
fnhum-17-1223774 September 13, 2023 Time: 15:51 # 1

TYPE Brief Research Report
PUBLISHED 19 September 2023
DOI 10.3389/fnhum.2023.1223774

OPEN ACCESS

EDITED BY

Sunil Kumar Telagamsetti,
KU Leuven, Belgium

REVIEWED BY

Kandala N. V. P. S. Rajesh,
VIT-AP University, India
Shishir Maheshwari,
Thapar Institute of Engineering
and Technology, India

*CORRESPONDENCE

Piyush Swami
piyushswami@ieee.org

Xiaomeng Su
xiaomeng.su@ntnu.no

RECEIVED 16 May 2023
ACCEPTED 31 August 2023
PUBLISHED 19 September 2023

CITATION

Swami P, Gramann K, Vonstad EK, Vereijken B,
Holt A, Holt T, Sandstrak G, Nilsen JH and Su X
(2023) CLET: Computation of Latencies
in Event-related potential Triggers using
photodiode on virtual reality apparatuses.
Front. Hum. Neurosci. 17:1223774.
doi: 10.3389/fnhum.2023.1223774

COPYRIGHT

© 2023 Swami, Gramann, Vonstad, Vereijken,
Holt, Holt, Sandstrak, Nilsen and Su. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

CLET: Computation of Latencies
in Event-related potential Triggers
using photodiode on virtual
reality apparatuses
Piyush Swami1,2,3*, Klaus Gramann4, Elise Klæbo Vonstad1,
Beatrix Vereijken5, Alexander Holt1, Tomas Holt1,
Grethe Sandstrak1, Jan Harald Nilsen1 and Xiaomeng Su1*
1Motion Capture and Visualization Laboratory, Applied Information Technology Group, Department
of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway, 2Section
for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University
of Denmark, Kongens Lyngby, Denmark, 3Biomedical Engineering Techies, Broendby, Denmark,
4Biological Psychology and Neuroergonomics, Technical University of Berlin, Berlin, Germany,
5Department of Neuromedicine and Movement Science, Norwegian University of Science
and Technology, Trondheim, Norway

To investigate event-related activity in human brain dynamics as measured

with EEG, triggers must be incorporated to indicate the onset of events in

the experimental protocol. Such triggers allow for the extraction of ERP, i.e.,

systematic electrophysiological responses to internal or external stimuli that must

be extracted from the ongoing oscillatory activity by averaging several trials

containing similar events. Due to the technical setup with separate hardware

sending and recording triggers, the recorded data commonly involves latency

differences between the transmitted and received triggers. The computation of

these latencies is critical for shifting the epochs with respect to the triggers sent.

Otherwise, timing differences can lead to a misinterpretation of the resulting

ERPs. This study presents a methodical approach for the CLET using a photodiode

on a non-immersive VR (i.e., LED screen) and an immersive VR (i.e., HMD).

Two sets of algorithms are proposed to analyze the photodiode data. The

experiment designed for this study involved the synchronization of EEG, EMG,

PPG, photodiode sensors, and ten 3D MoCap cameras with a VR presentation

platform (Unity). The average latency computed for LED screen data for a set of

white and black stimuli was 121.98 ± 8.71 ms and 121.66 ± 8.80 ms, respectively.

In contrast, the average latency computed for HMD data for the white and black

stimuli sets was 82.80 ± 7.63 ms and 69.82 ± 5.52 ms. The codes for CLET and

analysis, along with datasets, tables, and a tutorial video for using the codes, have

been made publicly available.
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motion-capture (Mocap), latencies, electroencephalography (EEG), event-related
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1. Introduction

1.1. Motivation

Many applications of electroencephalography (EEG) and
event-related potentials (ERP) (Luck, 2012; Nidal and Malik, 2014)
require the use of triggers (or tagging) (Wang et al., 2016; Cattan
et al., 2018) to indicate the exact onset of presented stimuli (mostly
visual or auditory events) (Miyakoshi et al., 2021; Ignatious et al.,
2023) so that the recorded physiological data can be synchronized.
However, variability in various hardware and software typically lead
to differences in latencies between the transmission and reception
of triggers (Wang et al., 2016; Cattan et al., 2021; Iwama et al.,
2022). It is of importance that these latencies in triggers should
not be confused with another type of latency that is present in
the neural markers, such as N170, P250, N400, etc. (Luck, 2012;
Cattan et al., 2021; Miyakoshi et al., 2021; Abreu et al., 2023).
Although there are several studies (Hoormann et al., 1998; Kiesel
et al., 2008; Wu et al., 2013; Liesefeld, 2018; Ignatious et al., 2023)
that showcase the computation of latencies in neural markers and
their association with brain activities, the focus of the current
work is on the computation of latencies in event-related potential
TRIGGERS, which is a critical pre-processing step for any brain-
computer interface (BCI) study. Existing literature (discussed in
the next section) lacks a methodical approach with datasets to
compute trigger latencies, especially for immersive virtual reality
(VR) apparatus. The objective to overcome this knowledge gap
formed the main motivation of this work.

1.2. Literature survey

While past studies (Cattan et al., 2018; Iwama et al., 2022)
have highlighted shifting of ERP epochs based on computed
average latencies, other studies illustrate details about setting up
the triggers to overcome latency differences (Wang et al., 2016;
Cattan et al., 2018). To the best of our knowledge, only a few
studies exist which describe the importance and considerations for
computing the latencies in triggers using immersive VR systems
(Wang et al., 2016; Cattan et al., 2021; Iwama et al., 2022). In
the literature (Wang et al., 2016; Lees et al., 2018), Rapid Serial
Visual Paradigm (RSVP) (Wang et al., 2016; Lees et al., 2018) is
one of the common, simple, yet effective approaches for sending
triggers. Lab Streaming Layer (LSL) (Stenner et al., 2023) is another
preferred choice in many studies (Wang et al., 2016; Iwama et al.,
2022). The availability of open-source resources like Simulation
and Neuroscience Application Platform (SNAP) (Kothe, 2023)
developed in Python to ease stimuli presentation, also favored
using LSL. However, this could mandate using a setup with
bigger memory and displays with higher refresh rates compared
to the RSVP approach (Wang et al., 2016). For efficient hardware-
software synchronization with the LSL approach, an extra hardware
setup like Light Diode Resistor Comparator Circuit (LDRCC)
(Wang et al., 2016) has also been used. Hence, the RSVP approach
with C# programming was followed in this work.

Most of the existing literature (Lopez-Calderon and Luck, 2014;
Cattan et al., 2018, 2021; Lees et al., 2018; Williams et al., 2021;

Huang et al., 2022; Iwama et al., 2022), which at least provide
scattered details and some considerations for settings up triggers,
are based on using only EEG sensors or at most a few auxiliary
(AUX) sensors. Although synchronization with other modalities
like motion-capture (MoCap) has been achieved (Miyakoshi et al.,
2021), the knowledge about setting up its triggers and computation
of latencies during VR experiments is lacking.

1.3. Objectives

The work present work contributes to overcoming the
existing knowledge gaps in the literature by setting up the
following objectives: (1) to demonstrate the Computation of
Latencies in Event-related potential Triggers (CLET) as a tool for
measuring latencies in multi-model experiments, especially when
VR apparatuses are used; and (2) to provide open access to novel
datasets, codes, tables, and a tutorial video1 to ensure transparency
and reproducibility of results, as well as boost future improvements
in the algorithms.

1.4. Brief outline of the next sections

The work was performed to test the synchronization of
triggers in a multi-model experiment that was designed to
monitor biomechanics (specifically gait patterns) and physiological
signals. This article is limited to the illustration of the CLET
approach. The experimentation is explained in the next section,
and the proposed method is detailed in the subsequent section.
The computed latencies and their distribution are described in
the results section, with the method’s advantages compared to the
state-of-art being covered in the discussion section. Finally, the
conclusions, limitations and future scope for improvement are
described in the last section.

2. Methods

2.1. Experimentation

The experiment setup with the rapid serial visual paradigm
(RSVP) is shown in Figure 1A. The apparatus included one
desktop personal computer (PC1)–with Unity and Qualisys Track
Manager (QTM) software installed and one laptop (PC2) with
EEG Recorder (Brain Vision Recorder) software installed. The
biomechanics monitoring setup included 3D MoCap cameras (nine
Qualisys high-speed cameras and one Miqus camera), and the
physiological monitoring setup included Brain Products LiveAmp
with 64-channel wireless EEG with dual channels EMG and one
PPG sensor. A photodiode was connected as an auxiliary (AUX)
sensor with either a LED screen or an HMD at a time. The LED
screen consisted of a Sony TV (KDL-75W855C) with dimensions
of 167.7 × 96.9 × 7.9 cm and a refresh rate of 100 Hz. The HMD

1 github.com/BiomedicalEngineeringTechies/CLET.git
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FIGURE 1

(A) Block diagram showing the experimental setup. Procedure to place and cover photodiode on (B) Light Emitting Diode (LED) screen, and (C) left
eyepiece of a head-mounted display (HMD). For both displays, step number 1 is to cover the photodiode with the black tape. Step number 2 is to
cover the tape with a piece of black cloth and secure the cloth. Step number 3 is to repeat the last step. Although the experiment was conducted in
a dark room, the above steps ensured that any ambient light, if present due to displays or other electronics, did not affect the photodiode signals.

consisted of HTC VIVE Pro Eye with a field of view of 110◦ and a
refresh rate of 90 Hz.

As shown in Figure 1A, PC1 was used to control the MoCap
apparatus through a wired connection with the QTM software. The
same computer was also used for stimulus presentation through
the Unity software, which sent triggers to the EEG amplifier (amp.)
unit via a USB connection to the wireless trigger box. Both displays
were also connected to PC1. Data recorded using the amplifier
was sent via Bluetooth to USB1 and USB2 dongles connected to
PC2. The stimuli consisted of ∼100 images of black and white
colors. The neutral image consisted of a gray color image with

a red-colored cross at the center. The selection of these images
represented ON (white screen) and OFF (black screen) input
signals to the photodiode placed on the display. This procedure
aligned with the protocol described in Cattan et al. (2021). The
inter-stimulus interval (isi) was randomly varied between 1.0–
1.5 s with a fixed stimulus duration of 0.3 s. The experimental
paradigm was written in C# inside the Unity software. Here, the
white and black stimuli were assigned to be displayed as “S1” and
“S2” triggers, respectively, in EEG recordings. Similarly, the start
and end of the recordings were assigned “S7” and “S8” triggers,
respectively.
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FIGURE 2

Photodiode data recorded from Light Emitting Diode (LED) screen. Panel (A) is scaled to an instance of 10 s data, and panel (B) is scaled to an
instance of 5 s data, to show changes in the shape of the signal after the onset of each type of stimulus.

The photodiode was placed on the LED screen and covered
with a black tape and then black cloth to prevent any disturbance
from any external light source. The procedure to place and cover
the photodiode for both displays is shown in Figure 1B. The entire
experiment was performed in a dark room. After the calibration
of Qualisys markers, the test involved recording QTM, then the
Brain Vision Recorder (BV Rec.), followed by Unity. When the test
was complete, a text notification was visible in the Unity console
window. The operator was required to stop the software in the
reverse order, i.e., Unity, then BV Rec., followed by QTM. The data
was synchronized through triggers and time points noted in the
log files. A similar process was repeated by the placement of the
photodiode on the HMD and covering the sensor with black tape
and black cloth. The procedure for placing the photodiode sensor
is shown in Figure 1C. Each test lasted ∼5 min. The photodiode
data recorded from each display is shown in Figures 2, 3. For better
visualization of its shape, a section of 5 s is shown in Figures 2B, 3B.
The methods developed to analyze the photodiode data recorded
(see next section) have subtle variations for each of the displays due
to the differences in their shapes.

2.2. Data analysis

2.2.1. Prerequisites
The algorithm was developed in MATLABBR2021a using

inbuilt functions except for pop_fileio() (available in open-source
EEGLAB library), which was used to load data.

2.2.2. Algorithm for CLET using data recorded
from the LED screen

Notations: Let triggers sent for the first type (white image) and
the second type (black image) of stimuli be S1 and S2, respectively.
Let triggers detected for the first type (white image) and the second
type (black image) of stimuli be D1 and D2, respectively.

Inputs: Directory Path, File Name, the Lower limit of the
inter-stimulus interval (Lisi, i.e., 1 s in this study), Thresholds
ThD1 and ThD2 for detecting triggers for the first and the second
type of stimuli, respectively. For the LED screen, ThD1 is the
transient rise in the signal’s amplitude (Figure 2B) above which
the algorithm would detect D1. Similarly, ThD2 is the transient
drop in the signal’s amplitude (Figure 2B) below which the
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FIGURE 3

Photodiode data recorded from the head-mounted display (HMD). Panel (A) is scaled to an instance of 10 s data, and panel (B) is scaled to an
instance of 5 s data, to show changes in the shape of the signal after the onset of each type of stimulus.

algorithm would detect D2. The developed code would first plot
the photodiode data extracted from the .eeg file. Then the user
would be required to visually inspect and define any one of the
100 values of D1 and D2. These values do not need to be precise.
For the data shown in Figure 2, the value of ThD1 = 60000
and ThD2 = 20000.

Outputs: Array of onset time (s) when triggers were sent tS1 and
tS2; array of onset time (s) when triggers were detected tD1 and tD2;
array of latencies between D1 and S1, i.e., LatD1S1 (ms), and array
of latencies between D2 and S2, i.e., LatD2S2 (ms).

I. Steps:

1. Load photodiode data.
2. The gap between the indices of the detected triggers

indxGap = Sampling rate fs ∗ Lisi
3. To compute LatD1S1:

3.1. Define matrix PosPhoto containing 1’s and 0’s
where 1’s represent positions of positive peaks
PosPhoto = DataPhoto ≥ ThD1

3.2. For PosPhoto = P1, P2, ..., Pn; find the difference between
the (n+ 1)− n terms, i.e., PosDiff = (P2 − P1) ,

(P3 − P2) , ..., (Pn+1 − Pn)

3.3. Pad 0 in the beginning, ∴ PosDiff = 0, PosDiff
3.4. Indices for D1 indxD1 = find(PosDiff = = 1)

3.5. Onset samples for D1 onsetsam_D1(1) = indxD1(1)

3.6. For n = 2 : (Length of indxD1− 1)

If indxD1 (n) >
(
indxD1 (n− 1)+ indxGap

)
onsetsam_D1 (n) = indxD1(n)

3.7. onsetsam_D1 = (Values of onsetsam_D1 ∼= 0)

3.8. tD1 = Time points in DataPhoto corresponding to
onsetsam_D1

4. LatD1S1 = (tD1− tS1) ∗ 1000 in ms.
5. To compute LatD2S2:

5.1. Define matrix NegPhoto containing 1’s and 0’s
where 1’s represents positions of negative peaks.
NegPhoto = DataPhoto ≥ ThD2

5.2. Substitute [S2/S1] and [D2/D1] in steps 3.2 to 4.
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FIGURE 4

Latency distributions for complete photodiode data recorded from (A) Light Emitting Diode (LED) screen and (B) head-mounted display (HMD). Blue
and pink reflect LatD1S1 and LatD2S2, respectively, while purple reflects overlap in LatD1S1 and Lat D2S2.

2.2.3. Algorithm for CLET using data recorded
from the HMD

The notations for HMD-based data are the same as for the
LED screen. Also, the inputs are similarly defined, except ThD2
which is the threshold of the smaller peaks in between the gaps,
as observed in Figure 3B. In this case, ThD1 = 180000 and
ThD2 = 8000.

II. Steps:
The algorithm to compute LatD1S1 here also remains the same

as I. Steps 1 to 4 in section Algorithm for CLET using data recorded
from the LED screen.

5. To compute LatD2S2:
5.1. Find all the ordinates of peaks in DataPhoto

5.2. Define matrix xVals containing 1’s and 0’s where 1’s
represents positions of peaks.

5.3. xVals = Replace positions of 1
′

s with abisccas of DataPhoto.
5.4. For n = 1 : (Length of signal− indxGap)

If xVals (n)
∧

xVals (n+ 1)
∧

xVals (n+ 2)
∧

xVals (n+ 10)

< ThD2
Then, the ordinates of peaks with the rest of the values
equal to 0 are yVals

5.5. Position of small peaks PosSmPhoto = Replace
values of yVals 6= 0 with 1

′

s.
5.6. Substitute [S2/S1], [D2/D1] and [PosSmPhoto/PosPhoto]

in steps 3.2 to 4.

The outputs LatD1S1 and LatD2S2 computed from steps I
and II (Tables available on the GitHub link mentioned in section
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10 below) were used to plot distributions for the stimuli set (see
Figure 4).

3. Results

The Computation of Latencies using the Event-related potential
Triggers (CLET) method was successfully implemented and
evaluated in two distinct virtual reality (VR) apparatuses, i.e.,
a non-immersive setup with a LED screen and an immersive
setup with a Head-Mounted Display (HMD). The results obtained
from both setups demonstrate the efficacy of the proposed CLET
approach for accurately aligning EEG/ERP triggers with the
presentation of stimuli, thus enabling the extraction and analysis
of data with precision.

3.1. Latency computation for LED screen

In the non-immersive VR environment with the LED screen
(Figure 4A), the CLET method efficiently computed the latencies
for a set of white and black stimuli. For the white stimuli,
the average latency was 121.98 ± 8.71 ms. Similarly, for the
black stimuli, the average latency was 121.66 ± 8.80 ms. The
distribution is maximum between 120–125 ms range (Figure 4A).
Thus, the consistency in the latencies between the two sets of
stimuli indicated the robustness of the CLET approach in this VR
configuration.

3.2. Latency computation for HMD

In the immersive VR environment with the HMD (Figure 4B),
the average latencies were 82.80 ± 7.63 ms, mainly distributed
between 80–85 ms, and 69.82 ± 5.52 ms, mainly distributed
between 67–77 ms for white and black stimuli sets, respectively.
The lower latencies observed with the HMD setup than the LED
screen setup suggested faster temporal dynamics for the immersive
VR apparatus (Iwama et al., 2022). Although this observation is
consistent with findings in the literature (Cattan et al., 2021),
variations are particularly subject to protocols that rely on sending
triggers for synchronization (Wang et al., 2016; Lees et al., 2018)
and specifications of the hardware apparatuses (Rebenitsch and
Owen, 2017; Cattan et al., 2018; Andreev et al., 2019; Wilson, 2023).

The results from both VR setups (Figure 4) also highlight
the importance of considering latency distributions along with
precision and accuracy (Williams et al., 2021) in the computation
of latencies for aligning epochs, to avoid any timing discrepancies
which would otherwise lead to misinterpretations of data (Cattan
et al., 2021; Iwama et al., 2022).

4. Discussion

One of the primary strengths of this study lies in the
rigorous experimental setup involving the synchronization of
various sensors, including EEG, EMG, PPG, photodiode, and
nine 3D and a 2D (Miqus) MoCap cameras. This multi-model

approach assured a comprehensive investigation of the developed
algorithms to compute trigger latencies in VR. Therefore, a
direct comparison of this study with the state-of-the-art event-
latency computation approaches (Cattan et al., 2018, 2021;
Iwama et al., 2022), which were based on lower number of
modalities recorded, would be biased. Nevertheless, Figure 4
demonstrates latencies at par with the stated literature. The
novelty lies in the two sets of algorithms proposed for the
CLET method to accurately detect triggers and compute latencies
for both LED screen and HMD data. The adaptability of the
algorithms to the subtle variations in the photodiode data shapes
for each display type further highlights their versatility and
robustness.

The shorter latencies observed in the HMD setup compared
to the LED screen setup can likely be attributed to the hardware
characteristics of the display technology, which could facilitate
faster triggering and data transmission (Cattan et al., 2018; Andreev
et al., 2019).

5. Conclusion, limitations, and
future scope

In conclusion, the results from this research successfully
demonstrate the effectiveness of the CLET method for
accurately computing latencies in event-related potential (ERP)
triggers within two different virtual reality (VR) apparatuses.
Efficient synchronization of different sensors and apparatuses
also contributed to the validity and the applicability of the
CLET method to real-world scenarios. The rapid serial
visual paradigm (RSVP) discussed in this study has also
been the suggested paradigm due to its simplicity and high
temporal accuracy to achieve low values of latencies in triggers
(Wang et al., 2016).

A limitation of the proposed algorithms is their semi-
automated nature. However, providing open access to the
developed codes for CLET, along with novel datasets, tables,
and a tutorial video, provides transparency and reproducibility.
This encourages the wider scientific community to adopt and
validate this method in their own ERP studies, thereby also
fostering improvements in the algorithm. One approach could
be to use artificial intelligence (AI) or machine learning (ML)-
based clustering method(s) to capture transient changes in the
shared datasets, followed by automated thresholding to achieve
the remaining computation steps as in CLET. Additionally, factors
related to the photodiode’s placement and sensor positioning on
each display could have influenced the latency measurements.
A separate study could be conducted to discuss the best positioning
of the photodiode depending on the type of stimuli and display
apparatus. It is also stressed that the HMD used in this study
consisted of dual displays for each eyepiece. Thus, averaged latency
calculated for each lens separately could be used for better accuracy
(Cattan et al., 2021). It would be interesting to see the application
of CLET in Brain-Computer Interface (BCI) extended to other
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neuroimaging modalities, such as functional magnetic resonance
imaging (fMRI) (Levitt et al., 2023) and magnetoencephalography
(MEG) (Liesefeld, 2018), to enable further multimodal
investigations of brain activities during Virtual Reality (VR) or
Augmented Reality (AR) experiences. This study was limited to
only the onset of visual stimuli and offline analysis. With rapid
progress in developing VR/AR and haptic technologies (Lm, 2023),
accurate computation of trigger latencies will become more critical
in real-time BCI feedback systems (Putze et al., 2020; Wen et al.,
2021), as well as in transcranial magnetic stimulation (TMS)-
based neurorehabilitation (Hernandez-Pavon et al., 2023) where
inaccurate triggers could have serious impact on the course of
rehabilitation.
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