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Introduction: It is proved that there are di�erences between gait performed
by females and males, which appear in movements of selected body parts.
Despite numerous state-of-the-art studies related to the discriminative analysis
of motion capture data, the question of whether measures of signal complexity
and uncertainty can extract valuable features for the problem of sex distinction
still remains open. It is the subject of the paper.

Methods: Correlation dimension, as well as approximate and sample entropies,
are selected to describe motion data. In the numerical experiments, the collected
dataset with 884 samples of 25 females and 30maleswas used. Themeasurements
took place in the Human Motion Laboratory (HML), equipped with a highly precise
motion capture system. Two variants of data representation were investigated-
time series that contain joint rotations of taken skeletonmodel as well as positions
of the markers attached to the human body. Finally, a comparative analysis
between the populations of females and males using descriptive statistics, non-
parametric estimation, and statistical hypotheses verification was carried out.

Results: There are statistically significant sex di�erences extracted by the taken
measures. In general, the movements of lower limbs result in greater values of
correlation dimension and entropies for females, while selected upper body parts
play a similar role for males. The dissimilarities are mainly observed in hip, ankle,
shoulder, and head movements.

Discussion: Correlation dimension and entropy measures provide robust and
explainable features of motion capture data with a valuable description of
the human locomotion system. Thus, beyond the importance of discovered
di�erences between females and males, their interpretation and understanding
are also known.

KEYWORDS

approximate entropy, sample entropy, correlation dimension, sex di�erences, gait

analysis, motion capture

1 Introduction

There are many sex-specific differences, primarily anatomical (e.g., manifested by pelvic

movements or body mass distribution), but also relating to customs (e.g., walking with

high heels), which could be reflected in the way of walking. So, it is believed that sex

and gender have an influence on how humans walk and on gait patterns. There are

lots of studies related to the discriminative analysis of gait performed by females and

males, that utilize kinematic data. Bruening et al. (2015) apply a quite straightforward

approach. Ranges of motion for successive joints are calculated across gait cycles and

then the mean values and standard deviations are compared. Sex differences are noticed
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separately for skeletal joints. Quite similarly (Fukano et al.,

2018) focus on sex-based differences in the range of motion

observed in talocrural flexion and subtalar rotation during

walking. Barrett et al. (2008) use variability of 3D rotations

for the hip, knee, and ankle, represented by the coefficient of

multiple determination. Bayhan and Aydin (2018) use additionally

spatiotemporal parameters—cadence, stride time, double support,

stride length, step length, and walking speed—in the comparison,

and Bruening et al. (2020) also take the displacements of the center

of mass into consideration. The natural rhythm of locomotion is

analyzed by Błaszczyk (2014), it is higher for women by about 6–9

strides/min.

In the study of Kowalski et al. (2021), the interaction of sex

with state and trait physical and mental fatigue is investigated. It is

assessed by the asymmetry of lateral step variability and coefficient

of variation of gait speed, stride length and double limb support.

Obrębska et al. (2020) focus on loadings of the knee joint while

Gabriel et al. (2008)—on the stiffness of the ankle measured in the

sagittal plane.

There are also approaches that utilize generic feature extraction.

The most often used one is the linear dimensionality reduction

technique, which maximizes the variance of output components—

Principal Component Analysis (PCA). Kobayashi et al. (2016)

compute PCA for the normalized motion sequences containing

data of pelvic and right-lower-limb-joint angles around three axes.

Discriminative abilities for the first six principal components are

finally assessed. Troje (2002) takes the first four eigenpostures

of PCA transformation to extract feature vector in the gender

classification problem, Kastaniotis et al. (2013) compute PCA for

aggregated histograms of joint rotations, Arai and Asmara (2014)

use wavelet transform, while Horst et al. (2020) utilize multi-layer

Convolution Neural Network instead of PCA.

There are plenty of studies related to gait-based gender

differences appearing in certain disorders. Phinyomark et al. (2016)

compare walking of females and males with knee osteoarthritis

by means of eight discrete variables, for instance, the angle at

touchdown, maximum and minimum peak angles during stance

phase, and the angle at toe-off as well as using PCA. Hughes-

Oliver et al. (2018) determine average values and stride-to-stride

standard deviations of stride, swing, stance, and double support

time intervals for ankle osteoarthritis investigation. For humans

with lower back pain, movements of the thorax and lumbar spine

are captured and peak amplitudes of displacements and minimal

detectable changes are extracted by Bagheri et al. (2018). For

multiple sclerosis patients, spatio-temporal parameters of gait, and

kinematics in the sagittal plane at hip, knee and ankle joints were

used by Pau et al. (2017). The stride length, gait speed, cadence,

stance phase, swing phase, and double support as well as dynamic

ranges of movements for the considered joints are determined. In

another approach, knee and hip joints centers as well as knee joint

moments calculated using inverse dynamics were used by Paterson

et al. (2018). Gender and sex differences during motion activities

are also studied by Di Nardo et al. (2015) and Chatain et al. (2021)

using EMG and ground force reaction data, respectively.

Despite extensive research conducted on sex and gender

differences of gait data, the question about the ways to discriminate

walking performed by females and males remains still open. It is

purposeful to explore this area as well as to propose and examine

new approaches.

Remarkable possibilities to extract valuable descriptors of time

sequences are given by correlation dimension and entropy. They

are measures of the complexity of dynamical systems and the

randomness of the observations. The correlation dimension was

applied for instance in the following studies: analysis of heart rate

variability in patients with dilated cardiomyopathy (Carvajal et al.,

2005), assessment of EEG signals of patients with epileptic seizures

(Silva et al., 1999), predicting bispectral index based on EEG

(Ahmadi et al., 2010), measuring dynamics of dyad synchrony for

mocap data (Buccoli et al., 2017) and decoding hand movements

carried out for EMG signals (Namazi and Jafari, 2019). There are

also numerous applications of approximate and sample entropies in

the description of biological time-series data. Among others, they

were used in the analysis of gait represented by ground reaction

forces (Wu et al., 2017), in the classification of eye movement data

(Harężlak and Kasprowski, 2020), the assessment of the influence of

walking speed and ground slope on the gait control based onmocap

sequences (Szczęsna, 2019), characterization of downhill skiing

registered by inertial measurement units (Szczęsna and Janiak,

2019), examination of regularity of the center of pressure during

the performance of four yoga poses (Błażkiewicz, 2020), diagnosis

of unilateral knee pain (Bacon et al., 2022) as well as investigation

of angular displacement when balancing on a stability platform

(Becker and Hung, 2020).

It was experimentally proved, that measures of the complexity

of the system controlling locomotion and randomness of

movement performed by humans may give a valuable description

ofmotion data inmany challenges. Despite this, there are no studies

strictly devoted to the analysis of sex differences in gait using such

measures. It is a subject of the paper—the correlation dimension,

as well as the approximate and sample entropies, are computed for

motion capture data representing gait performed by females and

males. Finally, the statistical analysis was carried out to compare

the selected parameters of global distributions.

2 Methods

It is assumed that the system controlling human locomotion

behaves like a non-linear dynamical system. Its dimensionality

has an influence on the complexity of movements observed

and registered by the motion capture system. To assess this

dimensionality, a type of fractal dimension measure—correlation

dimension—is chosen.

Thus, primarily it is required to reconstruct the phase space

of the dynamical system on the basis of observations—the motion

data. According to Takens’ embedding theorem (Takens, 1981)

time-delayed measurements are taken. For every time instant i

vectors xmi = [xi, xi+τ , xi+2τ , ..., xi+(m−1)τ ] are formed. Time delay

τ is determined on the basis of the first minimum of mutual

information function and embedding dimension m is calculated

using “False Nearest Neighbors” approach. The process is described

in detail by Piórek et al. (2017).

The most broadly used algorithm estimating correlation

dimension was proposed by Grassberger and Procaccia (1983). It is

based on the correlation sum CS(r) estimating correlation integral

and defined as the fraction of pairs of points (xmi , x
m
j ) in the phase
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space whose distances are less than r:

CS(r) =
2

(N −m+ 1)(N −m)

∑

i<j

H(r − ‖xmi − xmj ‖) (1)

where N denotes the length of the time series, N − m + 1

is the number of points in the phase space, and H is the

Heaviside function.

The CS is monotonically decreasing and at the beginning of the

logarithmic scale it can be modeled by the linear function CS(r) ≈

rD. Formally, the correlation dimension (CD) is defined as follows:

CD = lim
r→0

lnCS(r)

ln r
(2)

Thus, in a logarithmic scale, the linear approximation of

correlation sum is determined and its slope coefficient D is an

estimate of the correlation dimension.

There are plenty of entropy measures proposed. Two classical

and chosen ones are the approximate entropy (AppEnt) and the

sample entropy (SampEnt). The approximate entropy (Pincus and

Goldberger, 1994) assesses the regularity and uncertainty of time

series data in the following way. Using the first point of a time

series of length N as the starting point, we form a vector xm1 which

consists of m consecutive points of the time series. Repeating this

procedure for the next consecutive N −m points of the time series

as starting points, we form totallyN−m+1 vectors xmi of lengthm

where 1 ≤ i ≤ N − m + 1. The following formula determines

the number of vectors similar to a given vector xmi as a pattern,

where the distance d[xmi , x
m
j ] between vectors xmi , x

m
j is defined as

the maximum difference of their corresponding elements:

Ci(r,m) =

∑
j
H(r − d[xmi , x

m
j ])

N −m+ 1
(3)

Next, the aggregation over i is carried out using

logarithm function:

8(r,m) =

N−m+1∑
i=1

lnCi(r,m)

N −m+ 1
(4)

Finally, AppEnt is estimated as the difference of the

aggregations for two consecutive values of vector length (m and

m+ 1):

AppEnt(r,m) = 8(r,m)− 8(r,m+ 1) (5)

According to the recommendations from the literature

(Richman and Moorman, 2000), in the experiments the radius of

similarity r was calculated as 20% of the standard deviation of the

entire time series andm was assumed to be 2.

The sample entropy (Richman and Moorman, 2000) is an

unbiased statistic without an influence of self similarities. It extracts

analogous features as the approximate entropy and is based on the

ratio between total numbers of similar patterns (the interpretation

of similarity is the same as for AppEnt):

SampEnt(r,m) = − ln
C(r,m+ 1)

C(r,m)
(6)

TABLE 1 Age [years] distribution of females and males participating in the

acquisition.

Parameter Females Males

Min 22 20

Max 29 45

Average 24.9 23.1

Median 25 21

Standard deviation 2.3 5.9

Quarter deviation 3.7 2

where

C(r,m) =
∑

i<j

H(r − d[xmi , x
m
j ]) (7)

There are extensions of chosen entropy measures introduced

recently. The multiscale sample entropy (Costa et al., 2005)

addresses multiscale features, the multivariate sample entropy

(Looney et al., 2018) allows to assess multivariate time series, the

permutation entropy (Zanin et al., 2012) directly accounts for the

temporal information contained and control entropy (Bollt et al.,

2009) is designed to work with non-stationary signals. Despite the

fact that some of them are applicable to the faced problem and

may give some advantages, at the current stage we decided to use

the classical variants—approximate and sample entropies. They

were extensively applied and proved to extract valuable features in

numerous challenges of biomedical signal analysis.

3 Dataset

To compare gait performed by females and males, highly

precise motion capture data were used. The acquisition took place

in the Human Motion Laboratory (HML) of the Polish-Japanese

Academy of Information Technology (PJAIT) (http://bytom.pja.

edu.pl) equipped with the Vicon software and hardware. The

collected dataset consists of 884 gait sequences of 25 females self-

identifying as a woman and 30 males self-identifying as a man.

The age distributions for both random samples are quite similar,

as depicted in Table 1. The male part is exactly the same as the

dataset used by Świtoński et al. (2019, 2021). The recording process

of female data was compatible.

The default Vicon Blade skeleton, which contains 22 bone

segments shown in Figure 1 was applied in the acquisition.

It means that a pose is described by 3D rotational data of bone

segments as well as global translation and orientation. Moreover,

it can be transformed into a point cloud representation in which

every joint is specified by its 3D coordinates in the global system, as

visualized in Figure 2.

The gait route was approximately five-meter-long–due to

various step lengths slightly different for every participant—straight

line as shown in Figure 3. Participants were asked to perform

two types of gait—with natural and increased speed—that were

interpreted individually. The default 100 Hz frequency was selected

for the acquisition.
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FIGURE 1

Applied skeleton model.

FIGURE 2

Two pose representations: rotational and point cloud.

Due to requirements of the Vicon system, every registration

starts and ends with a T-pose visualized in Figure 5B. Therefore,

in further analysis, only a single gait cycle containing two adjacent

steps performed by the left and right lower limbs was taken. To

detect the cycles, tracking of the extremes of distances between

ankles was carried out as described in detail by Świtoński et al.

(2019). Themiddle cycle, as themost representative one, is selected.

The average length of such a preprocessed time series is 108

data points.

The visualization of raw mocap time series representing

randomly chosen female and male gait cycles is depicted in

Figure 4. It contains Euler angles triplets coding 3D rotations of

bone segments.

4 Experimental setup

Multivariate mocap sequences are divided into separate time

series that represent pose parameters—rotational angles or 3D

markers positions. For each of them, the aforementioned measures

of complexity and randomness of the signal were calculated. Thus,

gait samples are described by correlation dimension as well as

approximate and sample entropies determined separately for every

pose parameter. Different variants of pose models were considered.

In the basic one, rotations of the skeleton joints are taken. By

default, they are described by Euler angles triplets with data of

basic rotation around axes of the local coordinate system. However,

the calibration process of motion capture acquisition, in which the

local systems are determined, depends on the range of performed

movements, as depicted in Figure 5A, and strict markers position

on a human body. Thus, it is not fully unambiguous and results

in slightly different orientations of local systems and not fully

compatible models. Therefore, to simplify the description and

obtain a more reliable analysis, rotations were transformed to axis-

angle representation, similar to unit quaternions, and only the angle

value was used.

In the second variant, point cloud representation was applied. It

means that correlation dimension and entropies were determined

for the sequences of the 3D joint locations in the global

coordinate system.

Finally, a statistical comparative analysis for the populations

of females and males, represented by random samples formed by

the obtained values of taken measures, was carried out. It was

aimed at exploring the differences between populations. Primarily,

descriptive statistics were calculated. The mean and median values

as well as standard and quarter deviations were selected. Moreover,

statistical hypotheses were stated and verified to compare the

parameters of the general population of females and males. The

p-values—the probabilities of obtaining the calculated measures

assuming the null hypothesis is correct—are presented.

In the second variant of the pose description, the

aforementioned statistics were calculated for measures obtained

for X, Y, and Z coordinates.

5 Results

The analysis was reduced to the parameters which describe

the movements of the upper and lower limbs as well as head.

The hips (LeftUpLeg, RightUpLeg), knees (LeftLeg, RightLeg),

ankles (LeftFoot, RightFoot), elbows (LeftArm, RightArm),

forearms (LeftForeArm, RightForeArm), shoulders (LeftShoulder,

RightShoulder), and cervical (Head) joints were selected.

The obtained correlation dimension statistics for rotational

data are presented in Table 2. The most remarkable difference

between the populations of females and males can be noticed

for time sequences representing hip movements. Significantly

greater values are obtained by females. It means that the system

controlling females’ hips is more complex which results in more

sophisticated movements. Males perform them in a simpler way.

The observation is valid for both mean and median values

estimated for the populations.

There is a similar observation if ankles are analyzed. Once

again by average, the correlation dimension is higher for the female

population, but the difference in comparison to males is much

smaller than for hips. The opposite dependency can be noticed

for shoulder segments—this time males have greater values of

correlation dimension by average. For the remaining segments,

differences are low or they vary for the left and right body sides.
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FIGURE 3

Example gait instance—front, top, side and perspective views.

FIGURE 4

Raw mocap time series representing Euler angles triplets—RX, RY, and RZ—of Head, LeftLeg and LeftShoulder bone segments for randomly chosen
female (F) and male (M) gait cycles. (A) Head. (B) LeftLeg. (C) LeftShoulder.

FIGURE 5

HML registration procedure. (A) Range of movements. (B) T-pose.

The mean values, as well as standard deviations of correlation

dimension for time sequences with XYZ positions of bone

segments, are presented in Table 3. The analysis is more

troublesome and results are less clear than for rotational data. It

is because the motion is decomposed into three sequences that

are also related to gait direction. In general, the maximum value

for all three series: X, Y, Z is most significant and should be

analyzed. Moreover, the segment’s position in the global system

does not depend only on the rotation of the given joint. It is also an

aggregation of states of preceding joints in the kinematic chain—

for instance, foot position depends on the ankle as well as the hips

and knee rotations. Despite this, partially quite similar observations

as for rotational data can be found. Females have greater values of

correlation dimension for hips and males for shoulders, but feet

perform quite similarly.

Bearing in mind that the analysis carried out for rotational

data seems to be more reliable, the approximate and sample

entropies were calculated only for this variant of motion data
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TABLE 2 Correlation dimension for selected joints described by an angle of rotation of skeletal data.

Joint/Segment Mean ± STD Median ± QD

Females Males Females Males

LeftUpLeg 2.29± 0.64 1.97± 0.41 2.17± 0.64 1.90± 0.46

RightUpLeg 2.39± 0.69 1.96± 0.37 2.24± 0.69 1.91± 0.43

LeftLeg 2.04± 0.54 2.06± 0.59 1.90± 0.54 1.91± 0.66

RightLeg 2.00± 0.54 2.02± 0.53 1.89± 0.54 1.93± 0.59

LeftFoot 2.48± 0.59 2.35± 0.50 2.40± 0.59 2.28± 0.60

RightFoot 2.51± 0.72 2.36± 0.52 2.40± 0.72 2.28± 0.74

LeftArm 2.49± 0.68 2.44± 0.60 2.35± 0.68 2.33± 0.71

RightArm 2.51± 0.64 2.41± 0.61 2.39± 0.64 2.26± 0.76

LeftForeArm 2.09± 0.50 2.15± 0.52 2.02± 0.50 2.04± 0.57

RightForeArm 2.22± 0.51 2.26± 0.55 2.15± 0.51 2.18± 0.61

LeftShoulder 2.44± 0.66 2.61± 0.55 2.32± 0.66 2.54± 0.68

RightShoulder 2.48± 0.63 2.59± 0.58 2.35± 0.63 2.50± 0.67

Head 2.66± 0.80 2.61± 0.62 2.49± 0.80 2.55± 0.84

Mean values± standard deviations as well as median values± quarter deviations are calculated for populations of females and males.

TABLE 3 Correlation dimension for selected joints described by the XYZ coordinates in the global system.

Joint/Segment X Y Z

Females Males Females Males Females Males

LeftUpLeg 2.08± 0.53 1.96± 0.48 1.76± 0.33 1.81± 0.33 1.44± 0.14 1.49± 0.18

RightUpLeg 2.23± 0.71 2.02± 0.54 1.74± 0.32 1.82± 0.33 1.45± 0.14 1.48± 0.17

LeftLeg 1.68± 0.34 1.85± 0.37 1.43± 0.22 1.55± 0.24 0.81± 0.14 0.88± 0.14

RightLeg 1.76± 0.41 1.93± 0.39 1.38± 0.24 1.52± 0.22 0.85± 0.15 0.91± 0.13

LeftFoot 1.43± 0.27 1.44± 0.22 1.31± 0.22 1.33± 0.18 0.67± 0.14 0.59± 0.13

RightFoot 1.51± 0.28 1.59± 0.27 1.44± 0.28 1.43± 0.26 0.77± 0.15 0.71± 0.14

LeftArm 2.01± 0.47 2.00± 0.45 2.40± 1.04 2.53± 1.12 1.60± 0.22 1.49± 0.27

RightArm 2.02± 0.43 2.02± 0.40 2.40± 1.06 2.40± 1.18 1.55± 0.20 1.48± 0.23

LeftForeArm 1.98± 0.42 2.03± 0.48 2.07± 0.69 2.07± 0.65 1.41± 0.22 1.44± 0.23

RightForeArm 2.06± 0.48 2.02± 0.44 2.19± 0.65 2.20± 0.78 1.46± 0.22 1.50± 0.30

LeftShoulder 1.93± 0.47 1.88± 0.38 2.29± 1.16 2.51± 1.25 1.53± 0.47 1.54± 0.53

RightShoulder 1.93± 0.41 1.88± 0.38 2.38± 1.13 2.48± 1.28 1.61± 0.46 1.51± 0.40

Head 2.03± 0.47 2.08± 0.46 2.48± 1.12 2.33± 1.08 1.43± 0.40 1.45± 0.46

Mean values± standard deviations are calculated for populations of females and males.

representation. The obtained statistics are depicted in Table 4. The

results are roughly compatible with the ones for the correlation

dimension (see Table 2) but they are even more general. The

movements of lower body parts are more uncertain for females

than for males—they are specified by higher entropy values.

Really significant differences are obtained for hip and ankle

joints, but slight ones can be noticed also for the knees. As

regards the movements of the upper body parts, they are quite

similar for both populations with only one exception—head

movements are described by slightly higher values of entropy

for males.

Finally, the statistical hypotheses were stated and verified.

They address discriminative features of knees, ankles,

shoulders, and arms movements in respect to correlation

dimension and both measures of entropy calculated for

rotational data.

In the first stage, the normality of distributions was examined.

The Shapiro-Wilk test (Stąpor, 2020) was selected. The obtained

p-values presented in Table 5 for the most cases are very

low (<0.001)—the null hypotheses as being very unlikely are

rejected. It means that the normal distribution cannot be

assumed. Therefore, non-parametric estimation using kernel
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TABLE 4 Approximate and sample entropies for selected joints described by an angle of rotation of skeletal data.

Joint/Segment Mean ± STD

Approximate entropy Sample entropy

Females Males Females Males

LeftUpLeg 0.30± 0.07 0.20± 0.05 0.27± 0.09 0.15± 0.06

RightUpLeg 0.30± 0.08 0.20± 0.05 0.27± 0.09 0.14± 0.06

LeftLeg 0.30± 0.07 0.27± 0.06 0.25± 0.08 0.23± 0.08

RightLeg 0.30± 0.06 0.26± 0.05 0.24± 0.07 0.22± 0.07

LeftFoot 0.30± 0.06 0.23± 0.05 0.28± 0.07 0.20± 0.05

RightFoot 0.31± 0.06 0.23± 0.04 0.29± 0.07 0.20± 0.05

LeftArm 0.34± 0.08 0.29± 0.09 0.31± 0.11 0.25± 0.11

RightArm 0.34± 0.08 0.30± 0.08 0.32± 0.11 0.26± 0.10

LeftForeArm 0.26± 0.05 0.24± 0.07 0.20± 0.07 0.19± 0.09

RightForeArm 0.28± 0.05 0.26± 0.08 0.20± 0.06 0.21± 0.10

LeftShoulder 0.33± 0.06 0.33± 0.08 0.31± 0.09 0.30± 0.11

RightShoulder 0.34± 0.06 0.33± 0.09 0.31± 0.09 0.31± 0.12

Head 0.42± 0.11 0.46± 0.13 0.45± 0.17 0.49± 0.21

Mean values± standard deviations are calculated for populations of females and males.

TABLE 5 The p-values of Shapiro-Wilk test examining normality of distribution of correlation dimension (CD), approximate and sample entropies

(AppEnt, SampEnt) calculated for the movements of selected joints in populations of females and males.

Joint/Segment CD AppEnt SampEnt

Females Males Females Males Females Males

LeftUpLeg < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

RightUpLeg < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

LeftFoot < 0.001 < 0.001 0.203 0.181 < 0.001 < 0.001

RightFoot < 0.001 < 0.001 0.001 0.010 < 0.001 < 0.001

LeftShoulder < 0.001 < 0.001 0.318 < 0.001 < 0.001 < 0.001

RightShoulder < 0.001 < 0.001 0.024 < 0.001 < 0.001 < 0.001

Head < 0.001 < 0.001 < 0.001 0.140 < 0.001 < 0.001

based method (Stąpor, 2020) was carried out to visualize

the distributions and differences between them. The example

outcomes are visualized in Figure 6. The same observations

can be made—there are shifts between the distributions for

females and males. For the LeftUpLeg and RightUpLeg (hips),

greater values are more probable for females in respect to both

measures (CD, Figure 6A, and SampEnt, Figure 6B). There is

a similar but more significant difference for the LeftFoot and

RightFoot (ankles), but only if sample entropy is considered

(Figures 6C vs D). As regards the males, shoulder movements

result in greater correlation dimension values (Figure 6E) and head

movements are associated with greater values of sample entropy

(Figure 6F).

To finally assess the observed discrimination

features, the Mann-Whitney-Wilcoxon test (Gürsoy

et al., 2015) was applied. The null hypothesis

assumes that the cumulative distribution functions for

compared global distributions F(x) (females) and M(x)

(males) are the same against the following alternative

hypotheses:

a) right tailed: F(x) > M(x),

b) left tailed: F(x) 6 M(x).

The results obtained are depicted in Table 6. In most cases,

the null hypotheses are rejected as being very unlikely (p-value

< 0.001). It confirms statistical significance that movements of

lower limbs in hips and ankles are described by greater values

of correlation dimension and entropies for the population of

females, as previously noticed. In the case of males, the shoulder

movements are associated with greater values of correlation

dimension, while head movements—with greater values of both

entropy measures.
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Świtoński et al. 10.3389/fnhum.2023.1233859

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

LeftUpLeg/Women

LeftUpLeg/Men

RightUpLeg/Women

RightUpLeg/Men

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9

10

LeftUpLeg/Women

LeftUpLeg/Men

RightUpLeg/Women

RightUpLeg/Men

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LeftFoot/Women

LeftFoot/Men

RightFoot/Women

RightFoot/Men

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

9

10

LeftFoot/Women

LeftFoot/Men

RightFoot/Women

RightFoot/Men

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LeftShoulder/Women

LeftShoulder/Men

RightShoulder/Women

RightShoulder/Men

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

Head/Women

Head/Men

A B C

D E F

FIGURE 6

Kernel density estimation of correlation dimension (CD) and sample entropy (SampEnt) of the hip, ankle, shoulder and head movements calculated
separately for the populations of females and males. (A) CD, Hips. (B) SampEnt, Hips. (C) CD, Ankles. (D) SampEnt, Ankles. (E) CD, Shoulders. (F)
SampEnt, Head.

TABLE 6 The p-values of the Mann-Whitney-Wilcoxon test for

populations of females and males described by correlation dimension

(CD) as well as approximate and sample entropies (AppEnt, SampEnt)

calculated for the movements of selected joints.

Joint/Segment Tail CD AppEnt SampEnt

LeftUpLeg Right < 0.001 < 0.001 < 0.001

RightUpLeg Right < 0.001 < 0.001 < 0.001

LeftFoot Right < 0.001 < 0.001 < 0.001

RightFoot Right 0.007 < 0.001 < 0.001

LeftShoulder Left < 0.001 0.964 0.998

RightShoulder Left < 0.001 0.999 0.891

Head Left 0.311 < 0.001 0.006

In total, the maxima of the obtained values for the correlation

dimension, approximate, and sample entropies are 6.3, 0.81, and

1.6, respectively.

6 Conclusions

The existence of differences in the gait of females and males

has been repeatedly emphasized in the literature for a long time

(Murray et al., 1966, 1970; Mather and Murdoch, 1994; Troje,

2002), with pelvis and torso being key parts of the human body

when it comes to pointing out these differences. They mainly

concern the frontal plane–Bruening et al. (2015) indicate a greater

pelvic obliquity range of motion in females than in males and the

opposite situation when it comes to torso sway. Movement of the

pelvis in the transverse plane also tends to be greater in females than

in males (Bruening et al., 2015). A similar observation concerns the

range of ankle motion in the sagittal plane (Bruening et al., 2020).

Our results obtained using methods referring to the complexity

and regularity of the analyzed signal seem to be consistent with

these observations. The movements of lower limbs—particularly

hips and ankles—are more complex and uncertain for the

population of females. It results in greater values of correlation

dimension as well as entropies. In the case of upper body parts for

some of them, mainly shoulders, males have higher values of the

taken measures, but mostly they are quite similar. It is consistent

with the general perception of how females and males walk and the

attention paid by a typical observer.

It is possible to aggregate 3D rotations to a single value

that preserves features related to complexity and randomness.

The discriminative analysis conducted on the basis of time

sequences containing the XYZ coordinates of selected body parts

is more troublesome.

The values of the correlation dimension and both entropies do

not discriminate human body movements in exactly the same way,

but they are compatible and correlated. They mostly confirm the

same observations and provide robust and interpretable features of

motion capture data.

Both entropies extract almost identical values. Thus, the known

drawback of the approximate entropy that it is biased and lacking
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relative consistency, does not have crucial meaning in case of the

analysis of motion capture data.

The collected dataset contains gait sequences performed only

by females self-identifying as woman and males self-identifying as

man. Thus, the influences of sex and gender on differences noticed

can not be distinguished.

The main limitation of the research is related to the time

series lengths. For both correlation dimension and entropies, the

estimation’s reliability depends on the sequence’s duration. It is

feasible to process whole registered sequences, but it means starting

T-pose, required by the Vicon system, is also the subject of the

analysis. Another possible variant is taking more than one gait

cycle—in most cases, every recording contains three. However, the

first and last ones correspond to the start-up and end-up phases.

The most natural gait cycle is the one extracted from the middle of

the sequence, which is taken in our computations. Moreover, there

are no strict limits on the time series duration for the estimation

of correlation dimension and entropy. Pincus (1995) recommends

that AppEnt could be used even in case of 75 to 100 data points. It is

also confirmed by Delgado-Bonal and Marshak (2019). This length

condition is met by our time series representing a single gait cycle,

recorded at a frequency of 100 Hz.
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