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According to cognitive dissonance theory, a discrepancy between preferences
and actions may lead to the revaluation of preferences, increasing preference for
the chosen options and decreasing for the rejected options. This phenomenon
is known as the spreading of alternatives (SoA), which results in a choice-
induced preference change (CIPC). Previous neuroimaging studies have identified
several brain regions that play a role in cognitive dissonance. However, the
neurochronometry of the cognitive mechanisms underlying CIPC is a topic of
debate. In other words, does it occur during the difficult choice, immediately after
the choice, or when people encounter the options again? Furthermore, it remains
unclear what is the exact time point, relative to the onset of facing options, either
within the choice or after it, when the attitudes start to be revised. We argue that
applying online protocols of transcranial magnetic stimulation (TMS), during or
immediately after the choice process, could be the most efficient way to better
understand the temporal dynamics of the SoA effect. TMS allows for achieving
high temporal and spatial resolution, modulating the activity of areas of interest,
and examining the causal relationships. Besides, unlike the offline TMS, the
online instrument allows tracking of the neurochronometry of attitude change,
by varying stimulation onsets and durations with respect to the option stimuli.
Based on scrupulous analysis of previous findings, employing online TMS studies
of conflict monitoring, cognitive control, and CIPC neuroimaging results, we
conclude that the use of online TMS is critical to examine the neurochronometry
of CIPC.

spreading of alternatives, choice-induced preference change, cognitive dissonance,
neurochronometry, decision-making, rTMS

1. Introduction

Normative decision theories suggest that people’s preferences underlie their choices
(Samuelson, 1948; Arrow, 1959), but the cognitive dissonance theory reveals that this is
not always the case, pointing out contrary cases (Festinger, 1957). According to Festinger’s
theory of cognitive dissonance, choosing between two equally attractive options is considered
a difficult decision that may lead to inconsistency between the positive aspects of a rejected
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option and the negative aspects of a chosen option. This,
thereby, induces cognitive dissonance, which is psychologically
uncomfortable. Accordingly, such discomfort may motivate people
to reduce cognitive dissonance by re-evaluating the negative and
positive aspects of the options. A preference for a chosen option
tends to increase, whereas a preference for a rejected option tends
to decrease. Hereby, cognitive dissonance causes choice-induced
preference change (CIPC) and leads to the so-called spreading of
alternatives (SoA) (Brehm, 1956; Mann et al., 1969).

The discovery of CIPC has entailed years of behavioral,
neuroimaging, and brain stimulation research (for a review, see
Enisman et al., 2021). Neuroimaging studies have demonstrated
the role of various brain regions in cognitive dissonance, including
the dorsolateral prefrontal cortex, the medial prefrontal cortex, the
nucleus accumbens (NAcc), the anterior and posterior cingulate
cortices, the anterior insula, and the hippocampus (Izuma et al,,
2010; Voigt, 2022).

However, the neurochronometry, or the timing of the
neurocognitive mechanisms underlying CIPC, still remains under
debate. The temporal dynamics of the CIPC and cognitive
dissonance-induced preference changes have received relatively
little attention, compared to the functional mapping of preference
changes. Particularly, it is not clear whether CIPC is implemented
and encoded by neural networks, right before making a decision,
during the difficult choice, right after the choice, or when people
face the selected (or rejected) options again. This issue is not
restricted to its specifics, since it might provide insight into the
sources of CIPC and disentangle the cognitive dissonance reduction
mechanisms from other cognitive processes underlying CIPC, such
as value refinement (Voigt, 2022; Lee and Pezzulo, 2023).

2. CIPC mechanism timing in
reference to the choice process

Neuroimaging studies mostly assume that people revalue or
rationalize alternative options only after the choice was made and
filed in memory, or after addressing the options again (Izuma
et al.,, 2010, 2015; Kitayama et al., 2013; Mengarelli et al., 2015;
Chammat et al,, 2017). In other words, according to this view,
the central nervous system continuously detects that preferences
are not aligned with previous choices and modifies preferences
accordingly, leading to the SoA. Importantly, the basic behavioral
SoA paradigm consists of at least three stages: Rating 1, the first
stage, where participants rate items for the first time; Choice, the
second stage, where they choose between similarly rated pairs
of items; and Rating 2, the third stage, where participants rate
all the items again. Interestingly, in most neuroimaging studies,
the Choice stage has been largely ignored. Instead, previous
neuroimaging studies have predominantly focused on the Rating 2
stage as the critical phase for preference change (Izuma et al., 2010,
2015; Mengarelli et al., 2015; Chammat et al., 2017). For example,
pioneering studies by Izuma et al. (2010) and Qin et al. (2011)
analyzed functional magnetic resonance imaging (fMRI) data, only
during both Rating tasks, and not during the Choice task.

Yet, a limited number of fMRI and electroencephalography
(EEG) studies have specifically focused on neural activity during
difficult choices (Nakao et al., 2016; Colosio et al, 2017;
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Voigt et al., 2019) and have shown that preference changes
might already be implemented during the Choice stage of the
SoA paradigm. For example, Voigt et al. (2019) demonstrated
that preference changes were predicted by the activity in the left
dorsolateral prefrontal cortex and precuneus while making difficult
choices. The authors later theorized their results into a model,
assuming that the need to choose elicits an adaptation mechanism
that adjusts preferences and further reconstructs the value-based
choice (Voigt, 2022). Thus, identifying the neural signature of the
moment of the CIPC launch would help to clarify further discussion
of the exact preference change neural mechanisms. In this vein, an
EEG study demonstrated that difficult choices during the Choice
stage triggered error-related negativity, which is correlated with
the reevaluation of the alternatives (Colosio et al., 2017). Recent
fMRI studies have shown that the activity of the medial cortices
and NAcc during difficult choices predicts subsequent preference
changes (Jarcho et al,, 2011; Kitayama et al., 2013). Moreover,
eye-tracking findings suggested that the fixations pattern during
the Choice stage served as good predictors of the direction and
amplitude of preference changes (Voigt et al., 2019). Importantly,
recent computational studies of CIPC link attitude change, with a
learning rate that is updated exactly during choices (Vinckier et al.,
2019; Zhu et al., 2021). The reinforcement learning and Bayesian
models showed that such a learning rate update was the best
predictor of participants’ behavior. Moreover, some quantitative
studies have demonstrated not only the CIPC timing but also the
computational mechanisms related to temporal dynamics (Lee and
Daunizeau, 2020, 2021).

Despite significant progress in CIPC research, there is no
consensus on the neurochronometry underlying CIPC. It is
possible that the post-decisional SoA may occur right before,
during the choice, right after the choice, or (and) later, when people
face the options again. Here, we suggest that an application of
the online protocols of transcranial magnetic stimulation (TMS),
not only during Rating 2, but also during the Choice task,
may lead to a deeper understanding of the temporal dynamics
underlying the SoA effect.

3. Online TMS instrument for CIPC
exploration

Unlike other neuroimaging methods, online TMS gives an
opportunity to activate and deactivate regions of interest by
stimulating them precisely in time and space. TMS is often
used in causal brain mapping, ie., in finding out a causal
relationship between certain brain areas and the brain function.
Such stimulation can be offline or online. Online TMS has certain
advantages compared with offline TMS. Importantly, to clarify
the temporal neural dynamics underlying the SoA, one could
vary the onsets of TMS to determine the time windows, when
TMS can efficiently eliminate the SoA. However, the offline brain
stimulation that has been used in previous studies, does not allow
us to trace the neurochronometry of cognitive dissonance in the
necessary detail. Online TMS can be effectively used to infer
the timing and location of (cortical) neuronal events underlying
changes in attitudes during different stages of the SoA paradigm.
Interestingly, TMS studies are less sensitive to the behavioral
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artifacts associated with SoA paradigms, which may reveal already
existing preferences, instead of a result of a shift in preferences
(Chen and Risen, 2010). Since the above-mentioned artifacts
are similar in the experimental and control TMS conditions, all
behavioral differences across conditions can be attributed only to
the effect of the TMS on the neural events underlying the SoA.
However, certain limitations, such as electric field distribution
modeling, complex neuronal response, and the TMS confounding
effects, drive the need for subtle and accurate elaboration and
revision of the TMS protocols (Hobot et al., 2021; Siebner et al,,
2022).

4. Effectiveness of different online
TMS onsets in cognitive conflict
tasks

Surprisingly, online TMS protocols have never been applied
to dissonance-inducing tasks, which provides no reference points
in terms of the timing of an effective online TMS protocol.
Nevertheless, based on similar behavioral paradigms (Friehs et al.,
20205 Parris et al,, 2021), it is possible to speculate on the onsets
of online TMS which would be effective in eliminating the SoA.
We can base future online TMS studies of the cognitive dissonance
on the previous results of the typical conflict-inducing paradigms,
namely, the Stroop task, flanker paradigm, and Simon tasks (for a
review see Olk et al., 2015), since they also involve conflict detection
and resolution mechanisms. It should be emphasized that various
cortical areas have been associated with conflict detection and
cognitive control. Hence, here, we ignore online TMS studies that
target brain zones, mostly related to visuomotor integration, but
instead focus on TMS studies of the prefrontal cortex.

Some studies have used TMS to intervene in the process
of conflict monitoring by downregulating the prefrontal cortex,
immediately after the stimulus onset, without any delay (Soutschek
et al., 2013; Zhao et al., 2018; Friehs et al., 2020), or even 100 ms
before the stimulus onset (Taylor et al., 2007). Other studies have
hindered cognitive conflict processing by stimulating the cortex at
100 ms (Obeso et al., 2013), or at 200 ms (Hayward et al., 2004,
2007), after the stimulus onset. However, these TMS studies did
not allow for a comparison of the effect of different delays and
included stimulation at only one latency. TMS studies of the Stroop
effect increased the error frequency, using various time ranges
of pulse delivery: from 125 to 175 ms (Cai et al., 2012), from 0
to 100 ms (Chen et al.,, 2009), and from 20 to 200 ms (Masina
et al., 2018) after the stimulus onset. Nevertheless, there was no
pulse timing effect in these studies which can be explained by
affecting different levels of conflict monitoring, since other brain
regions, including the primary motor cortex, become active due
to the prefrontal area modulation (Obeso et al., 2013). Combined
EEG-TMS studies are of particular interest because they enable
additional control of the effect of TMS pulses’ delay by monitoring
task-induced neurophysiological activity. Verleger et al. (2009)
delivered TMS pulses at four latencies with a 30 ms interval,
starting from the 281 ms peak of the flanker-evoked brain activity
(lateralized readiness potential (LRP) waveform peak). They found
that the 311 ms latency (30 ms after the peak, 281 ms after the
flanker onset, and 174 ms after the target one) of the TMS pulses
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is critical for cognitive conflict resolution. Using this protocol,
researchers discovered that in trials where flankers are incompatible
with targets, the LRP amplitude is positively correlated with the
amplitude of the motor-evoked potential, which can give inference
into the start of switching to the correct response in conflict
trials.

5. Optimal timing of CIPC TMS
studies

To the best of our knowledge, there are no online TMS
studies of CIPC, and for now, one can only speculate about the
optimal timing of online TMS stimulation, based on relevant EEG
studies. Interestingly, Colosio et al. (2017) demonstrated that the
neural activity associated with difficult choices was distributed
frontocentrally and peaked at ~60 ms after the button press. The
CIPC neural response was similar to error-related negativity, which
peaks in the range of 60-120 ms after an error has been made
(Gehring et al., 1993). Meanwhile, Nakao et al. (2016) linked the
preference change to frontocentral beta and gamma power, at the
time interval of around 400 ms after the decision. The discovered
early responses give a clue to the CIPC timing in reference to the
choice stage, and to the promising opportunity to analyze the neural
signature of CIPC during the choice.

In addition, we would like to suggest paying attention not only
to studies with the choice between equally attractive options, but
also to research other non-reinforced preference changes, such as
the ones induced by social influence. A magnetoencephalography
(MEG) study of recommendation-based social influence on
preference change (Irani et al., 2022), found the evoked activation
in the 68-245 and 320-998 ms time windows after the conflict
trials’ onset, in which the individual’s opinion was inconsistent with
the opinion of the group. Irani et al. (2022) consider the early
time window to be a reflection of the negative emotion of pressure
to change the initial preference in the face of a social rejection
threat which is compatible with the cognitive dissonance theory
(Festinger, 1957) in creating uncomfortable feelings and a strong
motivation to retrieve an acceptable state.

6. Conclusion

Overall, previous studies of conflict monitoring have
demonstrated a large variance in the timing of online TMS
protocols. Besides, the choice of the timing for online TMS was
rarely supported by the neuroimaging data with high temporal
resolution, such as EEG and MEG. Although it is well known
that the effects of online TMS on cognitive processing are latency
dependent, 90% of online TMS studies applied stimulation
simultaneously with stimuli onsets (for a meta-analysis see
Beynel et al., 2019). Here, we would like to stress that a proper
understanding of the neural mechanisms of CIPC calls for a set of
online TMS interventions, applied to different brain sites and time
windows, in order to clarify their functional role in CIPC. Initial
TMS studies may synchronize stimulation with the choices (Choice
stage), or with the onset of the second presentation of the rejected
or selected options (Rating 2 stage). Follow-up studies may vary the
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delay between the critical stages of the choice-induced paradigm
and onsets of TMS pulses, in order to study the neurochronometry
of the CIPC more precisely. It is also critical that the CIPC
researchers associate their hypotheses regarding CIPC temporal
dynamics with an attempt to understand which cognitive processes
manifest behaviorally as the preference change, and to disentangle
between them.

In our opinion, the online TMS that is able to dysregulate
neurocognitive mechanisms at different time points can be an
optimal tool for resolving the current discussion about the actual
onset of CIPC. Using different protocols of online TMS, we
can clarify whether the revaluation of alternatives occurs during
choices, or later, when the person faces the rejected or selected
options again. Finally, by combining TMS with EEG and fMRI, we
will be able to further characterize brain connectivity and temporal
dynamics underlying CIPC.
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