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Non-pharmacological treatment is essential for patients with major depressive

disorder (MDD) that is medication resistant or who are unable to take

medications. Transcranial alternating current stimulation (tACS) is a non-

invasive brain stimulation method that manipulates neural oscillations. In recent

years, tACS has attracted substantial attention for its potential as an MDD

treatment. This review summarizes the latest advances in tACS treatment

for MDD and outlines future directions for promoting its clinical application.

We first introduce the neurophysiological mechanism of tACS and its novel

developments. In particular, two well-validated tACS techniques have high

application potential: high-definition tACS targeting local brain oscillations

and bifocal tACS modulating interarea functional connectivity. Accordingly, we

summarize the underlying mechanisms of tACS modulation for MDD. We sort

out the local oscillation abnormalities within the reward network and the

interarea oscillatory synchronizations among multiple MDD-related networks in

MDD patients, which provide potential modulation targets of tACS interventions.

Furthermore, we review the latest clinical studies on tACS treatment for MDD,

which were based on different modulation mechanisms and reported alleviations

in MDD symptoms. Finally, we discuss the main challenges of current tACS

treatments for MDD and outline future directions to improve intervention target

selection, tACS implementation, and clinical validations.

KEYWORDS

transcranial alternating current stimulation (tACS), major depressive disorder (MDD),
brain oscillations, functional connectivity, brain networks

Introduction

Major depressive disorder (MDD) is a severe mental disorder with core symptoms
of low mood and anhedonia that causes cognitive impairment and increases the
risks of comorbidities and suicide (Alexopoulos, 2005; McCarron et al., 2021).
The COVID-19 pandemic has greatly exacerbated the disease burden of depressive
disorders, with an estimated 53.2 million additional cases of MDD globally
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(COVID-19 Mental Disorders Collaborators, 2021). The latest data
indicate that MDD affects approximately 280 million people, which
is 3.8% of the global population (World Health Organization,
2021)1 and has become one of the leading causes of disability
worldwide (GBD 2019 Mental Disorders Collaborators, 2022).
Antidepressant drugs have been the first-line treatment for MDD,
but they cannot meet clinical needs in terms of efficacy or side
effects (Israel, 2010). Studies have reported that one-third of MDD
cases are medication resistant (Trivedi et al., 2006; Zhdanava et al.,
2021). Moreover, drug treatment is also highly limited among
special populations such as children and adolescents and pregnant
or breastfeeding women.

Non-invasive brain stimulation methods, such as
electroconvulsive treatment (ECT), transcranial magnetic
stimulation (TMS), and transcranial direct current stimulation
(tDCS) have been widely used for MDD treatment (Rosa and
Lisanby, 2012; Padberg et al., 2021). In the past decade, in addition,
transcranial alternating current stimulation (tACS), with its
unique clinical potential to specifically manipulate intra- and
interarea neural oscillations, has been shown to alleviate emotional
and cognitive symptoms in neuropsychiatric disorders such as
obsessive-compulsive disorder (Grover et al., 2021), schizophrenia
(Farcas and Iftene, 2022), and Alzheimer’s disease (Benussi et al.,
2022). Several latest reviews have claimed that tACS has been
considered to have good potential for various clinical interventions
(Elyamany et al., 2021; Grover et al., 2023) and it has also attracted
increasing attention for MDD treatment. In this review, we first
introduce major advances in tACS techniques, which greatly
extend their application potential. Then, we summarize the
underlying modulation mechanisms of tACS for treating MDD,
from both local and interarea brain oscillation abnormalities in
MDD patients. These findings provide modulation targets for
tACS. Furthermore, we review the latest clinical studies on tACS
applications in MDD and discuss the alleviation effects on MDD
symptoms. Finally, we propose future directions to maximize the
clinical value of tACS for MDD treatment.

Advances in tACS methods

Transcranial alternating current stimulation applies a weak,
frequency-specific sine-wave alternating current to the cortex and
modulates brain oscillations by entraining the intrinsic brain
oscillations to the applied current, resulting in the phase alignment
with external current and the increased power of neural oscillations
with frequencies close to the applied current (Frohlich and
McCormick, 2010; Herrmann et al., 2013; Helfrich et al., 2014a,b;
Krause et al., 2019; Johnson et al., 2020). In addition, tACS
can also induce a sustained poststimulation effect as continued
power changes of neural oscillations with frequency close to the
stimulation current (Wischnewski et al., 2019; Fiene et al., 2020).
This offline entrainment effect been successfully predicted by a
synaptic change model based on spike timing-dependent plasticity
(STDP) (Zaehle et al., 2010) and has been directly observed through
electroencephalography (EEG) in humans (Neuling et al., 2013;
Vossen et al., 2015; Kasten et al., 2016; Figure 1A). Besides,

1 https://www.who.int/news-room/fact-sheets/detail/depression

some studies have also reported indirect long-distance effects of
tACS. For instance, some studies have suggested the tACS on
visual areas could evoke neural activity changes in retina and
led to phosphene (Schwiedrzik, 2009); in an opposite direction,
some studies found transcutaneous-ACS on peripheral nerves
could modulated neural oscillations in central motor areas and
affected behavioral performance (Zaghi et al., 2010; Asamoah et al.,
2019). However, the mechanism underlying these long-distance
modulations require more verifications in future studies.

The efficiency of conventional tACS, which uses two large
electrodes immersed in saline-soaked sponges and guides their
placements by the international 10–20 EEG system, was largely
limited due to the poor current focus. Encouragingly, some
recent advances have significantly improved the current focality of
tACS (Figure 1B, left). One of the major improvements is high-
definition transcranial electrical stimulation (HD-tES) technology,
which uses an array of small disc electrodes arranged in a ring
configuration. These array settings have been shown to significantly
improve the stimulation focality (Datta et al., 2009; Dmochowski
et al., 2011), and has been applied to modulate nearby brain
subregions [such as the dorsolateral prefrontal cortex (DLPFC)
and ventrolateral prefrontal cortex (VLPFC)] and could produce
larger and more enduring behavioral and EEG effects (Kuo et al.,
2013). Additionally, researchers have combined individualized
brain structure data to create realistic finite-element models (FEM),
which can guide a more precise placement of small disc electrodes
(Datta et al., 2009; Salvador et al., 2010; Neuling et al., 2012). One
latest study provided direct evidence that FEM-guided HD-tACS
of the bilateral frontoparietal cortex is more effective in changing
craving behavior than conventional tACS (Soleimani et al., 2022).
Another important advance is bifocal tACS technique, which aims
to modulate interarea functional connectivity. Studies have found
that in-phase stimulation synchronizes neural activities between
two brain areas, while anti-phase stimulation desynchronizes them;
synchronization was estimated by parameters such as the phase-
locked value, phase-amplitude coupling in EEG studies (Polania
et al., 2012; Reinhart and Nguyen, 2019; Schwab et al., 2019; Hu
et al., 2022) and functional connectivity measurements indexed
by blood oxygenation dependent (BOLD) signal correlations in
functional magnetic resonance imaging (fMRI) studies (Violante
et al., 2017). Bifocal tACS has been used to modulate cognitive
processes in healthy populations. For instance, in-phase theta
tACS has been used to increase frontal–temporal synchronization,
resulting in a significant enhancement in working memory capacity
in older adults. More importantly, the enhancement effect was
larger in the bifocal tACS condition than that in tACS of either
the frontal or temporal site (Reinhart and Nguyen, 2019). HD-
tACS and bifocal tACS, have substantially enhanced the efficacy
to regulate abnormal brain oscillations and interarea functional
connectivity, highlighting their potential use in clinical practice.

In addition, two other important technological developments
are currently in the testing stages (Figure 1B, right). One
is temporal interference (TI), which can activate neurons
in deep brain areas through the interference of two high-
frequency electrical signals without causing any change in neural
oscillations along the current pathways (Grossman et al., 2017).
A recent modeling study suggested that TI can affect the human
hippocampus (Lee et al., 2020), and an investing study claimed
that TI could be safe and well tolerated in human participants
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FIGURE 1

(A) Physiological mechanisms of tACS. Online entrainment effect and offline synaptic plasticity. (B) Advances of tACS. From conventional tACS to
novel techniques that verified in human participants (HD-tACS and bifocal tACS) and that during early testing stages (temporal interference and
closed-loop tACS).

(Piao et al., 2022). The other development is closed-loop tACS,
which has significant potential for treating neurological and
psychiatric disorders with irregular patterns (Chen et al., 2023).
Recent studies have indicated that the effect of tACS is influenced
by the state of the ongoing brain oscillations (Krause et al., 2022).
However, currently, closed-loop tACS has only been used in limited
situations. For example, some studies have used closed-loop tACS
during sleep to modulate memory processes (Lustenberger et al.,
2016; Ketz et al., 2018). And real-time closed-loop tACS in awake
participants requires more future tests.

Regarding the side effects of tACS, some mild symptoms such
as temporal nausea, tinnitus, and dizziness have sometimes been
reported during the stimulation (Bhattacharya et al., 2022; Wang
et al., 2022), and high-intensity stimulation does in some particular
functional areas may have a chance to evoke sensory hallucinations
such as phosphene (Antal et al., 2008). However, fortunately, there
are no salient adverse reactions reported in most tACS clinical
research (even in the cases of mania and/or hypomania and clinical
epilepsy diagnosis) (Matsumoto and Ugawa, 2017). Moreover, a
recent case study has further suggested a good safety profile of tACS
among pregnant patients (Wilkening et al., 2019). In sum, although
the safety of tACS has been recognized, the stimulation settings

should always be cautious given the individual differences in tACS
tolerance.

The neural mechanisms of tACS for
treating MDD

Accumulating studies have demonstrated both local oscillation
abnormalities and interarea synchronization dysfunctions in MDD
patients, and tACS may treat MDD by modulating such oscillatory
abnormalities. To better understand the functional consequences
of these abnormalities, we sorted out recent progress by functional
networks, which could be responsible for different MDD symptoms
(Figure 2). These findings provide candidate modulation targets for
tACS intervention in MDD for clinical practice.

Oscillation power abnormalities in the
reward network

The human reward network mainly includes the prefrontal
cortex and the limbic system (Dutcher and Creswell, 2018),
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FIGURE 2

Abnormalities of local oscillations and oscillatory synchronization within and between relevant networks in MDD patients. Red indicates
hyperactivation and hyperconnectivity. Turquoise indicates hypoactivation or hypoconnectivity in MDD. Orange indicates the brain oscillation
abnormalities in specific frequencies within networks (in dashed square). Orange arrows indicate that brain oscillations support long-range
functional connectivity. NAc, nucleus accumbent; mOFC/lOFC, medial/lateral orbitofrontal cortex; ACC, anterior cingulate cortex; AMG, amygdala;
LHb, lateral habenula; MT, middle temporal; Hipp, hippocampus; MTL, medial temporal lobe; DMN, default mode network; PCu, precuneus; AG,
angular gyrus; mPFC, medial prefrontal cortex; CEN, central executive network; dlPFC, dorsal lateral prefrontal cortex; PPC, posterior parietal cortex;
FAA, frontal alpha asymmetry; IAPF, individual alpha peak frequency; PAA, parietal alpha asymmetry.

and functional abnormalities in the reward network are closely
associated with anhedonia, the core symptom of MDD (Pizzagalli
and Roberts, 2022). Most MDD research has focused on the reward
network and has demonstrated a wide range of local oscillation
abnormalities.

Alpha band (8–12 Hz) power has been found to decrease with
increasing brain activity (Goldman et al., 2002; Laufs et al., 2003).
Researchers have consistently found that frontal alpha asymmetry
(FAA), or the difference in alpha power between the right and
left hemispheres, is closely related to MDD. Early studies found
that FAA was significantly higher in depressed participants than
in healthy participants (Henriques and Davidson, 1990), which
is well explained by the approach–withdraw theory of emotion
processing (Davidson, 1992); in this framework, the increased
FAA in MDD patients reflects a decrease in approach motivation
(supported by the left hemisphere) and an increased withdrawal
motivation (supported by the right hemisphere). Besides, a recent
study demonstrated that changes in FAA were closely associated
with changes in the activity of the amygdala as well as the
functional connectivity between the amygdala and the DLPFC,
implying the increased FAA in MDD patients could also reflect
increased negative emotional processing (Zotev et al., 2016).
Currently, abnormal FAA in MDD has been replicated in a series
of subsequent studies (Thibodeau et al., 2006; Grimm et al.,
2008; Gollan et al., 2014). Moreover, accumulating intervention
studies have provided evidence of a causal relationship between
FAA and MDD. For example, targeting to decrease the FAA,
studies adapted neurofeedback training (Peeters et al., 2014;

Mirski et al., 2015; Wang et al., 2016), tDCS (Mirski et al., 2015;
Al-Kaysi et al., 2017; Carvalho et al., 2020), and repetitive TMS
(rTMS) (Olejarczyk et al., 2021) have found symptoms alleviations
in MDD patients. Regarding the abnormal FAA in MDD patients,
some recent studies explored whether it could predict the response
to medication treatments but found mixed results (Baskaran et al.,
2018), and a meta-analysis suggested that individual differences
(such as sex and age), clinical characteristics (such as medication
and comorbidities), and specific measurements (such as electrode
selection and normalization methods) affected FAA in MDD
patients (Van Der Vinne et al., 2017), indicating that it is essential
to consider more factors when discussing abnormal FAA in MDD
patients.

Gamma band (30–100 Hz) power is closely linked to increased
local neuronal activities (Traub et al., 1998), and accumulating
evidence suggests that MDD patients exhibit decreased gamma
power during both the resting state and during the emotion-
related tasks, particularly in the frontal lobe which is responsible
for emotion regulation (Fitzgerald and Watson, 2018). There is also
evidence further supports the close relationship between reduced
gamma power and MDD. For example, MDD patients treated with
ketamine showed significantly increased gamma power in a wide
range of brain regions (Nugent et al., 2019). rTMS studies also
found that stimulation of the left DLPFC elevated the gamma
power in the resting state and that the increase in gamma power
predicted improvement in depressive symptoms (Pathak et al.,
2016; Noda et al., 2017). Nevertheless, some animal studies have
found that gamma power reflects a combination of excitation
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and inhibition; thus, there may be an optimal gamma power that
supports normal brain functions (Hajos et al., 2003; Mendez et al.,
2012; Akhmetshina et al., 2016). However, there is no human
evidence in support of this view yet.

Abnormalities in theta band (4–7 Hz) power in MDD have
also been reported. Early studies found increased frontal–midline
theta power in the resting state in MDD patients; this increase
was located in the anterior cingulate cortex (ACC) and reflected
impaired emotion regulation (Jaworska et al., 2012). However,
some following studies did not replicate this finding and even
found an opposite abnormal pattern (Jiang et al., 2016; Zhang Y.
et al., 2022). Besides, some other studies have reported that the
abnormal frontal theta asymmetry could be used as a biomarker
to distinguish MDD patients from health populations (Kwon et al.,
1996; Dharmadhikari et al., 2018), but its functional correlate is still
unclear. Regarding theta power, two recent perspectives are worth
noting. First, recent studies have suggested that abnormalities in
theta band power are more related to anxiety than to depression
(Gold et al., 2013; Zhang Y. et al., 2022); thus, the direct relationship
between theta power abnormalities and MDD may require further
studies to elucidate. Second, the interarea synchronization of theta
power is critical for long-range information exchange (Reinhart
and Nguyen, 2019), and recent studies have found that global
theta synchronization is abnormally increased in individuals with
depression compared to healthy individuals during the resting state
and performance of emotion regulation tasks (Xing et al., 2017,
2019). We cover this latter point in detail when describing the
abnormal interactions among brain networks.

In addition, beta band (14–30 Hz) abnormalities in MDD have
also received increasing attention. Some studies using classifier
methods reported that beta band features in the frontal lobe are
the best at distinguishing MDD patients from healthy individuals
(Cai et al., 2016; Shen et al., 2017). However, the causality
between frontal beta oscillations and MDD symptoms has not been
fully tested. Interestingly, recent studies consistently demonstrated
abnormally increased parietal beta power in MDD patients. For
example, one study found that parietal beta hyperactivity in MDD is
correlated with the severity of anxiety among MDD patients (Grin-
Yatsenko et al., 2010). More importantly, recent neurofeedback
training studies have supported a causal relationship between
parietal beta power and MDD by revealing alleviated anxiety and
depressive symptoms after downregulating the parietal beta power
(Wang et al., 2019), and the reduction in parietal beta power was
correlated with an improvement in depressive symptoms (Chen
and Lin, 2020). However, the functional role of parietal beta
oscillation is still unclear.

To be note, a recent review has summarized the functional
differences within the frontal–limbic reward network. For example,
the ACC acts as a “control hub”; the medial orbitofrontal
cortex (mOFC) and nucleus accumbens (NAc) act as “reward”
hubs; and the lateral orbitofrontal cortex (lOFC), ventromedial
prefrontal cortex (vmPFC), and amygdala act as “non-reward”
hubs (Pizzagalli and Roberts, 2022). Besides, recent studies have
identified that lateral habenula (LHb), as a pivotal node in the anti-
reward circuit, also plays a crucial role in MDD (Liu et al., 2017;
Liang et al., 2022; Zhang C. et al., 2022). However, limited by the
inferior spatial resolution of regular EEG signals, it is challenging
to accurately locate the sources of the oscillation power abnormities
within the reward network.

Oscillatory synchronization
abnormalities among MDD-related
networks

Recent findings have extended our understanding of
oscillation power abnormalities in MDD beyond the reward
network. Furthermore, researchers have demonstrated functional
connectivity abnormalities among critical MDD-related networks
and correlated them with different MDD symptoms (Kaiser
et al., 2015; Rolls et al., 2018; Pizzagalli and Roberts, 2022).
We summarized important findings from the synchronization
perspective and discussed how they supported the functional
connectivity findings.

The default mode network (DMN) consists of a group of brain
regions that exhibit decreased activity during attention-oriented
and goal-directed tasks, with primary hubs of the medial prefrontal
cortex (MPFC), posterior cingulate cortex (PCC), precuneus (PCu),
and angular gyrus (AG) (Raichle et al., 2001). Research on health
populations has found that the anterior MPFC primarily involves
self-referential psychological processes, whereas the posterior hubs
are more closely related to recalling prior experiences (Raichle,
2015). A recent meta-analysis has indicated that abnormally
increased activities in DMN is closely related to rumination in
MDD patients (Ho et al., 2015; Kaiser et al., 2015) and this view
is supported by abnormally reduced alpha power in the posterior
parietal cortex (PCC) in MDD patients (Jaworska et al., 2012; Jiang
et al., 2016). Furthermore, recent MDD research has identified
abnormal strengthening of functional connectivity between the
DMN and the reward network. For example, some studies have
suggested that the abnormally increased functional connectivity
among the MPFC, rostral ACC, and amygdala could be responsible
for the increased interaction between self-referential processing
and negative emotional information processing (Yamawaki et al.,
2012; Kaiser et al., 2015). More importantly, the latest iEEG study
on healthy individuals revealed that the communication between
the MPFC and amygdala is mainly supported by theta oscillations
(Chen et al., 2021).

The central executive network (CEN) plays a pivotal role in
tasks requiring executive control, with key nodes including the
DLPFC and posterior parietal cortex (PPC) (Sherman et al., 2014),
and accumulating resting-state fMRI data indicates that decreased
functional connectivity within the CEN hubs accounts for the
typical cognitive deficits in MDD patients (Kaiser et al., 2015;
Zhang et al., 2021). A recent EEG study examined synchronizations
in broad frequency bands between the DLPFC and PPC and found
that depressed patients exhibited lower task-dependent increases
in the phase synchronization of the delta, theta, and alpha bands
but a higher phase synchronization of the beta band (Li et al.,
2017). Additionally, fMRI studies have found abnormal increases
in activity synchronization between the CEN and the DMN in
MDD patients, reflecting impaired inhibition of the DMN by the
CEN (Lemogne et al., 2012). A following EEG study suggested
such abnormally increased connectivity especially supported by
beta power synchronization, which was observed in MDD patients
during the acute phase but not the remission phase (Whitton et al.,
2018).

In recent MDD research, considerable attention has been
devoted to abnormalities in the perception system, particularly
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in the visual system. Earlier studies noted that individuals
with MDD demonstrate a significant perceptual bias toward
negative information (Leppänen, 2006) and an impairment in
motor suppression (Golomb et al., 2009). The following studies
have associated these perceptual dysfunctions with abnormally
decreased gamma-aminobutyric acid (GABA) concentrations and
increased neural activities in the occipital cortex and middle
temporal area (MT) (Song et al., 2021; Liu et al., 2022).
Additionally, recent fMRI studies found reduced connectivity of the
occipital cortex/MT with the OFC but increased connectivity with
the MPFC/ACC in MDD patients (Teng et al., 2018; Zhang et al.,
2021), and some latest studies further proved the casualty between
the latter abnormality with MDD symptoms by using magnetic
stimulation (Zhang et al., 2021; Lu et al., 2022). However, except
for an earlier EEG study which exhibited significantly increased
resting-state theta, alpha, and beta power in the occipital lobe in
MDD patients (Grin-Yatsenko et al., 2010), few synchronization
abnormalities were reported within perception systems.

Besides, the hippocampal–medial temporal lobe (Hipp-MTL)
network is known to play a pivotal role in human memory (Graham
et al., 2010) and its dysfunction could account for the memory
deficits in MDD patients. Accumulating studies have reported
hippocampal atrophy (Sheline, 2011), abnormally increased
metabolic activity in the hippocampus and parahippocampal gyrus
(Kennedy et al., 2001; Videbech et al., 2002) and increased
functional connectivity within the Hipp-MTL network in MDD
patients (Rolls et al., 2018). From a neural oscillation perspective,
recent research has emphasized the critical role of hippocampal
theta power in anxiety regulation (Korotkova et al., 2018). However,
except for an early MEG study that reported a correlation of
the reduction in MTL theta power variability with the severity
of depressive symptoms in MDD patients (Linkenkaer-Hansen
et al., 2005), there is limited evidence linking reduced Hipp-
MTL theta power to abnormal memory processing in MDD
patients. Besides, some other studies have shown that functional
connectivity abnormalities of the Hipp-MTL network with a
wide range of brain areas. For example, some studies have
found that functional connectivity of the Hipp-MTL network
with the amygdala is reduced in depressed patients, and these
reductions are positively correlated with the severity of depressive
symptoms (Cheng et al., 2018; Rolls et al., 2018; He et al., 2019).
Although a recent iEEG study suggested that phase-amplitude
coupling between theta/alpha oscillations in the amygdala and
high-frequency gamma activity in the hippocampus is critical for
normal negative emotional processing (Zheng et al., 2017), no
evidence for decreased synchronizations between hippocampus
and amygdala in MDD patients has been reported yet. Some
other studies have demonstrated abnormally reduced functional
connectivity between the Hipp-MTL network and mOFC (Cheng
et al., 2016; Rolls et al., 2020) but abnormally increased connectivity
between Hipp-MTL network and lOFC (Rolls, 2016). However, the
underlying oscillatory synchronization mechanisms are unclear yet.

Oscillation frequency abnormalities

In addition to oscillation power and interarea synchronization,
recent studies have examined abnormal brain activity in MDD

from a novel perspective of oscillation frequency and have reported
important findings regarding individual alpha peak frequency
(IAPF). Studies on healthy populations have found that higher
IAPF is usually associated with better cognitive ability (Scally
et al., 2018) and has been found to decrease in a variety of
mental illnesses associated with cognitive impairment (Garces
et al., 2013; Dickinson et al., 2018; Ramsay et al., 2021). In
recent years, more studies have explored the relationship between
IAPF and depressive symptoms. For example, a study on healthy
individuals found that IAPF positively predicted self-reported
depression scores (Tement et al., 2016). Another recent study
replicated this result, and they also found that the power of
IAPF was negatively correlated with the self-reported depression
score (Zhou et al., 2023). Although few studies have directly
examined abnormal IAPF in depression patients, some studies
have found that MDD-related alpha power (a.k.a. FAA), obtained
based on IAPF, can better distinguish MDD patients from healthy
individuals than that based on the standard alpha frequency
band (8–12 Hz) (Gollan et al., 2014). In addition, a series of
studies have found that IAPF can predict the efficacy of rTMS
treatment for MDD. For example, some studies have found
that the baseline IAPF is significantly higher in the rTMS-
responsive group than in the rTMS non-responsive group (Arns
et al., 2012) and that higher IAPF is correlated with greater
alleviation of depressive symptoms after rTMS treatment (Corlier
et al., 2019). However, the latest research suggests that IAPF
may have a complex non-linear relationship with the effects of
rTMS treatment, with the stimulation effect largest when the
individual’s IAPF is closest to the stimulation frequency (Roelofs
et al., 2021). Although there is no direct evidence of tACS
treatment for MDD, previous studies have demonstrated that
IAPF-based tACS intervention can improve human cognitive
function in healthy populations (Zhang et al., 2019). Taken
together, these results suggest the importance of considering
individualized oscillation frequency for tACS applications in MDD
interventions.

Clinical studies on tACS applications
in MDD

As the quick developments in tACS techniques and extended
understanding of the brain oscillation abnormities in MDD,
using tACS to treat MDD has attracted increasing attention
in recent years. We conducted a systematic search in a wide
range of English databases, including PubMed, EMBASE, Web
of Science, the Cochrane Library, Register of Controlled Trials
and the Chinese database Zhiwang; we used the following
search terms: (“depress∗” OR “major depressive disorder” OR
“MDD”) AND (“transcranial alternating current stimulation”
OR “tACS”). Initially, we selected articles based on their
titles and abstracts and excluded duplicate articles. Then, we
assessed the abstracts and full texts of potentially eligible studies
according to predefined inclusion criteria. Finally, we included
a total of seven published articles (see details in Table 1 and
Figure 3).
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TABLE 1 Clinical studies on tACS applications in MDD.

References Study
design

Participants Stimulation protocol Outcomes

Session’s
number

Session
duration

Current
amplitude
(peak-to-

peak)

Frequency Electrode
location

Alexander et al.,
2019

RCT 32 patients with
unipolar depression
without psychotic

symptoms

Once daily for 5
consecutive days

40 min 2 mA at Cz
1 mA at F3 and

F4

Group 1: 10 hz
Group 2: 40 hz
Group 3: sham

DLPFC: two
electrodes over F3
and F4, and a third

over Cz

1. No significant improvements in any group in
MADRS at week 4 follow-up;
2. The 10 Hz group had more responders compared
with 40 Hz and sham groups at 2 weeks after
intervention;
3. A significant reduction in alpha power over the left
frontal regions in 10 Hz group at day 5.

Riddle et al., 2020 Case report 3 patients with
unipolar depression
without psychotic

symptoms

12 weekly sessions 40 min 2 mA at Cz
1 mA at F3 and

F4

Patient 1: 10 hz
Patient 2: 40 hz
Patient 3: sham

DLPFC: two
electrodes over F3
and F4, and a third

over Cz

The patient received 10 Hz stimulation obtained
remission (MADRS = 7) after 12 weeks

Wilkening et al.,
2019

Case report One pregnant MDD
patient

Once daily for 9
consecutive days

20 min 2 mA 40 Hz Bilateral DLPFC (F3
and F4)

1. The HAMD-21 and BDI scores decreased;
2. Cognitive test score (TMT) improved;
3. These effects sustained at 2 weeks and 3 months

Haller et al., 2020 Case series 6 MDD patients Group 1: twice daily
for 10 days

Group 2: once daily
for 10 days

Group 1: 10 min
Group 2: 20 min

2 mA 40 hz Bilateral DLPFC (F3
and F4)

1. HAMD-21 and BDI scores decreased 85.2 and 78.8%
in Group 1, and 62.4 and 24.6% in Group 2;
2. Verbal n-back test and TMT performance improved

Wang et al., 2020 RCT 30 first-episode
drug-naive unipolar

MDD without
psychotic symptoms

Once daily on
weekdays for 4

consecutive weeks

40 min 15 mA Group 1: 77.5 Hz
Group 2: sham

PFC (Fpz, Fp1, and
Fp2)

Reference: bilateral
mastoid

1. The response rate (HAMD-17 decreased ≥50%) of
Group 1 was significantly higher than that of Group 2
at the 8th weeks
2. The remission rate (HAMD-17 ≤7) of Group 1 was
significantly higher than that of Group 2 at the 4th
weeks and 8th weeks;
3. No serious side effects, mania or hypomania

Wang et al., 2022 RCT 100 first-episode
drug-naive unipolar

MDD without
psychotic symptoms

Once daily on
weekdays for 4

consecutive weeks

40 min 15 mA Group 1: 77.5 Hz
Group 2: sham

PFC (Fpz, Fp1, and
Fp2)

Reference: bilateral
mastoid

1. A greater reduction in depressive symptoms at 4th
and 8th weeks;
2. No serious adverse events

McAleer et al.,
2023

RCT 33 patients with
depression and/or

anxiety

2 verum sessions and
2 sham sessions

20 min 2 mA Group 1: 6 Hz
with a 180◦

phase difference
Group 2: tDCS

tDCS: left DLPFC
(F3); Fp2

tACS: two electrodes
with highest

synchronization
among the whole

brain

1. Reduction in anxiety, depression, and valence and
arousal ratings in both groups, larger effects in tACS
group;
2. In tACS group, little-to-no change in patients who
received sham stimulation first, while significant
improvements in patients who received verum
stimulation first

RCT, randomized controlled trial; DLPFC, dorsolateral prefrontal cortex; HAMD, trail making test, Hamilton depression; BDI, Scale Beck Depression Inventory; MADRS, Montgomery-Asberg Depression Rating Scale; MDD, major depressive disorder; tACS,
transcranial alternating current stimulation; tDCS, transcranial direct current stimulation.
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FIGURE 3

PRISMA flow chart for the search and inclusion criteria for tACS studies in MDD.

tACS to decrease frontal alpha
asymmetry

Targeting the abnormally increased FAA in MDD patients,
some clinical studies used 10-Hz tACS to balance bilateral
DLPFC activities in MDD patients. A randomized controlled
trial (RCT) estimated the frontal tACS effects on MDD among
three groups receiving 10 Hz, 40 Hz, and sham stimulation
(1 mA at F3/F4 and 2 mA at Cz, 40 min per day for 5 days).
The bilateral 10-Hz tACS group showed a significant decrease
in alpha power in the left frontal and central areas, resulting
in decreased FAA among frontal areas. Although no significant
alleviation of MDD symptoms was observed in any group
immediately after the intervention, the response rate [defined
as a decrease in Montgomery-Asberg Depression Rating Scale
(MADRS) score ≥50%] was significantly higher in the 10-Hz
tACS group than in the 40-Hz tACS or sham groups 2 weeks
later (Alexander et al., 2019). Furthermore, a follow-up case
study tracked three patients who received 10 Hz, 40 Hz or
sham tACS weekly for 12 weeks. The results demonstrated
that only the patient receiving the 10-Hz stimulation achieved
clinical remission (MADRS score ≤7), and this effect lasted for
2 months (Riddle et al., 2020). These exploratory studies provide
preliminary evidence of the efficacy of decreasing FAA for treating
MDD.

tACS to increase frontal gamma
oscillation

Targeting the abnormal decreased gamma oscillations in MDD
patients, latest clinical studies have also explored the modulation
effects of prefrontal gamma tACS on MDD. Some pioneering
case studies revealed the positive modulation effects of 40 Hz.
For example, in a recent case study, the bilateral DLPFC (F3/F4)
was targeted with 40-Hz tACS at 2 mA for 20 min per day in
a pregnant woman with MDD. After receiving nine stimulation
sessions within 2 weeks, the depressive symptoms [as assessed
with the HAMD, Beck Depression Inventory (BDI)] decreased,
and cognitive performance [as assessed with the Trail-Making
Test (TMT)] improved. These effects were sustained at 2-week
and 3-month follow-up assessments (Wilkening et al., 2019).
Subsequently, Haller et al. (2020) investigated how different gamma
tACS protocols influenced treatment efficacy. In this study, six
patients were randomly divided into two groups, with one group
receiving 10 min of stimulation twice a day and the other group
receiving 20 min of stimulation once a day, with both groups
receiving 10 stimulation sessions within 2 weeks. The stimulus
parameters were 2 mA applied to the bilateral PFC (F3/F4) at
40 Hz. After 2 weeks of intervention, MDD symptoms (as assessed
with HAMD and BDI) were alleviated and cognitive tests (n-back
and trail making test) improved in both groups. In particular, the
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improvements were more significant in the group that received
twice-daily stimulation. Moreover, some RCTs have focused on
the tACS modulation effects of frontal gamma bands at higher
frequencies on MDD. In a recent RCT, 30 first-episode, drug-naive
MDD patients were randomly assigned to either the treatment or
sham stimulation groups. One electrode was placed on the forehead
(covering Fp1, Fpz, and Fp2), and two reference montages were
placed on the bilateral mastoids. These three electrodes emitted
a 15-mA alternating current at 77.5 Hz. The stimulation was
administered for 40 min per day, 5 days per week and for 4
consecutive weeks. The results revealed that the depression severity
scores (as assessed with the HAMD) in the treatment group
were significantly lower than those in the sham group, and this
effect persisted at the follow-up assessment 4 weeks later (Wang
et al., 2020). Previous studies have shown that 77.5-Hz tACS
increases the concentrations of beta-endorphin and serotonin in
the cerebrospinal fluid, hypothalamus and cortex, producing an
antidepressant effect (Lebedev et al., 2002; Zaghi et al., 2010). In
a subsequent RCT study with a larger sample size (n = 100), the
same tACS parameters were used. The results showed that there
was a significant reduction in depressive symptoms and a higher
response rate in the treatment group in both the immediate test
and another test administered 4 weeks after the intervention. At
week 4, the response rate (a decrease in HAMD-17 score ≥50%)
and remission rate (HAMD-17 score ≤7) were higher than those
in the sham group, and the difference in the response rate lasted
until week 8 (Wang et al., 2022). Together, these studies indicate
that multisession PFC gamma tACS helps to alleviate symptoms of
MDD and improve cognitive function.

tACS to reduce global theta
synchronization

Targeting the abnormally increased theta synchronizations
among the MDD-related networks, a recent RCT further tested
if tACS desynchronizing theta oscillations could alleviate MDD
symptoms. The researchers assigned 33 volunteers with depression
and/or anxiety to either the tACS or tDCS group. Each participant
received two 20-min stimulation sessions and two 20-min sham-
stimulation sessions in a randomized order. In the tDCS group,
F3 and FP2 were selected as the anodal and cathodal sites with a
current of 2 mA. In contrast, in the tACS group, the strength of
theta synchronizations among the whole brain was first calculated,
and then a 6-Hz anti-phase current was passed between the
two electrodes with the highest theta synchronizations. Although
anxiety and depressive symptoms were improved in both groups,
the degree of depressive symptom alleviation was more significant
in the tACS theta desynchronization group. Further analysis also
showed that participants who received the treatment first showed
larger improvements than those who received the sham stimulation
first (McAleer et al., 2023). This result encourages future studies to
treat MDD from the interarea network perspective.

In summary, clinical tACS studies have shown promising
improvements in alleviating MDD symptoms. However, we should
note that the underlying modulation mechanisms of these studies
were various and resulted in different outcomes. For instance,
only gamma tACS studies emphasized the enhancement of

cognitive performance in MDD patients. Furthermore, while
most clinical studies focused on modulating neural oscillations
in the frontal cortex, there was a lack of consistency in
tACS settings. Discrepancies in electrode placement, stimulated
frequency, and dosages could account for the mixed modulation
results across studies, particularly in high-frequency interventions.
Besides, it is also crucial to conduct more high-quality RCTs
that directly compare different categories and settings of tACS
modulation effects.

Challenges and future directions

Although the significant progress in tACS technology,
understanding of neural oscillations, and clinical practices in past
decades, there are some challenges to the clinical translation of
tACS. We suggest that in-depth interdisciplinary collaboration is
necessary to optimize the efficacy of each intervention step and
fundamentally promote the clinical application of tACS for MDD
treatment. We summarize from three aspects: intervention target
selection, stimulation implementation, and clinical validation
(Figure 4).

Intervention target selection

Selecting the targets for tACS intervention is fundamental to
the success of intervention. Below, we summarize several challenges
when choosing intervention candidates with the largest clinical
values. First, the causal relationship between most neural oscillation
abnormalities and MDD symptoms is unclear. We suggest that,
at least three criteria should be satisfied for a tACS intervention
candidate as follows: the neural oscillation differs in MDD
patients compared to healthy individuals, the neural oscillation
strength predicts the severity of MDD symptoms, and the neural
oscillation strength returns to normal levels after treatment in
case studies. Future studies should more focused on intervention
evidence, especially for brain areas besides frontal cortex. Second,
the relationship between neural oscillation abnormalities and
information processing impairments should be further clarified.
On the one hand, MDD studies have found that some neural
oscillations exhibit opposite abnormal patterns between the resting
state and functional states, suggesting that the functions of neural
oscillations could be state-dependent. Therefore, future tACS
interventions should consider neural states. On the other hand, the
latest data-driven findings have revealed a series of neural features
that can distinguish MDD patients from healthy individuals,
decoding the mechanism of these abnormal neural features
may greatly enlarge our pool of intervention candidates. Third,
the correspondence between different symptoms of MDD and
specific brain network abnormalities should be further explored.
Researchers have summarized three main symptomatologic
features of MDD (Malhi and Mann, 2018). Current research has
mainly focused on mood and cognitive symptoms, with relatively
few studies on neurovegetative symptoms. Additional research
on sleep abnormalities in depressive populations is needed and
investigating non-invasive interventions for MDD during sleep is
an important direction for future studies.
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FIGURE 4

Challenges and future directions of tACS in the treatment of MDD. In-depth interdisciplinary collaboration is necessary to optimize the efficacy of
each intervention step and fundamentally promote the clinical application of tACS for MDD treatment.

tACS implementation

The efficacy of tACS interventions cannot be guaranteed
without a precise implementation procedure. Here, we summarize
three main challenges for tACS implementation. Standardizing
tACS intervention is the top priority. One of the most important
aspects of an intervention protocol is determining key parameters,
including stimulation sites, current intensities and frequency
bands. To guarantee the implementation of a standardized
procedure, it is also necessary to provide an operation manual as
well as training for potential users. Another important aspect for
developing a tACS treatment plan is knowledge of the effects of the
number of stimulation sessions and intersession intervals, which
should be explored more systematically. Moreover, overcoming
critical technical challenges is essential for further improving
tACS implementations, which requires more involvements of
biomedical engineers. For example, it remains unclear how to
effectively suppress (instead of increase) brain oscillations in a
specific frequency (e.g., inhibit the hyperactivity of parietal beta
oscillations), and how to modulate an abnormal oscillation pattern
that consists of more than one targeted frequency or consists of
signals from multiple brain areas (e.g., feature combinations from
classifier findings). The advances in tACS intervention techniques
can better meet various clinical needs for MDD treatment. Another
challenge is the development of tACS technology that is compatible
with non-invasive neural imaging techniques. Currently, direct
measurements of the current distribution of tACS mainly obtained
through invasive electrophysiological recordings, and for most
application cases, the electrical current distribution of tACS can
be determined only by simulations. Solving this technical problem
would enable direct observation of the immediate and subsequent
effects of tACS intervention and help us better understand its

underlying mechanism, providing a gold standard to evaluate
intervention efficacy.

Clinical validation

Clinical validation is vital in determining whether a specific
tACS intervention is suitable for widespread use in MDD
treatment, and there are several significant challenges in current
clinical practice. First, the evidence for the effects of different
tACS frequencies on psychiatric symptoms is inconclusive,
and clear neurophysiological mechanisms are lacking. The
immediate priority is conducting more confirmatory RCTs for
several promising tACS intervention plans. The clinical value
of tACS should be further emphasized to potential users such
as psychiatrists. Second, the highly complex and dynamic
nature of MDD symptoms, which require symptom-dependent
intervention plans. Depression is highly comorbid with other
psychiatric disorders, especially anxiety (Tiller, 2012). Additionally,
a significant proportion of unipolar MDD patients may develop
bipolar disorder during treatment (Ratheesh et al., 2017). Some
recent studies have found that neural oscillation abnormalities
reported in MDD studies may be more closely related to anxiety,
and the neural states during unipolar and bipolar periods could
be greatly different. Therefore, tACS intervention plans should be
developed not only based on patients’ current state but also their
potential future states. Third, the interaction between tACS and
other treatment methods must be fully considered in future clinical
practice. As the first-line intervention for MDD, drug treatment has
been found to impact the efficacy of TMS or tDCS interventions
(Connolly et al., 2012; Wang et al., 2021), but few studies have
examined such influences on tACS interventions. For example,
previous studies have found that ketamine primarily regulates
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gamma oscillations among multiple brain areas (Nugent et al.,
2019). Does this mean that tACS targeting gamma oscillations
should not be recommended for patients receiving ketamine to
avoid any interference, or will tACS result in a better integration
effect? Similarly, psychological treatments, such as cognitive–
behavioral therapy, interpersonal psychotherapy, and mindfulness
therapy, have also been widely used in MDD treatment, and future
research should aim to improve intervention efficacy by combining
the strengths of each type of intervention.

Conclusion

In the past decade, tACS has demonstrated unique clinical
potential in precisely modulating both local and interarea
abnormal brain rhythms. Accordingly, accumulating studies have
significantly advanced our understanding of brain oscillation
abnormalities in MDD from these two perspectives, providing a
series of tACS intervention options for MDD treatment. Moreover,
pioneering clinical trials have shown preliminary treatment effects
of tACS, indicating its potential as a viable MDD treatment
option. However, to facilitate the potential clinical application
of tACS, further causality studies on neural abnormalities and
MDD, research on standardized tACS intervention procedures, and
additional RCTs are needed.
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