3 35:15:59

3 F 14 23 4 38:00:06

5 F 7 23 5 39:00:10

7 F 14.5 23 3 67:03:08

9 F 10 23 3 67:52:18

10 M 3 23 6 50:01:24

14 F 9 23 3 26:00:00

18 F 19 23 4 29:55:46

20 F 6 23 4 27:36:06

21 F 13 23 4 32:49:49

22 F 9 23 3 31:00:11

23 F 6 23 3 26:33:30

Total – – – 51 511:41:35

Gender: female (F), male (M). No. of channels: number of EEG channels included. No. of
seizures: number of leading seizures.

2.2. Methods

2.2.1. Pre-processing
All the raw EEG signals are split into samples by a 5-s time

window without any overlap. In order to test the minimum time
prediction window (MTPW), EEG data is also segmented by a
variable window with the length varies from 5 to 150 s (i.e., the
number of samples included in each segment is the window length
divided by five.). Samples containing significant EMG interference
were directly removed. Five standard EEG frequency bands [i.e., δ

(0-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ (30-128 Hz)]
were extracted by finite impulse response (FIR) band-pass filter.

2.2.2. Classification
The filtered EEG data of each frequency band is directly

input into LSTM for seizure prediction. First, we only consider
the preictal and interictal EEG as previous studies that also use
the CHB-MIT dataset, so that we can compare their prediction
performance easily. Then, the postictal period, as the third class,
is included in the classification task to predict seizures. Both
the binary and multiple classification tasks use the same method
framework, as shown in Figure 1.

As aforementioned, we utilize LSTM model to classify
considering its advantage in memory function. Concretely, as a
modified Recurrent Neural Network (RNN), LSTM solves the
problems of gradient explosion, gradient vanishing and the long-
term dependence to some extent by introducing gate mechanism
(input gate, forget gate and output gate) and cell state (Malhotra
et al., 2015; Hefron et al., 2017). The forget gate determines how
much of the information stored in the previous cell state needs
to be deleted. The input gate decides what new information is
stored in current cell state. The output gate determines what
information is to be output from the cell state. The transmission

of information across the cell state that contains long-term and
short-term memory allows the LSTM to learn about the temporal
dependence of the sequence.

The LSTM network architecture is shown in Figure 1. It is
constructed with input layer, LSTM layer, dropout layer, fully
connected layer, SoftMax layer and classification layer. The size of
the input layer is 1280× 23 (i.e., the length of EEG sequence× the
number of channels), and the LSTM layer is composed of 128
memory units. The dropout layer inserted after LSTM with the
probability of 0.5 is used to prevent overfitting and accelerate the
training speed. The output size of a fully connected layer depends
on the number of classes.

The data of each subject was divided into two parts. The first
part, containing the first two seizures was used for the training set
in order to optimize the parameters of the classifiers. The second
part including the remaining seizures was used as the testing set.
It is noted that the training aims to simulate a real-world situation
where a predictor has to be developed based on the first two seizures
in clinic environment. However, epileptic seizures can cause certain
damage to the brain, which leads to the basic state of the pre-
epileptic interictal phase and the post-epileptic interictal phase are
different. Therefore, using the preictal and interictal EEG signals
of the first two seizures may not predict the subsequent seizures.
The EEG signals of the preictal and postictal state have certain
similarity. Therefore, postictal state can be used as a new baseline
for subsequent seizures. That is, the interictal and postictal state of
the first two seizures can be used to predict subsequent seizures.

Due to the amount of interictal EEG is much larger than that of
preictal EEG and postictal EEG, we randomly select samples from
the interictal class with the same number as preictal or postictal
samples, which mitigates the class imbalance problem. Since the
available data is limited for deep learning, a 10-fold cross validation
strategy was adopted during training to prevent the LSTM model
from overfitting. Ten percent of the training data is randomly
selected as a validation set to monitor the training process.

2.2.3. Performance evaluation and seizure
prediction

In order to demonstrate the performance of this prediction
method more comprehensively, results are provided by two ways
described as follows.

2.2.3.1. Segment-based evaluation

All EEG samples for each subject are put together to test the
performance of this prediction algorithm by using a 10-fold cross
validation. Specifically, under optimal performance conditions, a
segment would be predicted as preictal EEG if over half of the
number of samples in this segment were classified as preictal in
the classification of preictal and interictal EEG. Similarly, if more
than 1/3 of the samples in a segment are identified as preictal when
using the classification of preictal, postictal and interictal EEG, it is
considered to be from the preictal phase.

For the classification of preictal and interictal EEG, the
measures for evaluating seizure prediction performance are
sensitivity and specificity which are defined by equation (1) and
(2). The true positive (TP) is the number of correctly classified
preictal segments, and true negative (TN) is the number of true
interictal segments that are identified by classifier. Similarly, FP
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FIGURE 1

The architecture of LSTM network.

FIGURE 2

Definition of the seizure occurrence period (SOP) and the seizure prediction horizon (SPH).

is false positive which is the number of EEG segments that are
incorrectly identified as preictal segments and false negative (FN) is
the number of preictal class predicted as interictal class. For multi-
classification, the true positive rate (TPR) of each class is used as
evaluation index.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

2.2.3.2. Event-based evaluation and seizure prediction

Considering the limited seizures for each subject, we used leave-
one-out cross-validation. Concretely, if the subject had N seizures,
the (N − 1) seizures would be used for training and the remaining
one would be used for testing. This round is done N times, and the
final result of this subject is the average of N times. To improve
the reliability of the prediction, a prediction window of 10 min
was applied. According to experiential knowledge, if more than
70% of EEG samples during 10 min continuous recordings are
identified as preictal, the warning alarm would be raised (Truong
et al., 2018; Wei et al., 2019). The indexes used in this study are
seizure occurrence period (SOP) and seizure prediction horizon
(SPH) proposed by Maiwald et al. (2004) (see Figure 2). SPH is
a predefined interval between the first alarm and the incoming
seizure, which is also a period reserved for patients to take
intervention measures. SOP is the period during which a seizure
is expected to occur. Therefore, for a correct prediction, seizure
would not occur during the SPH and must occur within the SOP.
Otherwise, it’s a false alarm. There are no common criteria for
the length of SOP and SPH, but the SPH should be long enough
for intervention and the SOP should not be too long in case of
patient’s anxiety. We also consider the sensitivity and specificity
of the prediction algorithm at different time intervals to optimize
the prediction accuracy and reduce false positives. So, we define
the seizure prediction horizon (SPH) of 30 min and the seizure

occurrence period (SOP) of 20 min to achieve better predictive
performance.

For event-based evaluation, sensitivity is defined as the number
of correctly predicted seizures divided by the total number of
seizures. False prediction rate (FPR) is quantified as the number
of false alarms per hour. Warning time refers to the period of time
before a seizure occurs when physiological changes in the nervous
system reach a level that indicates a seizure may occur. In other
words, the warning time is the interval between the first alarm and
the incoming seizure onset.

To evaluate the statistical significance of the predictor, we also
compare our seizure prediction performance with that of a random
predictor. Given an FPR, the probability to raise an alarm in an SOP
can be approximated by Schelter et al. (2006):

P ≈ 1− e−FPR·SOP (3)

Therefore, the probability for predicting at least m of M
independent seizures by chance is given as follows:

p =
∑
i≥m

(
M
i

)Pi(1− P)M−i (4)

We calculate p for each subject using the FPR of that subject and
the number of seizures (m) predicted by our method. If p is less than
0.05, we can conclude that our prediction method is significantly
better than a random predictor at a significance level of 0.05.

3. Results

3.1. Classification of preictal and
interictal EEG

3.1.1. Segment-based results
EEG samples of five frequency bands

(
δ, θ, α, β and γ

)
are

input into LSTM, respectively, for seizure prediction. As is shown
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FIGURE 3

Sensitivity and specificity in five frequency bands for sample-based evaluation.

FIGURE 4

Variation of mean sensitivity and specificity with increasing
prediction window.

in Figure 3, the sensitivity and specificity of γ band is the highest,
which indicates that it is more distinguishable between preictal
state and interictal state in γ band with this prediction method.
Therefore, EEG signals in band γ were selected for prediction in
this study.

The variation of mean sensitivity and mean specificity with
increasing prediction window are shown in Figure 4 and the
detailed results of each subject can be found in Table 2. It is
illustrated that sensitivity and specificity are gradually improved
with the increase of time window and reach a plateau after 120 s.
Consequently, the MTPW of this prediction approach was 120 s
under which the mean sensitivity could reach 100% and mean
specificity was 98.38%.

3.1.2. Event-based results
For event-based evaluation, the proposed method achieved the

sensitivity of 91.76% and FPR of 0.29/h on average, as presented by
Table 3. Except for Subjects 10, 14, 20, the p-value indicates that our
prediction method is significantly superior to a random predictor.
For each patient, most seizures were successfully predicted and the

warning time was more than 48 min. It indicated that there was
enough time for patients to take intervention measures for the
incoming seizure, because of the high sensitivity and timeliness of
this approach.

3.2. Classification of preictal, interictal,
and postictal EEG

In addition to preictal and interictal state, prediction method
based on binary classification may be used in the postictal state
when a seizure is failed to be predicted in practice, and the
variation of event-based classification results with time after the
ictal phase was tested. As is shown in Figure 5A, most of
EEG samples in the first hour after ictal state (postictal state)
are identified as preictal for 7 subjects, and then an increasing
number of samples were classified as interictal with time. In
four of the subjects (chb_01, chb_02, chb_05, and chb_10), more
than 70% of the EEG samples on average were still identified
as preictal in the third hour after the ictal phase. Accordingly,
there would be many false alarms for a period after seizure
onset.

For these reasons, a prediction method based on the
classification of preictal, interictal and postictal EEG was proposed.
The TPR of each class in segment-based evaluation with MTPW of
120 s and results of event-based evaluation are shown in Table 4.
Except for Subject 1, it shows that our prediction method is
significantly superior to a random predictor. The average TPR of
preictal, interictal and postictal EEG were 98.64, 98.39, and 92.65%,
respectively, which indicated that all three brain states could be
identified by the proposed approach. The sensitivity for event-
based evaluation was 92.17%, namely, almost all seizures could be
correctly predicted with this method as well. Compared with results
of the classification of preictal and interictal EEG, the number of
EEG samples incorrectly predicted as preictal EEG decreases for all
subjects after seizure onset, as displayed in Figure 5B. Meanwhile,
FPR was 0.27/h (i.e., the average of chb_01, chb_02, chb_05,
chb_07, chb_10, chb_22, and chb_23), and the mean warning time
could achieve 44.46 min as well.
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TABLE 2 Seizure prediction results based on segments under different time prediction windows.

Subjects No. of
seizures

5 s 30 s 60 s 90 s 120 s 150 s

SEN
(%)

SPE
(%)

SEN
(%)

SPE
(%)

SEN
(%)

SPE
(%)

SEN
(%)

SPE
(%)

SEN
(%)

SPE
(%)

SEN
(%)

SPE
(%)

1 5 99.99 99.86 100 100 100 100 100 100 100 100 100 100

2 3 99.86 99.43 100 100 100 100 100 100 100 100 100 100

3 4 99.44 99.11 100 100 100 100 100 100 100 100 100 100

5 4 100 90.13 100 90.48 100 100 100 95.24 100 100 100 88.73

7 3 97.18 99.27 97.22 100 100 100 100 97.06 100 100 100 100

9 5 94.98 96.33 95.24 98.15 96.88 100 100 100 100 100 100 100

10 7 97.74 92.34 97.22 94.44 100 94.74 100 100 100 94.74 100 94.44

14 3 86.61 82.20 91.98 81.82 100 100 100 100 100 100 100 100

18 3 99.89 99.77 100 100 100 100 100 100 100 100 100 100

20 5 94.18 96.81 95.12 94.34 80.95 100 100 92.86 100 100 100 100

21 4 98.55 78.55 100 83.33 100 85.33 100 78.57 100 92.96 100 83.33

22 3 99.64 92.51 100 90.67 100 90 100 94.44 100 91.3 100 94.74

23 3 100 99.43 100 100 100 100 100 100 100 100 100 100

Average 97.55 94.29 98.21 94.86 98.29 97.70 100 96.78 100 98.38 100 97.02

SEN, sensitivity; SPE, specificity.

TABLE 3 Event-based evaluation results.

Subjects No. of
seizures

Sensitivity
(%)

Warning time
(Min)

FPR (/h) Testing duration
(h)

p

1 6 96.12 46.60 0.16 18 0.035

2 3 78.00 45.75 0.32 25 0.029

3 4 100 49.86 0.21 24 0.025

5 5 81.78 47.19 0.20 17 0.037

7 3 78 48.07 0.24 8 0.016

9 3 100 49.92 0.25 6 0.018

10 6 98.50 45.07 0.24 21 0.072

14 3 100 48.75 0.50 2 0.063

18 4 83.15 45.70 0.28 21 0.042

20 4 98.13 49.84 0.30 13 0.047

21 4 88.36 49.89 0.40 5 0.078

22 3 90.83 48.35 0.29 14 0.008

23 3 100 49.92 0.38 13 0.040

Average 91.76 48.07 0.29

FPR, false prediction rate; p, p-value.

4. Discussion

As an important part of previous prediction algorithms,
feature engineering is closely related to the accuracy of prediction.
However, it is a challenging process of finding discriminative
features for a preictal state from other seizure states. In our seizure
prediction method, features are learned automatically by LSTM
network instead of being searched manually. The two important
network parameters, the number of memory units and dropout
rate, have already been optimized by Tsiouris et al. (2018). It is

verified that the classification accuracy improved with increasing
number of memory units. Considering the limitations of computer
hardware, the maximum number of memory units is chosen as
128. We have proved that dropout rate only has marginal effects
on classification results within an appropriate range (<0.8) which
is consisted with the results of Tsiouris et al. (2018). Although
epileptic seizures have specific effects on different patients, the
proposed method with optimized parameters could work well on
all subjects, which indicates that the commonality of preictal EEG
among all subjects is extracted and there is no need for specific
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FIGURE 5

(A) The variation of classification results with time after the ictal phase when LSTM was trained using only preictal and interictal EEG. The percentage
of samples identified as preictal EEG for each subject was calculated with event-based classification. (B) The variation of classification results with
time after the ictal phase when LSTM was trained using preictal, interictal and postictal EEG. The percentage of samples identified as preictal EEG for
each subject was calculated with event-based classification.

TABLE 4 Seizure prediction results based on multi-classification.

Subjects No. of
seizures

Segment-based Event-based

Preictal (%) Interictal
(%)

Postictal
(%)

Sensitivity
(%)

FPR (/h) Testing
duration

(h)

Warning
time (min)

p

1 5 100 100 91.67 100 0.47 17 41.67 0.156

2 3 100 100 90.00 85.50 0.30 24 47.09 0.025

5 4 100 95.92 100 92.00 0.18 16 43.41 0.018

7 3 94.64 97.19 95.99 81.05 0.26 7 41.08 0.019

10 5 94.44 100 83.33 95.50 0.23 20 44.25 0.046

22 3 100 97.83 87.5 96.00 0.30 13 45.98 0.026

23 3 100 100 92.68 95.12 0.16 12 47.17 0.008

Average 98.44 98.71 91.60 92.17 0.27 – 44.46

TABLE 5 Comparison of seizures prediction methods using CHB-MIT dataset for segment-based evaluation.

References No. of
subjects

No. of
seizures

Features Classifier SEN
(%)

SPE
(%)

Preictal
duration (min)

MTPW
(s)

Cho et al., 2016 21 65 Phase locking value SVM 82.44 82.76 5 1

Tsiouris et al., 2018 24 185 Statistical moments, zero crossings,
Wavelet Transform coefficients,
cross-correlation, PSD, graph
theory

LSTM 99.63 99.78 60 50–250

Zhang et al., 2020 19 – Pearson correlation coefficient CNN 92.90 87.04 15 8

Our work 13 51 – LSTM 100 98.38 60 120

parameter optimization in practical application. Significantly,
postictal state is taken into account in this study, because the
algorithm would be applied to postictal EEG if a seizure is failed
to be predicted. Furthermore, the postictal period is specific for
each patient, which could not be simply ignored by the prediction
algorithm. The method presented in this study is easy to implement
and has good reproducibility. It works well for the Children’s
Hospital Boston-MIT EEG dataset.

For segment-based evaluation, the sensitivity of this prediction
algorithm based on binary classification is the highest compared

to previous studies, as shown in Table 2. Furthermore, the mean
sensitivity and specificity could reach 97.55% and 94.29% even
in 5 s prediction window and are improved to 100 and 98.38%
with 120 s time window (see Table 2), which illustrates the good
responsiveness of this method. For event-based evaluation, the
sensitivity can reach 91.76% and the FPR is 0.29/h. When the testing
set consists of interictal EEG and preictal EEG like other studies
(Alotaiby et al., 2017; Truong et al., 2018; Tsiouris et al., 2018; Tang
et al., 2020), the FPR can be reduced from 0.29/h to 0.27/h. As
shown in Table 6, the performance of our method is better than that
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TABLE 6 Comparison of seizures prediction methods using CHB-MIT dataset for event-based evaluation.

References No. of
subjects

No. of
seizures

Features Classifier SEN
(%)

FPR
(/h)

Preictal duration
(min)

Warning time
(min)

Zandi et al., 2010 3 18 Zero crossings,
similarity
dissimilarity index

– 83.81 0.17 40 22.5

Myers et al., 2016 10 30 Phase/amplitude
locking value

– 77.00 0.17 40 2–62

Chu et al., 2017 13 125 Fourier transform
coefficients, PSD

– 83.33 0.39 86 45.3

Truong et al., 2018 13 64 STFT spectral images CNN 81.20 0.16 5 –

Khan et al., 2017 15 18 Wavelet transform
coefficients

CNN 83.33a 0.15 10 6

Alotaiby et al.,
2017

24 170 Common spatial
pattern statistics

LDA 81.00 0.47 60 38.35

Büyükakr et al.,
2020

10 62 Statistical, spectral
moments

MLP 89.81 0.08 30 –

Our work 13 51 – LSTM 91.76 0.29 60 48.07

aThe study implicitly used a zero SPH without any clinical consideration and the performance may be overestimated.
The authors claimed EEG data from all subjects were applied, whereas 60 min of continuous preictal EEG before some seizures could not be obtained from raw data.

of most other studies. Concretely, the sensitivity of our proposed
method is 10% higher than the approach presented by Truong
et al. (2018). In addition, Tsiouris et al. (2018) achieved the best
sensitivities for both segment-based and event-based evaluations.
However, the parameters of LSTM were optimized for each subject,
and authors also pointed out that the FPR could reach 0.14/h
without LSTM architecture tuning individually. Additionally, it is
controversial that the authors claimed EEG data from all subjects
were applied, whereas 60 min of continuous preictal EEG before
some seizures (non-leading seizures) could not be obtained from
raw data. Similarly, Zhang and Parhi (2016) performed specific
feature selection for each patient as well and had a low FPR of
0.05/h. These, however, require sufficient expertise and time to
complete feature engineering when the predication methods are
used for a new patient.

For clinical consideration, SPH should be long enough for
patients to take measures to prevent the incoming seizures, while
SOP should be as short as possible to relieve patients’ anxiety
during waiting (Maiwald et al., 2004). In general, the warning
time (i.e., the interval between the seizure and the warning alarm)
must be long enough for intervention but not too long in case
of anxiety. Some studies implicitly used the SPH of 0 min (i.e.,
if an alarm occurs during a preictal period, it is considered
as a successful prediction), which could have overestimated the
prediction performance. As shown in Table 3, the mean warning
time of our method could reach 48 min, which means there
is sufficient time for patients to take intervention measures.
Furthermore, the time of alarm could be flexibly set according to
the needs of patients in practical applications. For example, patients
who are well cared for, could set a long prediction window to
reduce anxiety and improve the reliability of prediction. Whereas,
elderly patients who live alone with limited mobility should
set a short prediction window to ensure adequate intervention
time.

The prediction performance, to a certain extent, is improved by
the classification of preictal, interictal, and postictal EEG prediction

algorithm. In addition to all seizures being successfully predicted,
FPR is also reduced. Because postictal EEG is involved in training,
the number of postictal samples incorrectly predicted as preictal
EEG decreases for all subjects, compared to the classification
of preictal and interictal EEG algorithm (see Figure 5B). But
the FPR of most subjects are higher in postictal period than
interictal period. It suggests that there are certain similarities in
gamma band between EEG modes before and after the same
seizure. As illustrated in Figures 5A, B, the percentage of samples
falsely identified as preictal EEG is high for subject chb_01,
chb_05, and chb_10 in the first 3 h after seizures by using
both prediction methods, hence it cannot exclude the possibility
that the three patients may have a long recovery time after a
seizure.

In some cases, such as a short interval between seizures,
failing to predict or suppress the incoming seizure, postictal EEG
would be included in the classification. Therefore, identification
of postictal state needs to be taken into account. Meanwhile, as
mentioned earlier, different subjects and even different seizures
have specificity, it is necessary to carry out relevant research on
adaptive division of different stages to predict seizures successfully.
According to the comparison results of Tables 5, 6, LSTM deep
learning is an effective technique for seizure prediction. CNN
is typically used for image data, and SVM is typically used for
classification tasks. LSTM is designed to overcome the vanishing
gradient problem, which is a common issue in recurrent neural
networks that can make it difficult to learn long-term dependencies
in sequential data. In contrast, CNN and SVM are not designed
specifically for sequential data, and may struggle to capture long-
term dependencies. Since EEG data is long-term dependent data,
LSTM-based prediction method is better than other methods. The
prediction performance may be improved, if an adaptive extraction
method for the interested frequency band could be introduced
before input into LSTM, which could be another research direction
in the future. In addition, due to the small number of subjects
and seizures, only predictor development can be implemented on
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the CHB-MIT database. In order to meet the practical application
requirements, we should refer to the proposal of Teixeira C. A.
et al. (2014) to train the LSTM network using the data from the
previous limited number of seizures, and then make predictions
for the subsequent seizures. Therefore, it is necessary to verify the
reliability of our proposed algorithm on a long-term database in the
future work.

5. Conclusion

Deep learning algorithms, in increasing studies, have
demonstrated their abilities to deal with non-stationary and chaotic
EEG signals, which open new opportunities for challenging medical
applications like epileptic seizure prediction. In this study, an end-
to-end seizure prediction approach based on LSTM is proposed
to classify preictal, postictal and interictal EEG. Although it is
simple, the prediction method provided high sensitivity and low
FPR without complex feature engineering techniques. Additionally,
by introducing the postictal stage into the classification task,
the performance is further improved. In the future, we plan to
test the proposed approach on a large amount of clinical data,
and the adaptive division of different seizure stages needs to be
further investigated.
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