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Introduction: Sub-concussive head impacts in soccer are drawing increasing 
research attention regarding their acute and long-term effects as players may 
experience thousands of headers in a single season. During these impacts, the 
head experiences rapid acceleration similar to what occurs during a concussion, 
but without the clinical implications. The physical mechanism and response to 
repetitive impacts are not completely understood. The objective of this work was 
to examine the immediate functional outcomes of sub-concussive level impacts 
from soccer heading in a natural, non-laboratory environment.

Methods: Twenty university level soccer athletes were instrumented with sensor-
mounted bite bars to record impacts from 10 consecutive soccer headers. Pre- and 
post-header measurements were collected to determine hyper-acute changes, 
i.e., within minutes after exposure. This included measuring blood flow velocity 
using transcranial Doppler (TCD) ultrasound, oxyhemoglobin concentration using 
functional near infrared spectroscopy imaging (fNIRS), and upper extremity dual-
task (UEF) neurocognitive testing.

Results: On average, the athletes experienced 30.7 ± 8.9 g peak linear acceleration 
and 7.2 ± 3.1 rad/s peak angular velocity, respectively. Results from fNIRS 
measurements showed an increase in the brain oxygenation for the left prefrontal 
cortex (PC) (p = 0.002), and the left motor cortex (MC) (p = 0.007) following 
the soccer headers. Additional analysis of the fNIRS time series demonstrates 
increased sample entropy of the signal after the headers in the right PC (p = 0.02), 
right MC (p = 0.004), and left MC (p = 0.04).

Discussion: These combined results reveal some variations in brain oxygenation 
immediately detected after repetitive headers. Significant changes in balance and 
neurocognitive function were not observed in this study, indicating a mild level of 
head impacts. This is the first study to observe hemodynamic changes immediately 
after sub-concussive impacts using non-invasive portable imaging technology. In 
combination with head kinematic measurements, this information can give new 
insights and a framework for immediate monitoring of sub-concussive impacts 
on the head.

KEYWORDS

subconcussive, hyperacute, fNIRS (functional near infrared spectroscopy), soccer, TCD 
(transcranial doppler sonography), dual task

OPEN ACCESS

EDITED BY

Marc Cavazza,  
National Institute of Informatics, Japan

REVIEWED BY

Andrew P. Lavender,  
Federation University Australia, Australia  
Stephane Perrey,  
Université de Montpellier, France

*CORRESPONDENCE

Kaveh Laksari  
 klaksari@arizona.edu

RECEIVED 21 March 2023
ACCEPTED 29 August 2023
PUBLISHED 14 September 2023

CITATION

Grijalva C, Hale D, Wu L, Toosizadeh N and 
Laksari K (2023) Hyper-acute effects of 
sub-concussive soccer headers on brain 
function and hemodynamics.
Front. Hum. Neurosci. 17:1191284.
doi: 10.3389/fnhum.2023.1191284

COPYRIGHT

© 2023 Grijalva, Hale, Wu, Toosizadeh and 
Laksari. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 14 September 2023
DOI 10.3389/fnhum.2023.1191284

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2023.1191284﻿&domain=pdf&date_stamp=2023-09-14
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1191284/full
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1191284/full
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1191284/full
mailto:klaksari@arizona.edu
https://doi.org/10.3389/fnhum.2023.1191284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2023.1191284


Grijalva et al. 10.3389/fnhum.2023.1191284

Frontiers in Human Neuroscience 02 frontiersin.org

1. Introduction

There are approximately 1.9 million sports-related concussions 
(SRC) diagnosed annually in the U.S. youth population alone, and 
many incidences have historically been underreported (Centers for 
Disease Control and Prevention, 2019). The diagnosis of concussion 
itself relies on subjective symptoms, as currently there is no consensus 
with conventional MRI/CT (McCrory et al., 2017). Researchers have 
correlated head kinematics with brain injury by recording real time 
linear acceleration and angular velocity on the field using 6 degrees-
of-freedom wearable sensor technology embedded into mouth guards 
(Hernandez et al., 2015; Wu L. C. et al., 2018; Laksari et al., 2022). 
Concussive levels of impact exposure typically range between 50 and 
100  g of head acceleration (Laksari et  al., 2018, 2019), whereas 
sub-concussive impacts range between 10 and 30 g (Wu et al., 2016; 
Nguyen et al., 2019). However, there is less focus on sub-concussive 
impacts in sports participation and defining the effect of these 
repeated impacts on brain’s function. Sub-concussive impacts are 
described as a cranial impact resulting in rapid head acceleration 
similar to a concussion, but with less impact force and not resulting in 
clinical diagnosis of concussion (O'Keeffe et al., 2020). The repetitive 
exposure to sub-concussive head impacts has demonstrated differing 
brain activity, cognitive impairments, as well as long term neurological 
deficits for some individuals (Montenigro et al., 2017). These methods 
have demonstrated some brain changes (Di Virgilio et al., 2016, 2019), 
however, hyper-acute (within minutes after impacts) physiological 
response in terms of cerebral hemodynamics has not been 
studied rigorously.

Soccer athletes frequently sustain sub-concussive head impacts, 
since they intentionally use the unprotected head to direct the ball, 
known as “soccer heading.” Players may experience an average of 6–12 
heading incidents per game (Spiotta et  al., 2012) leading up to 
thousands of sub-concussive head impacts in a single season (Bailes 
et  al., 2013), with ball velocities that may reach up to 25 m/s 
(Kirkendall and Garrett, 2001). However, there is limited data 
associating soccer headers with neurological function of the brain 
immediately after impact.

Cerebrovascular changes have been reported as indirect results of 
SRC, which may become chronic if subjected to repetitive head 
impacts (Bailes et al., 2013). This secondary injury pathology may 
include disruption of the blood brain barrier, impaired cerebral 
autoregulation, or changes in cerebral blood flow velocities (CBFV) 
(Giza and Hovda, 2014; Churchill et  al., 2017). This has been 
demonstrated via functional MRI (fMRI) studies of brain oxygenation 
changes in sports athletes from pre- to post-season, resulting in both 
hyper-activation (Talavage et al., 2014) and hypo-activation (Keightley 
et al., 2014) within the frontal lobe during task-related functions. 
There is a present link between acute and long-term alterations in 
cerebral hemodynamics following concussions, however, these studies 
measure changes within days, weeks, or months post-injury (Smits 
et al., 2009; Hammeke et al., 2013).

Currently, there is a lack of understanding on how sub-concussive 
head impacts affect cerebral perfusion at the hyper-acute level, i.e., 
immediately after impact. The difficulty with common imaging 
modalities such as MRI/fMRI, is the time for travel, setup, and 
scanning, which makes measuring hyper-acute changes in the brain 
challenging. There are currently other advanced non-invasive 
neuroimaging devices with a unique portable capability which include 

the transcranial Doppler (TCD) ultrasound and functional near 
infrared spectroscopy (fNIRS). These methods allow for real-time 
measurements of real-world head impact effects on cerebral 
hemodynamics (Bathala et al., 2013; Bishop and Neary, 2018). Thus, 
results can be  obtained on-field in a non-conventional setting to 
observe the most immediate neurophysiological effects from impacts.

TCD can measure blood flow velocity from various branches of 
the Circle of Willis (Sarabian et al., 2022) via transducers sending 
2–16 MHz wave pulses, which are reflected by moving red blood cells 
(Fw, 2006). The middle cerebral artery (MCA) is one of the larger 
arteries in the brain supplying blood to the frontal lobe. This artery 
can be accessed via the trans-temporal window and has been shown 
to change following soccer heading (Scale et  al., 1996). There are 
limited TCD measurements from athletes following concussion which 
have shown changes in the MCA blood flow velocity (Clausen et al., 
2016; Smirl et al., 2020).

The fNIRS imaging modality emits near infrared light (~650-
900 nm) and collects signals based on the optical absorption of the 
oxygenated (O2Hb) and deoxygenated (HHb) forms of hemoglobin 
in the tissue (Clancy et al., 2014). The modified Beer–Lambert Law is 
used to convert the quantity of light absorbed to change in 
concentration of hemoglobin (Delpy et al., 1988). The use of fNIRS in 
the context of concussion has been limited and the method of data 
processing is still being researched (Herold et al., 2018). One study 
had used fNIRS to distinguish between traumatic brain injury (TBI) 
subjects and healthy controls demonstrating diminished brain 
oxygenation patterns for TBI patients (Karamzadeh et  al., 2016). 
fNIRS has shown potential applications for distinguishing between 
TBI and healthy subjects, especially in oxygenation and autoregulation 
monitoring (Roldan and Kyriacou, 2021), making it suitable to 
measure immediate changes in brain function.

Standardized assessments have demonstrated effective use in 
measuring parameters from individuals diagnosed with concussions, 
since they commonly suffer from deficits in sensorimotor function or 
balance (Wood et al., 2019). There is a validated test for predicting 
neurocognitive and motor performance called the upper extremity 
function (UEF) dual-task test (Toosizadeh et al., 2019). The usefulness 
of UEF dual-task actions to identify cognitive status has been 
previously demonstrated in older adults (Toosizadeh et al., 2016), and 
also used to assess various neurological related diseases including 
frailty (Toosizadeh et  al., 2017), patients with mild cognitive 
impairment (Grijalva et  al., 2021), and Alzheimer’s Disease 
(Toosizadeh et al., 2019). We expected this measure to be sensitive 
enough to detect motor and cognitive changes at the sub-concussive 
level. This test uses wearable sensor technology to measure cognition 
and physical function status by monitoring simultaneous performance 
of repetitive arm movement and counting, known as dual-tasking, 
which could be  affected following sub-concussive head impacts 
(Toosizadeh et al., 2017).

The objective of this study was to apply novel mobile sensing tools 
including head impact sensors and neuroimaging devices with 
neurological assessments to examine the hyper-acute, i.e., within 
minutes, effects of sub-concussive soccer heading on neurological 
function and brain hemodynamics. Based on previous concussion and 
soccer studies (Kontos et  al., 2014; Caccese et  al., 2019), 
we hypothesized increased changes in blood flow velocity profiles after 
experiencing head impacts, as well as significant changes in brain 
oxygenation, cognitive abilities, and balance parameters, which would 
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be correlated to the head kinematics experienced. Additionally, based 
on previous research of higher rates of concussion in the female group 
(Marar et al., 2012), we hypothesized any changes observed would also 
be greater for the females compared to males.

2. Materials and methods

2.1. Participants

The study protocol was reviewed and approved by the Human 
Subjects Institutional Review Board at the University of Arizona 
(1905625800). Twenty healthy university-level soccer athletes (n = 10 
female, n = 10 male, age > 18, all right-handed) with previous soccer 
experience were recruited to participate in this study (Table  1). 
Exclusion criteria comprised diagnosed diseases associated with 
motor performance deficits or known history of brain injury or 
concussion within the last 6 months. An additional 5 subjects were 
analyzed as a control group with no head contact. Written informed 
consent was obtained from all participants before participation and all 
research was performed in accordance with guidelines from the 
Declaration of Helsinki (World Medical Association, 2013).

2.2. Participant instrumentation

Participants were equipped with a 3D-printed rigid bite-bar 
instrumented with a 6 degree-of-freedom inertial measurement unit 
(IMU) (ICM-20649) while performing soccer headers (Figure 1A). 
The sensor containing a tri-axial accelerometer and gyroscope (sample 
frequency = 1,000 Hz) was rigidly attached at the end of the bite-bar 
with glue extending outside the mouth and controlled via IMU 
Arduino software.

During the laboratory assessments participants were equipped 
with a TCD headset (Rimed, Digi-Lite, New York, USA) to measure 
both the left and right MCA velocity with 2 MHz transducers fixed in 
place (Figure  1B). The TCD M1 MCA depths were assigned as 
65–45 mm distance from the transducer accessed via the trans-
temporal window and confirmed with direction of blood flow 
according to previous studies (Alexandrov et al., 2002). The same 
trained personnel recorded all TCD signals. Participants were then 
separately equipped with the fNIRS (Brite 24 Artinis Medical 
Systems, Netherlands) device to measure brain oxygenation at a 
sample frequency of 50 Hz via multi-wavelength LEDs situated on a 
soft neoprene head-cap containing 8 receivers and 10 transmitters 
30 mm apart, allowing for approximately 15 mm penetration depth. 
The probe positions of the fNIRS detection device covered the area 

linking Fp1, F3, F7, and Fp2, F4, F8, corresponding to the left and 
right prefrontal cortex respectively, as well as C3, Cz, C4, 
corresponding to the primary motor cortex and somatosensory 
cortex, according to the international EEG 10–20 system (Figure 1C; 
Okamoto et al., 2004). Changes in light attenuation were measured 
at two wavelengths (763 and 842 nm) and concentration change was 
calculated using the modified Beer– Lambert law within the Oxysoft 
software. The differential path length factor (DPF) was calculated for 
each individual in relation to their age which accounts for the 
increase in optical pathlength due to scattering in the tissue (Delpy 
et al., 1988). Data collected included oxyhemoglobin (O2Hb) and 
deoxyhemoglobin (HHb) concentrations via OxySoft software. To 
ensure good signal from the fNIRS optodes, the cap was tightly fitted, 
properly secured, and any hair was moved aside, with signal quality 
verified in real time.

During fNIRS measurements, participants wore two wireless 
accelerometer and gyroscope sensors (sample frequency = 100 Hz, 
BioSensics LLC, Brookline, MA, USA) on the bicep and wrist of the 
dominant arm using a Velcro band, to perform the motor function 
UEF test. This test was easily performed and post-processed in 
minutes. These sensors were also used to measure balance parameters 
when placed on the waist and ankle as the participant stood still for 
30 s. Lastly, participants were also equipped with a wireless 
electrocardiogram (ECG) sensor (360° eMotion Faros, Mega 
Electronics, Kuopio, Finland) attached across the lower torso to 
measure heart rate (HR) at a sampling frequency of 1,000 Hz, during 
fNIRS recordings and during soccer headers. HR was not expected to 
increase due to minimal motion or exercise involved in the controlled 
heading experiment. Any changes observed were expected to occur 
from head impact and not increased stress or HR.

2.3. Experimental protocol

Participants were evaluated using a design that involved a pre-test, 
head impact exposure (soccer heading), and a post-test. Measurements 
were completed within 20 min following 10 consecutive soccer 
headers to determine hyper-acute responses. These measurements 
consisted of the following: (1) TCD recordings (~2 min), (2) fNIRS 
with UEF test and ECG (~15 min), (3) balance measurements 
(~1 min) in this order, while continuously measuring HR. Participants 
were seated during TCD and fNIRS measurements. First, resting 
velocities of the MCA were recorded for approximately 2 min using 
the TCD headset. Following this, participants wore the fNIRS cap and 
the wireless arm sensors, and performed the UEF dual-task motor and 
cognitive test (Toosizadeh et al., 2016). This consisted of 2 task periods 
(single task and dual task) with rest periods in between, with each 
period lasting 3 min (Figure  1C). The single-task (ST) movement 
consisted of bending and straightening the dominant arm as 
consistently as possible. The dual-task (DT) movement consisted of 
the same motion while also counting backwards by three, from a given 
number. Participants followed instructions from a visual presentation 
in an enclosed room near the outdoor field, to minimize distraction. 
A practice trial was provided before fNIRS data acquisition to 
minimize learning effects. Trained personnel were able to place the 
TCD headset or fNIRS cap on the participant and optimize the signal 
within 2 min for each device before and after the head impact 
exposure. Following this, participants performed a balance test where 

TABLE 1 Demographic parameters.

Characteristic Male Female p value

n 10 10

Age (years) 21.6 ± 2.9 20.5 ± 2.6 0.42

Height (cm) 175.26 ± 6.7 165.8 ± 7.1 0.01

Weight (lbs) 176.2 ± 32.8 132.7 ± 9.6 0.01

Years of experience 12.5 ± 3.3 14.1 ± 2.2 0.22
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they stood still in place for 30 s with their eyes open, and then repeated 
this with their eyes closed.

Participants performed 10 consecutive soccer headers 
outdoors, within a period of 7–10 min to replicate typical heading 
during practice (Spiotta et al., 2012; Smirl et al., 2020). Soccer 
balls were delivered from a ball launcher device (Sports Tutor Inc. 
Burbank, CA), which was set at a launch velocity of approximately 
15 m/s for mild head impacts. The ball was shot an angle of 
approximately 35 degrees with the participant standing 24 m 
away. Size 5 soccer balls (GoSports, P&P Imports, LLC) were 
used and inflated to the manufacturer’s guidelines between 8 and 
9 psi and confirmed with a pressure gauge. Each participant was 
instructed to contact the ball on the forehead without jumping or 
moving to either side. If there was no contact with the ball, 
another soccer ball was launched within the 30 s window and 
repeated until a successful header occurred. In the case of the 5 
control participants, the same pre- and post-measurements were 
taken from the fNIRS device, however, during the “soccer” 
period, participants instead stood outside in the same location 
and only mimicked the movement of the soccer header 10 times 
over the course of 7–10 min.

2.4. Data analysis

All kinematic sensor data from the bite bar were filtered with a 
second-order Butterworth low pass filter with 300 Hz and 184 Hz 
cutoff frequencies for the accelerometer and gyroscope, respectively. 
Angular acceleration data were computed numerically by 
differentiating gyroscope data using a five-point differential formula 
in MATLAB (Miller et al., 2018). The bite-bar sensor kinematic data 

were converted to the head’s coordinate system at the head center of 
gravity (CG) according to the previously used rigid body 
transformation equation (Miller et al., 2019).

Images from the TCD ultrasound were exported and peaks were 
extracted over the course of 2 min, approximately 10 peaks over the 
duration of 8-s time increments which was done in a graph digitizing 
software. The step interpolation algorithm was used to obtain the 
contour trace of the velocity profile as data points with the known axis 
limits. The right and left MCA blood flow velocity data were averaged 
together for each measurement.

The fNIRS signal was down-sampled to 5 Hz when exported from 
Oxysoft software (Artinis Medical Systems, Netherlands). All data was 
read into MATLAB Fieldtrip Toolbox for analysis (Oostenveld et al., 
2011). Channels were visually inspected on the screen during data 
collection and during analysis, for the presence of large motion artifacts, 
and to certify that heartbeat oscillations were occurring indicating a good 
optical coupling between the optodes and the scalp (Pinti et al., 2019). Bad 
channels due to poor scalp coupling were removed within the Fieldtrip 
toolbox. This was done by using the optical density traces which should 
have a heart beat that is positively correlated, if not, the optode was 
excluded (Pollonini et al., 2014). Motion correction is performed using a 
built-in function called ft_artifact_zvalue in the Fieldtrip toolbox in 
MATLAB. This scans the data segments of interest for artifacts due to 
motion, by means of thresholding the z-scored values of signals that have 
been preprocessed using heuristic properties to increase the sensitivity to 
detect certain artifacts (Oostenveld et al., 2011). Channels that contain a 
signal in which the peak-to-peak range within the trial exceeds this 
threshold are selected. The z-score is applied to make the threshold 
independent of physical units in the data, and the output is an Nx2 matrix 
with the first column specifying the begin samples of the artifact period, 
and the second column specifying the end samples of the artifact period 

FIGURE 1

Instrumentation. (A) 3D printed bite-bar with embedded sensor, worn during soccer headers. (B) TCD headset and Axial slice view of MCA. (C) fNIRS 
optodes arrangement based on the international EEG 10–20 system. Source and detector pairs are demonstrated in the 3D view: Yellow  =  source, 
Blue  =  detector. The Upper Extremity test protocol is performed during the fNIRS measurements system.
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(Oostenveld et al., 2011). Then these selected matrices are removed by 
using the built in function called ft_rejectartifact which removes data 
segments containing the artifacts. The data was then converted into 
concentration values using the modified Beer Lambert Law (Delpy et al., 
1988). Cardiac (1–2 Hz) and respiration (0.2–0.4 Hz) interference in the 
signal were removed using a band-pass filter with cut-off frequencies of 
0.001–0.1 Hz (Li et al., 2021), while still extracting important physiological 
signal due to the task (stimulation frequency = 1/180 s = 0.005 Hz). Next, 
Principal Component Analysis (PCA) was done to remove global 
interference. Each component had an associated eigenvalue, and the 
component with the largest value was likely due to the most interference 
from surface tissue (Mäki et  al., 2010). This was the first principal 
component and the time course was then removed in later analysis. A 
preferred method of removing additional physiological factors in fNIRS 
experiments is using the General Linear Model (GLM) (Cohen-Adad 
et al., 2007; Ye et al., 2009), which consists of regressing fNIRS data with 
a linear combination of regressors and an error term. GLM measures the 
temporal variational pattern of signals rather than their absolute 
magnitude and incorporate regressors such as scalp blood flow, into the 
statistical framework (Ye et al., 2009; Tachtsidis and Scholkmann, 2016). 
The GLM regression analysis was applied to all channels using the 
MATLAB FieldTrip Toolbox (Oostenveld et al., 2011). Briefly, we read in 
“events,” which are represented as triggers, indicating the samples in the 
data in which the task started or stopped. We use these to make some 
additional continuously represented channels that represent the onset, 
offset, and the motion. We include two channels for a constant offset, and 
for a slope. These are used to remove the baseline and a constant drift in 
the signal over time. We perform GLM analysis where each channel is 
represented as a pixel in the statistical parametric map (SPM) which is 
done to statistically analyze and compare groups of images to highlight 
neurological differences (Ye et al., 2009). To create a regressor of interest, 
the hemodynamic response is predicted by convolving the canonical 
hemodynamic response function (HRF) and its temporal and dispersion 
derivatives included, with a single boxcar function regressor that 
represents the task segments (Schroeter et al., 2004; Koh et al., 2007; 
Lindquist et al., 2009). A boxcar function was used due to the required 
sustained stimulation of performing motor and cognitive tasks in our 
study (Schroeter et al., 2004; Wu Z. et al., 2018). The first and second 
derivatives control the timing of the peak response as well as the width. 
The design matrix consisted of one regressor of interest (single or dual 
task) convolved with the HRF, and added nuisance regressors including 
the signal drift and the time course of the first principal component to 
be removed. After GLM analysis of the channels, results were grouped 
together based on functional regions, i.e., prefrontal, motor/sensorimotor 
for concentration changes in O2Hb. Results were plotted and peak 
concentrations during the task regions were assessed.

Analysis of the fNIRS signals included concentration changes in 
O2Hb, and sample entropy analysis. Sample entropy calculations were 
performed on pre- and post-header measurement data as a metric for 
signal complexity using a custom MATLAB code. It is calculated as 
SampleEntropy (m,r,N) =  −ln(A(m)/B(m)). This is defined as the 
negative logarithm of the conditional probability that A(m) – two 
sequences are similar for m points (possibles) –, and B(m) – two 
sequences are similar for m + 1 points (matches) –, that match 
pointwise within a tolerance r and small number of points N 
(Delgado-Bonal and Marshak, 2019). For example, an ideal periodic 
time series is more predictable and would have zero sample entropy; 
whereas, large sample entropy values would represent less repeatability 

and higher variability (Lamoth et al., 2011). Lastly, to assess changes 
in an individual’s performance from a single to a dual-task, dual-task 
“cost” was calculated as the percentage of change within the 
conditions. This was obtained by normalizing the DT performance for 
each participant using the ST baseline to assess compromised motor/
cognitive parameters ([DT – ST]/ST).

Angular velocity and anthropometric data of the UEF elbow 
flexion test, i.e., participants’ stature and body mass, were used to 
define the UEF neurocognitive score for each participant. Lastly, the 
ECG signal was analyzed using an in-home peak detection MATLAB 
algorithm for beat-to-beat HR. Briefly, the data from the HR sensor 
was read into the MATLAB app and separated into regions of ST, DT, 
Rest, and the soccer measurement was analyzed separately. These 
regions were marked by pushing the sensor button to mark the event 
during the experiments. ECG data was analyzed for 20 s of baseline, 
180 s of UEF (for the fNIRS measurements ST and DT), and 30 s of 
recovery. RR intervals (successive R peaks of the QRS signal) were 
computed using the Pan-Tompkins algorithm (Pan and Tompkins, 
1985). Next, the automated peak detection process was manually 
inspected. Output parameters extracted were baseline HR (the HR 
before the task began), as well as change in HR during the UEF task 
(Toosizadeh et  al., 2022). The same analysis was done for signals 
recorded during the soccer headers. We measured changes in HR 
during the fNIRS task and rest blocks as well as during soccer heading 
for comparison.

All data was assessed for normal distribution using the Shapiro–
Wilk test (Shapiro et al., 1968). Statistical paired t-tests were used for 
normally distributed groups and Wilcoxon non-parametric tests were 
used for non-normally distributed groups to determine significant 
difference between the pre- and post-header measurements across 
participants. Statistical significance was set at p ≤ 0.05 for all analyses. 
Cohen’s d was applied to determine effect size with the numerator 
being the difference between the means of the two observations, and 
the denominator being a pooled standard deviation (Lakens, 2013).

3. Results

3.1. Kinematics

During the heading protocol, 172 successful headers were 
recorded by 18 participants with an average peak head linear 
acceleration of 30.6 ± 8.9 g, peak angular velocity of 7.2 ± 3.1 rad/s, and 
peak angular acceleration of 1,084 ± 700 rad/s2 (Figure 2; Table 2). The 
data from the mouth guard were corrupted for two participants. 
Female participants experienced a significantly higher linear 
acceleration (p = 0.01) and angular velocity (p < 0.0001) compared with 
males, but we  observed no significant differences in angular 
acceleration (p = 0.17). According to sensor orientation, these forehead 
impacts typically resulted in higher linear accelerations in both 
vertical and forward directions while rotational motion was 
predominantly in the sagittal and coronal directions.

3.2. Pre- and post-header TCD changes

When comparing pre-and post-header measurements from 
the TCD ultrasound, there were significant changes in MCA 
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FIGURE 2

Kinematics. (A) Time trace for linear acceleration and rotational velocity from performing one soccer header. AP, anterior–posterior; ML, medial-lateral; 
IS, inferior–superior. (B) Peak linear acceleration, peak rotational velocity, and peak rotational acceleration across all participants.

TABLE 2 Kinematic and TCD results.

Parameters All Male Female p value Effect size

Linear acceleration (g) 30.7 ± 8.9 29.3 ± 8.5 32.1 ± 9.01 *0.01 0.32

Angular velocity (rad/s) 7.2 ± 3.1 6.3 ± 2.7 8.1 ± 3.3 *<0.0001 0.55

Angular acceleration (rad/s2) 1,084 ± 700 1,012 ± 614 1,160 ± 776 0.17 0.2

MCA blood flow velocity (cm/s)

Pre-header 83.2 ± 10.2 80.2 ± 7.9 86.5 ± 11.9 0.09 0.58

Post-header 83.7 ± 10.8 79.8 ± 8.5 88.1 ± 11.8 *0.04 0.76

p value (pre vs. post) 0.26 0.31 0.17

Effect size (pre vs. post) 0.05

Sample entropy MCA

Pre-header 0.22 ± 0.03 0.21 ± 0.02 0.24 ± 0.01 *0.002 1.7

Post-header 0.21 ± 0.02 0.2 ± 0.02 0.22 ± 0.02 0.07 0.93

p value (pre vs. post) 0.1 0.44 0.07

Effect size (pre vs. post) 0.4

Pulsatility index MCA

Pre-header 0.94 ± 0.09 0.9 ± 0.06 0.98 ± 0.09 *0.02 0.97

Post-header 0.93 ± 0.1 0.89 ± 0.08 0.97 ± 0.09 *0.02 0.87

p value (pre vs. post) 0.44 0.39 0.37

Effect size (pre vs. post) 0.11

MCA, middle cerebral artery. Bold values with an asterisk indicate significance p < 0.05.
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velocity in some participants in terms of peak velocities recorded 
over the 2 min, however there was not a significant change in 
peak values across all 19 participants (Figure 3; Table 2). The 
MCA was not able to be located for one participant. Additionally, 
there was a significant difference between female and male 
participants in the post-header measurements (p = 0.04; 
Figure 3C; Table 2). Sample entropy analysis and pulsatility index 
(PI) calculated from the TCD signal also showed some significant 
changes at the individual level, but this change was not observed 
on average across participants. However, male and female 
differences were seen in both the pre- and post-measurements for 
PI (p = 0.02) (Table 2). We also observed a small correlation of 
participant kinematics and change in blood flow velocity (see 
Supplementary information).

3.3. Pre- and post-header fNIRS changes

A total of 19 participants fNIRS data were included in the 
analysis because one subject did not have sufficient skin-coupling 

with the sensors. There was an overall increasing trend of O2Hb 
concentration during the post-header measurements compared 
with the pre-header measurements following GLM regression. This 
was significant in the left prefrontal cortex during the ST period 
(p = 0.002) (Table 3; Figure 4). This was also significant in the left 
motor cortex during the DT period (p = 0.007). The right cortex did 
not show any significance in terms of O2Hb concentration changes. 
The results of this study report significantly increased sample 
entropy in post-header measurements of oxyhemoglobin 
concentration in the right prefrontal cortex for the ST period 
(20.8%, p = 0.007), and the DT period (17.3%, p = 0.02), and in the 
right motor cortex for the ST period (19.3%, p = 0.04), and the DT 
period (17.4%, p = 0.004; Figure 5). The left motor cortex ST period 
was significantly different (16.5%, p = 0.04). Additionally, we did not 
find any significant differences in terms of O2Hb concentration 
changes for the control participant group in single or dual task (see 
Supplementary material). Lastly, DT cost function analysis results 
demonstrate mostly decreased values in the post-header 
measurements but was not significant for the left prefrontal cortex 
region (p = 0.06; Figure 6).

B

C

A

D E

FIGURE 3

Transcranial doppler. (A) Ultrasound recording of blood flow velocity (BFV). (B) Male and female comparison of peak BFV. (C) Peak BFV levels. 
(D) Sample entropy of BFV. (E) Pulsatility index of TCD signal. Error bars represent standard error.

TABLE 3 fNIRS concentration changes.

Prefrontal/Premotor cortex Motor/Somatosensory cortex

Parameters Pre-
headers

Post-
headers

p value Effect 
size

Pre-
headers

Post-
headers

p value Effect 
size

Single-task

Left O2Hb 0.37 ± 0.17 0.52 ± 0.16 *0.002 0.9 0.44 ± 0.14 0.55 ± 0.25 0.05 0.54

Right O2Hb 0.42 ± 0.19 0.45 ± 0.22 0.31 0.15 0.41 ± 0.14 0.48 ± 0.22 0.11 0.38

Dual-task

Left O2Hb 0.49 ± 0.2 0.62 ± 0.29 0.07 0.52 0.51 ± 0.13 0.71 ± 0.26 *0.007 0.97

Right O2Hb 0.55 ± 0.16 0.58 ± 0.28 0.35 0.13 0.52 ± 0.16 0.54 ± 0.17 0.45 0.12

Bolded values represent significance at the level of p ≤ 0.05. O2Hb, oxyhemoglobin.
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3.4. Task-based fNIRS changes

In many cases the more challenging DT period had significantly 
greater peak O2Hb concentrations (Figure 4). DT concentrations were 
significantly different compared with the ST period in the left prefrontal 
cortex (pre-headers p = 0.03), and the right prefrontal cortex (pre-headers 
p = 0.02). DT concentrations were also significantly different compared 
with the ST period in the left motor cortex (post-headers p = 0.02), and 
the right motor cortex (pre-headers p = 0.01).

3.5. Balance, function, and heart rate

Balance parameters were compared between pre- and post-header 
measurements but showed no significant differences among the 
athletes (p = 0.46). There were also no significant differences present 
in the motor and cognition UEF DT performance score when 
comparing pre- and post-header measurements. Lastly, there was a 

similar pattern seen in terms of HR. Across the athletes, HR showed 
significant differences between the rest and task periods before and 
after a bout of soccer heading (p = 0.04). However, HR during soccer 
heading was comparable to the DT period as there were no significant 
differences (p = 0.19) (see Supplementary material). In addition, the 
HR range was calculated post-headers and correlated with fNIRS 
results using Pearson correlation. There was no significant correlation 
of the HR range with changes in fNIRS values for either the heading 
and the control group (p > 0.09) (see Supplementary material).

4. Discussion

The present study explored how hemodynamics are affected after a 
bout of controlled soccer heading through non-invasive, portable, real-
time ultrasound and near infrared spectroscopy measurements of blood 
flow velocity and oxygenation. We  observed significant changes in 
oxyhemoglobin concentrations via fNIRS measures immediately after 

A B

C

FIGURE 4

fNIRS concentration. O2Hb concentration changes for (A) Premotor Cortex and (B) Motor Cortex during the single and dual task UEF test. (C) Example 
time trace of concentration change.

A B

FIGURE 5

Sample entropy of fNIRS. Sample entropy of oxyhemoglobin concentration pre-post measurements in the (A) prefrontal cortex and the (B) motor 
cortex. Error bars represent the standard error.
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impacts. Other measures of the fNIRS signal such as sample entropy and 
DT total cost, also support the regional brain oxygenation changes 
occurring immediately after headers. This information in combination 
with kinematic data, can provide more insight to sub-concussive 
responses in brain function and physiology at the hyper-acute stage.

To our knowledge, this is the first study to use the portable, real-
time DT-based fNIRS to explore the immediate effects of 
sub-concussive level impacts on brain oxygenation changes. Overall, 
we found increases of O2Hb concentrations for each region of the 
brain, however, the significant results occur in the left prefrontal and 
motor cortex. All of the athletes were right-handed, and it was 
interesting to see the main brain oxygenation patterns that we observe 
were contralateral to the arm doing the task. During an evoked brain 
activity, regional changes in blood flow alter the concentration of 
O2Hb in the brain (Clancy et al., 2014). Research has shown in healthy 
subjects, neural stimulation in the form of cognitive/motor tasks, can 
induce an increase in cerebral blood flow and O2Hb concentration, in 
which the increase in delivery of oxygen exceeds oxygen consumption 
as cerebral vasculature responds to physiological signaling messengers, 
i.e., calcium ions, nitric oxide, other metabolites (Davis et al., 1998). 
Significantly diminished brain oxygenation patterns have been 
observed in frontal and motor regions of the brain for post-concussion 
athletes 45 days post (Kontos et al., 2014), and TBI patients within 
hours after diagnosis (Roldan and Kyriacou, 2021), when performing 
motor and cognitive tasks. These studies hypothesized an altered 
cognitive resource allocation and compromised signaling messengers 
post-injury. However, our trends report increases in brain oxygenation 
changes which could be considered an immediate response, or specific 
to sub-concussive level impacts. Other studies that report increases in 
brain oxygenation for TBI patients when performing motor and 
cognitive tasks suggest the brain needs to work extra for similar tasks 
leading to overcompensation and increased brain oxygenation 
readouts (Rodriguez Merzagora et al., 2014). According to previous 
work, rotational velocities and accelerations even at lower levels, have 
been associated with diffuse brain tissue strains, which could lead to 
the disruption of neural connections especially at the repetitive level 
(Hernandez and Camarillo, 2019). This explanation would agree with 
the trends we observe in this study. It may also be that the type of 
cognitive load affects the brain oxygenation changes seen. One group 
reported that at lower cognitive load, a concussed group showed 
increased brain activity compared to controls, but in more difficult 
tasks the concussed group had diminished brain oxygenation 

compared to the control group (McAllister et al., 2001). This is similar 
to our results since in some cases there is an increase in brain 
oxygenation which may be greater during the ST period than the DT.

The goal of calculating sample entropy of fNIRS data was to 
include an additional measure to observe the regularity of the fNIRS 
series based on the existence of patterns in the data which could 
correspond to greater variations in concentration of hemoglobin. 
Entropy has been used as a mesure to detect cognitive impairments 
within dual-task functions in previous studies (Lamoth et al., 2011; 
IJmker, 2012). This is done to monitor possible hidden dynamical 
structures of motor function alterations due to dual-task abilities and 
identify potential cognitive impairment using the fNIRS signal 
(Ehsani et al., 2020). It is interesting to see greater sample entropy 
during the task sections of the fNIRS signal following the headers even 
though the athlete was performing the same task. This suggests that 
there was an increase in attentional resources and an elevated level of 
uncertainty in the motor function response as the signal became more 
unpredictable following the impacts. With more work, this additional 
analysis could have the potential to aid the fNIRS measurement as a 
biomarker for greater level head impacts in the future. Lastly, DT cost 
analysis of the fNIRS signal was included to account for 
musculoskeletal deficits following impacts. The average decrease may 
suggest that the skill level be increasing because subjects do not need 
the same attentional resources to perform the task, but this would 
need further testing since we  do not see significant differences. 
Although, the level of sub-concussive soccer heading may not 
be enough to detect these changes in DT cost, this parameter may still 
be useful for higher level impacts in future studies.

We provide measurements from impacts for athletes performing 
10 soccer headers from a ball launcher which is comparable to on-field 
scenarios of soccer headers in games or practice according to previous 
work (Kenny et al., 2022). On average, the female group experienced 
greater values of head kinematics including linear acceleration and 
angular velocity, which has also been reported in other studies, as well 
as higher rates of concussion among this group (Marar et al., 2012). 
In the current study, players were directed to stand still and return the 
ball to the same direction. Future studies could include allowing the 
players to freely move and direct the ball, replicating additional 
on-field scenarios. It has also been suggested that increasing neck 
muscle strength contributes to preventing large linear and angular 
accelerations while performing soccer headers (Caccese et al., 2018), 
which could also explain differences seen in male and female sports 
populations. We did not include this as a confounding factor in the 
current work, but this would be important for future studies.

The TCD portable imaging device allowed us to observe 
immediate individual changes of MCA blood flow velocities when 
comparing pre- and post-header measurements, but this trend did not 
hold across all participants. However, the female group differed from 
the male group with greater peak blood flow velocity after headers. 
The female group also experienced greater head kinematic values 
which may explain these differences. A previous study recorded 
posterior cerebral artery (PCA) and MCA blood flow velocity during 
a visual task (neurovascular coupling or NVC) using TCD, for seven 
male soccer athletes after performing 40 soccer headers, but did not 
observe changes in peak MCA or PCA velocities as well (Smirl et al., 
2020). Interestingly, resting PCA and MCA velocity TCD measures 
have also been reported to remain unaltered days following 
concussion-level injury (Wright et al., 2017). Sample entropy analysis 

FIGURE 6

Additional analysis from fNIRS. Dual task cost analysis of fNIRS 
concentration changes. Error bars represent the standard error.
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of the TCD signal was also different in these groups, before the 
headers, and almost significant following the headers. This could 
describe a change in the velocity profile or more complexity in the 
systolic and diastolic patterns for the different groups. There were also 
significant differences between male and female for the PI pre-header 
measurements. PI is known as a measure of flow resistance in the 
arteries and can be  influenced by cerebral perfusion pressure, 
cerebrovascular resistance, arterial bed compliance, or HR (Thibeault 
et al., 2019). Increased PI has been reported in the case of severe TBI 
and led to increased intracranial pressure (O’Brien et  al., 2015). 
Although we see significant differences in this parameter between 
males and females, this does not change after the 10 headers for either 
group. Overall, these results suggest that the TCD may not be sensitive 
enough to detect hemodynamic changes at this level of head impacts.

The UEF motor function test involves performing a novel and 
unfamiliar movement, which may require more motor cortex 
oxygenation changes (Kawai et al., 2015). Counting is considered a 
rhythmic task that involves working memory and is more directly 
related to executive function (Montero-Odasso et  al., 2009). 
Combining these rhythmic tasks of different frequency may cause 
interference or be  difficult to execute since DT recruits the same 
resources at the same time (Beauchet et al., 2005). The combination of 
skill-learning and counting backward creates a stress test in which the 
brain may reveal changes in terms of impairment. However, there was 
no change in the cognitive score calculated from the arm sensor 
movements nor balance parameters, suggesting no immediate change 
after 10 sub-concussive impacts. Studies have suggested 
neuropsychological function determined by neurocognitive tests is 
unaffected by repetitive sub-concussive level head impacts (Belanger 
et al., 2016). Previous work has shown that balance performance of 
healthy athletes returns to baseline levels within 20 min of rest 
following 30 min of physical activity (Susco et al., 2004). In our study, 
balance is the last parameter measured following TCD and fNIRS, 
which is measured near that 20-min mark and could explain why 
there are no significant changes observed. These aspects were still 
investigated because soccer heading has previously been associated 
with neurocognitive deficits and changes in balance long term (Svaldi 
et al., 2017).

Lastly, the HR measured while athletes performed the DT did not 
show significant differences to HR when performing soccer heading. 
Participants remained relatively still and only made head contact with 
the ball during the 10 headers with minimal exercise. During exercise, 
the heart beats faster and healthy blood vessels will expand in size to 
allow increased blood flow and help maintain blood pressure. No 
change in HR from the arm motor movement to heading may suggest 
that hemodynamic changes observed in this study are largely due to 
the impact to the head and not the autonomic nervous system 
response or changes in HR. In addition, there were no correlations of 
fNIRS concentration values with change in HR for any brain regions 
following the headers, and the control group did not exhibit any 
significant changes in HR or O2Hb concentration, which further 
supports this assumption.

4.1. Limitations

There are several limitations to this study. The smaller sample size of 
soccer athletes from one institution may have contributed to a reduced 
number of significant findings. Future work should include larger sample 

sizes with varying levels of soccer athletes, as well as a control group that 
would undergo similar movement without contact to the head. 
Additionally, the bite-bar sensor has limitations in its ability to measure 
head impacts more accurately. With the sensor being placed at the end 
of the bar and outside the mouth, there is chance for cantilever resonance 
that could affect the recordings (Camarillo et al., 2008). For this reason, 
the players were instructed to clench onto the bite-bar as tightly as 
possible during the headers. The UEF DT test as well as balance measures 
may also be limited to a learning curve from the participants with the 
pre- and post-header measurement design. To minimize this, a trial 
period was conducted before any measurements took place. Additionally, 
we did not include HHb concentration change results in this study and 
would need further investigation as not many patterns were found in our 
data. A few studies have demonstrated that oxyhemoglobin is a more 
sensitive marker of task-related brain oxygenation compared to 
deoxyhemoglobin (Wolf et al., 2002; Mihara et al., 2007; Harada et al., 
2009), which is why we only include this parameter in our results.

5. Conclusion

This work has provided multiple measures to show that changes 
in brain physiology can be observed hyper-acutely resulting from 
sub-concussive impacts using portable, non-invasive, real-time 
imaging techniques. Our findings report interesting changes in fNIRS 
imaging in terms of increased concentration changes post-impacts. 
Further analysis of fNIRS signals such as sample entropy has shown 
significance in post-header measurement changes as well, which could 
serve as a possible biomarker for hyper-acute changes from impacts 
and applicable in future work. Immediate on-field measurements on 
repetitive head impact exposure and hemodynamic response could 
lead to improved monitoring and management of real-world head 
impacts in sports and making decisions to best minimize the 
magnitude and number of reoccurring head impacts during 
sport participation.
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