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Accurate recognition of patients’ movement intentions and real-time adjustments

are crucial in rehabilitation exoskeleton robots. However, some patients are

unable to utilize electromyography (EMG) signals for this purpose due to poor

or missing signals in their lower limbs. In order to address this issue, we

propose a novel method that fits gait parameters using cerebral blood oxygen

signals. Two types of walking experiments were conducted to collect brain blood

oxygen signals and gait parameters from volunteers. Time domain, frequency

domain, and spatial domain features were extracted from brain hemoglobin.

The AutoEncoder-Decoder method is used for feature dimension reduction.

A regression model based on the long short-term memory (LSTM) model

was established to fit the gait parameters and perform incremental learning

for new individual data. Cross-validation was performed on the model to

enhance individual adaptivity and reduce the need for individual pre-training. The

coefficient of determination (R2) for the gait parameter fit was 71.544%, with a

mean square error (RMSE) of less than 3.321%. Following adaptive enhancement,

the coefficient of R2 increased by 6.985%, while the RMSE decreased by 0.303%.

These preliminary results indicate the feasibility of fitting gait parameters using

cerebral blood oxygen information. Our research offers a new perspective

on assisted locomotion control for patients who lack effective myoelectricity,

thereby expanding the clinical application of rehabilitation exoskeleton robots.

This work establishes a foundation for promoting the application of Brain-

Computer Interface (BCI) technology in the field of sports rehabilitation.

KEYWORDS

functional near-infrared spectroscopy, cerebral oxygen, walk, motion parameter fitting,
adaptive boosting

1. Introduction

The aging population has become increasingly significant in recent years (Cohen, 2003).
Elderly individuals often experience motor dysfunction due to reduced physical fitness
(Carr, 2013). Furthermore, the number of individuals experiencing motor impairments due
to traffic accidents, work injuries, and diseases is steadily rising. Lower-limb exoskeleton
robots that facilitate patients’ lower-limb movements have the potential to enhance motor
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neuroplasticity and significantly improve rehabilitation outcomes
(Zheng et al., 2019; Moucheboeuf et al., 2020). Ensuring a favorable
human-robot interaction between the lower limb rehabilitation
exoskeleton robot and the human body is crucial for ensuring
safety, comfort, and the effectiveness of rehabilitation (Long et al.,
2015). The BLEEX exoskeleton (Kazerooni et al., 2005; Zoss et al.,
2005, 2006) detects the wearer’s gait by using plantar pressure,
angle, and speed sensors for exoskeleton control. The eLEGS
(Campbell, 2010; Strausser and Kazerooni, 2011) exoskeleton
mainly utilizes sensors in the sensing crutches and lower limb
skeleton to determine the human motion intention for human-
robot coordination. However, traditional physical sensors can only
detect the signal after the wearer’s movement, which makes it
difficult to achieve precise control and real-time adjustment of the
exoskeleton.

For the first time, the HAL exoskeleton (Hayashi et al.,
2005; Kawamoto and Sankai, 2005) used electromyography (EMG)
sensors to collect EMG signals, combined with knee torque and
attitude sensors to identify human gait. EMG is a bioelectrical signal
generated based on the action unit action potential sequence of
muscle fibers during muscle activity, which can objectively reflect
muscle activity information. Li et al. (2015) fitted the joint angle of
the knee and hip based on EMG and used the least-squares support
vector machine to establish a regression model, where the mean
square error of the joint angle was less than 5◦. Xiong et al. (2020)
used random forest (RF) to establish a regression model based on
sEMG to fit the angles of the knee and ankle joints during walking.
The mean square errors of the knee and ankle joints were 6.64◦ and
3.89◦, respectively.

While the aforementioned studies yielded satisfactory results,
the practical application of lower-limb rehabilitation exoskeleton
robots is intended for patients with motor dysfunction. Some
patients may exhibit poor or absent EMG signals, thus necessitating
the exploration of brain-computer interface technology as a
potential solution (Vaughan et al., 2003; Vallabhaneni et al.,
2005). Current brain signal acquisition techniques include
electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI), and functional near-infrared spectroscopy
(fNIRS). Among which fNIRS has the advantages of low cost,
portability, and resistance to motion artifacts compared to
other techniques (Krampe et al., 2018) and is more suitable for
application scenarios with larger amplitudes, such as walking. Zhu
et al. (2017) recognized the walking intention of three different step
sizes based on fNIRS and obtained 83.3 % recognition accuracy.
Jin et al. (2018) identified three different gaits based on fNIRS,
namely, low speed in small step, medium speed in small step
and low speed in medium step, with a classification accuracy of
78.79%. Nevertheless, the identified objects in the aforementioned
studies correspond to discrete motion states, while the control
of rehabilitation training equipment, such as exoskeletons,
necessitates continuous motion parameters. Currently, there
is a dearth of related research based on cerebral blood oxygen
information.

In conclusion, this paper proposes a method that utilizes
cerebral hemoglobin to fit human gait parameters, offering a novel
solution for controlling rehabilitation exoskeletons in patients
where effective collection of surface EMG signals from the lower
limb is not feasible. Meanwhile, based on the cross-validation
model, the individual adaptive enhancement of the cross-validation

model was realized by the adaptive enhancement strategy only for
a small amount of data of new individuals, and the gait parameter
fitting accuracy was further improved.

2. Materials and methods

2.1. Participants

The experiment recruited 38 volunteers from Soochow
University, aged 19–22 years, including 24 males and 14 females,
with a male-to-female ratio of nearly 2:1. They were all involved
in this walking experiment for the first time, were in good physical
condition, and had no other adverse physical disease or psychiatric
history. All volunteers volunteered to participate in the walking
experiment and signed an informed consent form for the brain-
computer interface, which was approved by the Ethics Committee
of Soochow University.

2.2. Procedures and data acquisition

The experiment was divided into two types: speed adjustment
and step adjustment. To eliminate the influence of objective factors
on the experimental sequence, all subjects were randomly divided
into two groups. The first group of participants initially maintained
a constant stride length while gradually increasing their walking
speed from low to high throughout the entire course. Subsequently,
they maintained a constant walking speed while progressively
increasing their stride length from small to large across the entire
course. The second group followed the opposite sequence. Each
type of walking experiment was repeated twice. Each subject
performed a total of four walking experiments, and each completed
walking experiment entered a rest state with a rest time of at least
30 s. The experimental process is illustrated in Figure 1.

In the experiment, near-infrared brain imaging equipment
(NirSmart) was applied to acquire brain hemoglobin information
(Bu et al., 2020). Related studies (Fukuyama et al., 1997; Suzuki
et al., 2004; Churchland et al., 2006; Harada et al., 2009; Holtzer
et al., 2011, 2015; Caliandro et al., 2015) have shown that the
cerebral cortex of prefrontal cortex (PFC), supplementary motor
area (SMA), and primary motor cortex (PMC) are significantly
associated with walking activity and play a key role in the
adjustment of walking speed and step. Therefore, we focus on the
changes in hemoglobin activity in these three brain regions with
a 4∗4 headgear layout (Figure 2). The inertial sensors (Xsens)
were also applied to collect gait parameters, and according to the
literature (McGrath et al., 2018), the knee joint was selected as
the location for collecting motion information during the motion
experiment.

2.3. Data analysis

To ensure the reliability and validity of brain hemoglobin
data, it is crucial to eliminate the baseline drift from the brain
hemoglobin signal (Okamoto et al., 2004). To remove baseline
drift in the channel, subtract the value of the first sampling point
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FIGURE 1

Experimental process. All participants were randomly divided into two groups. For the first group of participants, Task 1 represented walking with
adjusted gait velocity, while Task 2 represented walking with adjusted stride length. The second group of participants had the opposite arrangement,
where Task 1 represented walking with adjusted stride length, and Task 2 represented walking with adjusted gait velocity.

FIGURE 2

Layout of the headgear used in the experiments. (A) The head cap used for collecting cerebral blood oxygenation signals. (B) Probe layout and
measurement of brain regions. The numbers represent channel numbers.

from each data point in the channel’s samples. This adjustment
shifts the oxygenation data to a position around zero. The
heart rate and respiratory activities of the human body exhibit
significant differences between walking and resting states, while the
neuronal activity of the brain represents a focal research frequency
band in BCI technology. The second-order Chebyshev filter is
applied to band-pass filter the brain hemoglobin signal in five
frequency bands (Stefanovska et al., 1999). They were heart rate
effect (0.6∼2.0 Hz), respiration effect (0.145∼0.6 Hz), myogenic
effect (0.052∼0.145 Hz), neurological effect (0.021∼0.052 Hz),
endothelial cell metabolic activity (0.0095∼0.021 Hz). The gait
parameters were subjected to a second-order Butterworth low-pass
filter with a cutoff frequency of 6 Hz. Additionally, an absolute
value operation was performed on the gait parameters, followed by
smoothing using a moving average method. Additionally, while the
research focuses on fitting gait parameters, it is important to note
that these parameters dynamically change during each gait cycle,
and the rotation angle and speed of each joint in the lower limbs
during normal walking are primarily regulated by the lumbar nerve,
rather than conscious control by the brain (Blumenfeld, 2002).
Consequently, the research relies on the maximum speed/step
(rotation angular velocity and rotation angle) within a gait cycle
for digital step processing. This approach simplifies the fitting of
gait parameters while also enabling the derivation of real-time gait
parameter data for each gait cycle by considering the maximum

speed/step parameters in conjunction with the statistical patterns
of gait parameters within each cycle.

The temporal and spatial characteristics of 3 kinds of cerebral
blood oxygen [oxygenated hemoglobin concentration (Hbo),
deoxygenated hemoglobin concentration (Hbr), total hemoglobin
concentration (Hbt)] in 5 frequency bands were extracted. Time
domain features include energy, mean value, standard deviation,
peak value, range, kurtosis, skewness, number of zero crossing and
information entropy. The spatial domain features are calculated
using Pearson correlation coefficients. Given the substantial
number of sample points and features involved in a study, modeling
time can be significantly prolonged. Moreover, the inclusion of
redundant features may adversely affect the predictive performance
of the model. Hence, it is imperative to employ correlation
analysis and calculate feature importance scores to identify the
most influential features for model fitting. This approach mitigates
modeling time while enhancing predictive performance. Initially,
the filtering method is employed to analyze the correlation
coefficient (p) between each feature and gait parameters. A higher
value of p suggests that the feature is more suitable for fitting gait
parameters. Setting a threshold at 0.3, features with p greater than
0.3 are retained. Subsequently, the embedded method is employed
to train the gradient boosting tree, enabling the acquisition of
coefficients (c) for each feature. If the absolute value of the c
is larger, it indicates that the feature has a greater contribution
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to fitting gait parameters. Finally, calculate the final score of the
feature fscore (Formula 1):

fscore =
2p |c|
p+ |c|

(1)

The features with larger fscore values are selected as the new
feature space, and the AutoEncoder-Decoder framework (Hinton
and Salakhutdinov, 2006) is employed for feature dimensionality
reduction. This approach retains the key feature information while
enhancing computational efficiency. The training set is divided
into a cross-validation set and a test set, and the model is trained
using 4-fold cross-validation. Prior to model training, the feature
data and inertial sensor data are Z-Score normalized to reduce
individual variability. The long short term memory (LSTM) model
(Sherstinsky, 2020) was applied to establish a regression model
for fitting the gait parameters, and L2 regularization was used
to prevent overfitting during model training. An incremental
learning approach is utilized for adaptive training, building upon a
small amount of volunteer data, utilizing the LSTM model as the
foundation. Zhang et al. (2014) conducted a study on decoding
continuous upper limb movements based on EMG signals. They
employed an adaptive training approach to decode continuous
upper limb movements from EMG signals. Compared to non-
adaptive methods, the training results were more accurate. During
the adaptive training process, the coefficient of R2 was used as
the evaluation criterion. If the R2 value improved, the new model
parameters were retained; otherwise, the original model parameters
were kept.

The primary evaluation indicators for model fitting include
the relative root mean square error (RMSE, Formula 2) and the
coefficient of determination (R2, Formula 3).

RMSE=

√√√√∑m
i=1

(
yiPred−yiReal

yiReal

)2

m
(2)

R2 = 1−
∑m

i=1
(
yiPred−yiReal

)2∑m
i=1

(
yiReal−yMReal

)2 (3)

where yiPred represents the ith sampling point corresponding to
the model-fitted gait parameter, yiReal represents the ith sampling
point corresponding to the true gait parameter, and yMReal
represents the average of all sampling points corresponding to the
true gait parameter.

RMSE measures the average difference between predicted
values and actual values. A lower RMSE indicates a better fit, as
it suggests that the predicted values are closer to the actual values.
R2 represents the proportion of variance in the dependent variable
that can be explained by the independent variables. It ranges from
0 to 1, where 1 signifies a perfect fit and 0 indicates no relationship
between the variables. When fitting gait parameters, a lower RMSE
and a higher R2 indicate higher model accuracy and improved fit.

3. Results

3.1. Extraction and analysis of features

Initially, the cerebral hemoglobin signal is processed to remove
baseline drift and band-pass filtered in five frequency bands by the

second-order Chebyshev filter. The gait parameters are processed
by absolute value after low-pass filtering, then smoothed by moving
average method, and finally processed by ladder line in the adjacent
minimum range. Features were extracted from the pre-processed
brain hemoglobin signal, and the features were calculated from
the perspective of time domain and spatial domain, respectively.
These features are 5 (1–5 frequency band) ∗ 3 (brain hemoglobin
HbO, HbR, HbT) ∗ (6∗9 + 15) (temporal and spatial domain
characteristics) = 1,035.

Feature selection based on correlation analysis and feature
importance score. For speed parameters (Figure 3), the frequency
bands of neural activity and endothelial cell metabolic activity
accounted for 50.0% of the 5 frequency bands. The proportion of
deoxyhemoglobin in the three types of blood oxygen was as high
as 51.6%. For the step length parameter (Figure 4), the heart rate
and respiratory activity frequency band accounted for 62.8% of the
5 frequency bands. The proportion of oxyhemoglobin in the three
types of blood oxygen was as high as 43.3%.

3.2. Gait parameter adaptive fitting
results

A total of thirty subjects were selected from the experimental
sample and divided into training and testing sets in an 8:2 ratio.
The model was trained using 4-fold cross-validation. During the
training of the model, a forgetting rate of 0.2 was set, along with
200 iterations. Additionally, an early stopping mechanism based on
minimizing RMSE was incorporated. During the 200 iterations of
the training process, if the RMSE value does not decrease for eight
consecutive iterations, the model stops training.

The final statistical results of the fitted gait parameters for the
30 volunteers showed that the RMSE of the cerebral blood oxygen
information for the fit of the gait speed parameters was 1.361%
and the R2 was 71.554%, the RMSE for the fit of the gait length
parameters was 3.321% and the R2 was 72.022%.

The LSTM model was adaptively trained using 8 unused subject
data from a pool of 38 volunteers. Following adaptive training,
there was an average decrease of 0.303% in the RMSE of individual
speed parameters, accompanied by an average increase of 9.851%
in R2. Similarly, there was an average decrease of 1.198% in the
RMSE of individual step parameters, accompanied by an average
increase of 6.985% in R2. Figure 5 shows the speed parameters and
step parameters of a volunteer before and after adaptive training.

4. Discussion

This study proposes a method for fitting human continuous
gait parameters based on cerebral hemoglobin. At present, physical
sensors and EMG information are mainly used to identify gait
parameters in the control of the lower extremity exoskeleton.
However, some patients have poor-quality of EMG signals or no
signals, which may cause secondary injuries to patients. While some
studies (Shen et al., 2022; Zhu et al., 2022) used EEG information
to identify gait to achieve real-time control of the exoskeleton, the
practical application of EEG signals is hindered by susceptibility to
interference from complex external electromagnetic environments,
leading to suboptimal recognition outcomes. The fNIRS devices
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FIGURE 3

Feature importance distribution corresponding to the speed parameters. (A) Analysis of feature importance across different frequency bands.
(B) Analysis of feature importance for different types of cerebral oxygenation.

FIGURE 4

Feature importance distribution corresponding to step length parameters. (A) Analysis of feature importance across different frequency bands.
(B) Analysis of feature importance for different types of cerebral oxygenation.

possess characteristics such as portability and low sensitivity to the
testing environment, making them more suitable for real-world
scenarios in the clinical application of rehabilitation exoskeleton
devices. This study focused on maintaining a continuous variation
of gait parameters during the walking experiments, with specific
values determined by the participants’ own height and walking
habits. It was not required for each participant to achieve a specific
absolute value of gait parameters during the walking experiments.
The emphasis of this study was to stimulate the spontaneous nature
of participants’ movements and to align the walking experiments
with their real-life walking experiences. These are conducive to the
application of rehabilitation exoskeleton equipment.

Most of the current studies based on cerebral blood oxygen are
to distinguish between rest and motion states or to identify discrete

motion states while fitting continuous motion parameters is still
in the preliminary exploration stage. We established an LSTM
regression model for fitting continuous gait parameters through
brain hemoglobin information. The RMSE of the speed parameters
fitting was 1.361%, and the R2 was 71.554%. The RMSE of the step
parameters fitting is 3.321%, and the R2 was 72.022%. The results
tentatively demonstrate the feasibility of use cerebral blood oxygen
to fit gait parameters for exoskeleton control when the EMG signals
of the lower limbs cannot be collected.

For the purpose of high-fitting model applicability, an
individual adaptive optimization strategy based on the cross-
validation model and individual added data is proposed. The cross-
validation model is trained adaptively by incremental learning
method to retain the optimal model parameters adapted to
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FIGURE 5

A volunteer’s speed and step parameters before and after adaptive training. (A) Speed parameters (B) step parameters.

individuals. Following adaptive training, there was an average
decrease of 0.303% in the RMSE of individual speed parameters,
accompanied by an average increase of 9.851% in R2. Similarly,
there was an average decrease of 1.198% in the RMSE of individual
step parameters, accompanied by an average increase of 6.985%
in R2. The cross-validation model can be directly applied to all
participants without individual training and learning. The adaptive
parameter learning based on the cross-validation model can quickly
optimize the fitting effect of gait parameters according to the
new data of individuals and improve the adaptiveness of the
model output, which is helpful to increase the practicality in
fitting individual joint motion parameters scenarios and reduce
the discomfort caused by misjudgment due to the difference of
individual walking habits.

Furthermore, this study has certain limitations. The experiment
recruited 38 subjects, all aged between 19 and 22 years, resulting
in a relatively young age distribution. The practical application
object of the lower limb rehabilitation exoskeleton robot should
be the public. Belli et al. (2021) found differences in cerebral
oxygenation activity in the cortical regions of the brain during
walking between young and elderly individuals. Therefore, future
research should aim to collect brain oxygenation data from
individuals across different age groups to validate the applicability
of this study’s findings. Additionally, there is a need to establish
an online validation platform to assess the feasibility of using
brain oxygenation information to control exoskeleton devices. This
would allow the research results to be effectively applied in the
rehabilitation of individuals with movement impairments.

Currently, this paper provides only a preliminary exploration
of the feasibility of fitting gait parameters using cerebral blood
oxygen, leaving ample room for enhancing the accuracy of the
fitted model. As the study is based on the maximum value of a
gait cycle (speed/step) for the step process, the gait parameters are
also fitted to characterize the maximum value of the current cycle.
Therefore, the parameters fitted in a gait cycle should theoretically
be the same and should not change significantly in the short term
(e.g., 0.5 s) after a significant change in gait parameters. In future
research, efforts will be made to optimize this issue and minimize
the occurrence of false positives within a single gait cycle. At the
same time, this study has not been compared with other filtering

methods or fitting algorithms, so more filtering algorithms and
fitting algorithms need to be tried in the future to improve the
accuracy of the model.

5. Conclusion

This study established an LSTM regression model for
fitting continuous gait parameters through brain hemoglobin
information. For the fitting of speed parameters, the RMSE
was 1.361% with an R2 of 71.554%. Meanwhile, the fitting of
step parameters resulted in an RMSE of 3.321% with an R2
of 72.022%. Additionally, incremental learning of the cross-
validation model was performed using individual volunteer data.
The RMSE of all individual speed parameters decrease on
average 0.303%; R2 average increase 9.851%; The RMSE of all
individual step parameters decrease on average 1.198%; R2 average
increase 6.985%. The research results preliminarily prove the
feasibility of fitting continuous motion parameters based on
cerebral blood oxygen information. This scheme can provide
a new rehabilitation exoskeleton control scheme for patients
who cannot collect effective lower limb EMG, improve the
applicability of rehabilitation exoskeleton equipment, and lay a
certain foundation for the full application of BCI technology in the
field of sports rehabilitation.
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