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Cortical excitability in human
somatosensory and visual cortex:
implications for plasticity and
learning – a minireview
Hubert R. Dinse *, Oliver Höffken and Martin Tegenthoff

Department of Neurology, BG Universitätsklinikum Bergmannsheil, Ruhr University Bochum, Bochum,
Germany

The balance of excitation and inhibition plays a key role in plasticity and

learning. A frequently used, reliable approach to assess intracortical inhibition

relies on measuring paired-pulse behavior. Moreover, recent developments

of magnetic resonance spectroscopy allows measuring GABA and glutamate

concentrations. We give an overview about approaches employed to obtain

information about excitatory states in human participants and discuss their

putative relation. We summarize paired-pulse techniques and basic findings

characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual

areas. Paired-pulse suppression describes the effect of paired sensory stimulation

at short interstimulus intervals where the cortical response to the second

stimulus is significantly suppressed. Simultaneous assessments of paired-pulse

suppression in SI and VI indicated that cortical excitability is not a global

phenomenon, but instead reflects the properties of local sensory processing.

We review studies using non-invasive brain stimulation and perceptual learning

experiments that assessed both perceptual changes and accompanying

changes of cortical excitability in parallel. Independent of the nature of the

excitation/inhibition marker used these data imply a close relationship between

altered excitability and altered performance. These results suggest a framework

where increased or decreased excitability is linked with improved or impaired

perceptual performance. Recent findings have expanded the potential role of

cortical excitability by demonstrating that inhibition markers such as GABA

concentrations, paired-pulse suppression or alpha power predict to a substantial

degree subsequent perceptual learning outcome. This opens the door for a

targeted intervention where subsequent plasticity and learning processes are

enhanced by altering prior baseline states of excitability.

KEYWORDS

paired-pulse behavior, cortical inhibition, plasticity, perceptual learning, GABA

Introduction

When the basics of adult cortical plasticity had been established in the early eighties
of the last century, two basic types of explanation had been proposed. Besides the idea
that new connections are created by growth of axons and/or dendrites, it was suggested
that changes of inhibition and excitation result in reorganization of previously ineffective
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connections which in turn activates neurons previously inactive
(Kaas et al., 1983). This has been substantiated by numerous
studies showing that GABA (γ-aminobutyric acid) is a major player
modulating and shaping neural excitation. Most importantly,
during plasticity and learning, GABAergic mechanisms are crucial
for maintaining a precise balance between excitation and inhibition
(Abbott and Nelson, 2000; Turrigiano and Nelson, 2000; Feldman,
2009; Carcea and Froemke, 2013; Barron, 2021).

Measuring paired-pulse suppression

To measure signatures of excitation and inhibition in human
subjects, the assessment of paired-pulse behavior has become a
standard procedure. It consists of application of pairs of stimuli
in close succession (paired-pulse stimulation), which can be used
as a marker of intracortical excitability in sensory cortices. This
approach is somewhat equivalent to paired-pulse transcranial
magnetic stimulation (TMS), which is widely used to assess plastic
changes in human motor cortex (Kujirai et al., 1993; Reis et al.,
2008).

When applied in sensory areas, paired-pulse suppression
describes the outcome of stimulation with very short interstimulus
intervals (ISI) that the cortical responses to the second stimulus
are significantly suppressed compared to the first stimulus. Paired-
pulse suppression is quantified by calculating the ratio of the
amplitude of the second response divided by the amplitude
of the first response. Small amplitude ratios indicate strong
paired-pulse suppression, while large ratios indicate little paired-
pulse suppression which is taken as a marker for enhanced
excitation. In studies of the paired-pulse behavior in the hand and
finger representations of somatosensory primary cortex (SI), often
electrical stimulation of the median nerve is employed (Figure 1).
Typically, ISIs in the range of 30 ms produce reliable paired pulse
suppression (Allison, 1962; Höffken et al., 2007, 2010, 2013a; Lenz
et al., 2012).

To measure paired-pulse behavior in analogy to investigations
in the visual cortex (VI) we applied a recently established approach
consisting of recording VEPs following patterned paired visual
stimulation (Höffken et al., 2008, 2009). Due to the different
sensory pathways in touch and vision, and due to different types of
subcortical processing, response latencies differ markedly in both
modalities, which affects paired-pulse behavior. Therefore, in VI,
significant suppression can be recorded at ISIs in the range of
100 ms (Höffken et al., 2008, 2009). However, some differences in
methodology should be emphasized. In contrast to studies in SI,
which use electrical stimulation of the median nerve and recordings
of the N20/P25 component in the SEPs, VI studies employ visual
pattern stimulation with recordings of the P100 VEP component.
The resulting broad VEP responses make it impossible to use
shorter ISIs than around 80 ms, as the response peaks tend to
melt into each other at shorter ISIs. It is therefore conceivable that
the paired-pulse behavior is more similar in both systems. This
possibility is supported by the fact that the suppression ratio in SI
at ISIs of 30 ms is in the range of <0.4 (Höffken et al., 2007), while
suppression ratios in VI measured at ISIs of 80 ms are in the range
of >0.6 (Höffken et al., 2008); cf. chapter “Paired-pulse behavior
as an inhibition marker” and “Inhibition markers as predictors of
subsequent performance changes.”

Reflect measurements of cortical
excitability of somatosensory and
visual cortex a global state?

While there is a clear role of cortical excitability in plasticity
and learning, little emphasis has been put on the aspect of
how global an individually assessed level of excitability is. Is it
limited to within a small cortical representational zone, is it the
same across hemispheres and across different sensory modalities?
Individual paired-pulse suppression obtained from recordings
made within a few minutes after each other in left somatosensory
(SI) and primary visual cortex (VI) were comparable although
differing in absolute values (Schloemer et al., 2020). However,
according to a linear correlation analysis, the amount of paired-
pulse suppression measured in SI and VI was unrelated (p = 0.951,
r = −0.012). According to these data, in SI and VI high and
low levels of excitability can co-exist in individual participants.
The data imply that paired-pulse behavior reflect the properties
of sensory processing in local patches of cortex. This high
locality might have important implications for crossmodal learning
experiments. More important, these data support the view that
cortical excitability measured by paired-pulse techniques can be
used as a reliable marker characterizing the currently prevailing
excitatory state within a circumscribed patch of cortex (Schloemer
et al., 2020).

Paired-pulse behavior as an
inhibition marker

Paired-pulse behavior is a reliable marker for obtaining
information about the inhibition-excitation status in cortical areas.
Therefore, measuring paired-pulse behavior is widely used in
animal models, and in particular in human studies because
of the non-invasive nature. However, the mechanisms that
underlie paired-pulse behavior are not fully understood. Often,
the phenomenon of paired-pulse suppression has been subsumed
as short-term plasticity (Zucker and Regehr, 2002). Whole-cell
recordings made in rat auditory cortex demonstrated that at short
ISIs GABAA receptor-mediated inhibition most likely contributes
to forward suppression, while at longer ISIs other mechanisms
such as synaptic depression appear to play a major role (Wehr
and Zador, 2005). However, GABAB receptors have been shown
to similarly control paired-pulse suppression (Porter and Nieves,
2004). Earlier work suggested that not only inhibitory transmitter
systems, but also metabotropic glutamate receptors are involved
in regulating paired-pulse behavior (von Gersdorff et al., 1997).
In addition, Zucker and Regehr (2002) had shown that vesicle
depletion of calcium buffers and accompanying changes of release
probabilities of excitatory synapses are implicated in paired-pulse
behavior. Finally, the application of GABAA agonists such as
lorazepam in studies of human motor cortex (Ziemann et al., 1996;
Werhahn et al., 1999) and somatosensory cortex (Huttunen et al.,
2008; Stude et al., 2016) have provided rather direct evidence that
GABAergic mechanisms are crucial for controlling paired-pulse
behavior.
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FIGURE 1

SEP recordings made in SI following paired-median nerve stimulation at an ISI of 30 ms (left). Shown are the N20 P25 components (first response in
green, second response in light blue), red arrows indicate timing of stimulation and stimulus artifacts. Paired-pulse suppression as a function of ISI
(middle). Recording sites according to the 10-20 system (right). Modified according to Höffken et al. (2007).

Paired-pulse suppression as a
cortical phenomenon

Paired-pulse behavior differs fundamentally between cortical
and subcortical neurons, with little paired-pulse suppression found
subcortically. It has therefore been argued that the profound
cortical paired-pulse suppression is unlikely a consequence of the
temporal thalamic response properties (Wehr and Zador, 2005).
Comparing the temporal response properties along the sensory
pathway of the auditory system supported the view that paired-
pulse suppression is most likely generated at a cortical level
(Creutzfeldt et al., 1980; Miller et al., 2002). Multichannel SEP-
recordings made in human somatosensory system following paired
median nerve stimulation showed that paired-pulse suppression
is present at least upstream to the brainstem nuclei (Höffken
et al., 2010, 2013a). Together these findings support the view that
the mechanisms mediating paired-pulse suppression operate most
likely in primary cortices and beyond.

Other markers of
excitation-inhibition

There are many markers used in human research that are
utilized to obtain information about the role and amount of
inhibitory processes. Magnetic resonance spectroscopy (MRS)
is a relatively novel technique that allows measuring GABA
levels reliably in humans in vivo (Puts and Edden, 2012).
MRS is a non-invasive neuroimaging technique to detect the
concentration of metabolites in a specific brain region, including
glutamate, glutamine, GABA, and others (Puts and Edden, 2012).
Employing this method, over the last years, fascinating insight
has been obtained in the involvement of GABAergic mechanisms
in learning, cognition, behavior and disease (Li et al., 2022).
A particular advantage of the in vivo nature of this technique is

to study GABA concentrations during development and across the
lifespan (Saleh et al., 2020; Porges et al., 2021).

In a recent study utilizing MRS glutamate and GABA
concentrations were measured to obtain insight into possible
differences of visual perceptual training-induced learning and
perceptual changes induced by high-frequency rTMS application.
It was found that the time courses of the changes of GABA
and glutamate differed as well as the contribution of both
transmitters suggesting different underlying mechanisms, although
both approaches involve changes in excitation and inhibition (Lin
et al., 2023).

When transcranial magnetic stimulation is applied over the
occipital lobe, it evokes brief light sensations, so-called phosphenes.
Therefore, thresholds of phosphene induction can be measured
and expressed as relative stimulator outputs, which has been used
as a simple, non-invasive method to assess excitability in human
visual cortex (Kammer, 1999; Sparing et al., 2005). Measuring
phosphene thresholds by means of TMS has been employed in
many studies addressing altered excitability in human visual cortex.
For example, enhanced excitability levels were reported in patients
suffering from migraine (Afra et al., 1998; Aurora et al., 2003;
Gerwig et al., 2005), after medical treatment with anticonvulsants
(Artemenko et al., 2008; Palermo et al., 2009) and light deprivation
(Boroojerdi et al., 2000; Pitskel et al., 2007). Interestingly, there is a
significant correlation between the individual phosphene threshold
and paired-pulse suppression recorded in central VI indicating a
significant link between both measures (Höffken et al., 2013b).

In addition, the absolute amplitudes of VEPs have been
used as an indicator of changes of cortical excitability (Kaneda
et al., 1997; Yilmaz et al., 1998; Bohotin et al., 2002; Avitabile
et al., 2007). Besides the difficulties in obtaining reproducible
response amplitudes in VEPs there is a major difference between
EPs recorded following a single stimulus and the paired-pulse
suppression. The suppression ratio between the first and the second
response is a relative measure and thus more independent against
noise. Most importantly, changes of paired pulse suppression are
due to alterations of the suppression of the second response with
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no or little changes of the response amplitude of the first (cf.
Figure 2). This can be interpreted that changes of the suppression
reflects intracortical processing, while changes of the first response
amplitude rather reflect changes of the afferent input.

Alpha oscillations in the range of 10 Hz typically found in visual
or somatosensory cortex play a critical role in gating information
processing by suppressing irrelevant information (Klimesch et al.,
2007; Jensen and Mazaheri, 2010; Haegens et al., 2011a,b; Jensen
et al., 2014; Zrenner et al., 2018). Alpha oscillations can be
recorded either in occipital areas referred to as visual alpha, or in
somatosensory cortex, referred to as mu-rhythm. Independent of
location, higher alpha power is associated with better performance,
excitability or evoked activity suggesting that the increased alpha
activity is a signature of top down inhibitory control known as
“gating by inhibition” (Pfurtscheller and Lopes da Silva, 1999;
Klimesch et al., 2007; Jensen and Mazaheri, 2010).

For example, involvement in a difficult working memory task
has been demonstrated to be associated with higher alpha power
levels in cortical regions not engaged in the task (Klimesch et al.,
1999). Similarly, somatosensory alpha power fluctuations on a
trial by trial bases have been observed in association with the
allocation of neural resources. As a result, alpha power could
be shown to influences and to predict tactile task performance
(Linkenkaer-Hansen et al., 2004). Pre-stimulus alpha oscillations
of low to intermediate power that were recorded in cortical areas
engaged in behavioral tasks were shown to enhance performance
(Ai and Roy, 2014; Baumgarten et al., 2016). Furthermore, during
a visual training task, not only pre-stimulus alpha but also alpha
desynchronization increased significantly with training (Bays et al.,
2015). These findings support the view that the regulation of pre-
stimulus alpha levels serves as a recruiting mechanism optimizing
efficient processing.

Animal models allow for a more invasive way of analysis
of inhibitory processes such as recording of membrane
potential changes, or assessment by immunohistochemical or
chromatographic methods. A particular phenomenon reflecting
intracellular inhibition was revealed by real-time optical imaging
using voltage-sensitive dyes (Sharon and Grinvald, 2002). When
presenting visual stimuli with different orientation a small transient
drop in the rate at which the evoked response increased coincided
with maximal selectivity to the stimulus. This deceleration and
subsequent acceleration termed evoked deceleration-acceleration
(DA) notch has been interpreted as a signature of a temporary
suppression (Sharon and Grinvald, 2002; Kozyrev et al., 2014).

While all these markers reflect inhibitory processes, their
relationship is far from being clear, and substantial research is
required to unravel their potential interrelationship.

Bidirectional changes of
paired-pulse suppression parallel
changes of perceptual performance

Insight into the role of inhibitory processes and on the
emergence of plasticity and learning requires simultaneous
assessment of inhibition-excitation markers and of perceptual
performance. Transcranial magnetic stimulation (TMS)
approaches were first used in studies exploring effects of TMS on

cortical excitability (Kujirai et al., 1993) and motor learning. It was
found that muscle training of the flexor policis brevis improved
force and acceleration of movement, which was associated with
an increase in motor evoked potential (MEP) amplitudes (Liepert
et al., 1998; Muellbacher et al., 2001). Most notable, using low-
frequency repetitive TMS (rTMS) reduced motor cortex excitability
(Muellbacher et al., 2000). These early studies showed for the first
time a link between excitability and performance, as well as
between different TMS frequencies and excitability. Recent studies
using entorhinohippocampal slice cultures showed that application
of 10-Hz rTMS reduced GABAergic synaptic strength (Lenz et al.,
2016). For a review of potential cellular mechanisms see Siebner
et al. (2022), and Bolognini et al. (2009), Fricke et al. (2011),
Polanía et al. (2018), Antal et al. (2022) for reviews about motor
cortex plasticity and methods of non-invasive brain stimulation.

Somatosensory cortex and tactile
perception

Studies exploring plastic changes of somatosensory cortical
excitability and tactile perception have similarly employed low- or
high frequency rTMS. Application of high-frequency 10 Hz rTMS
to the finger representation of primary SI improved tactile spatial
discrimination performance of the index finger that outlasted the
stimulation period for several hours (Tegenthoff et al., 2005).
These data were the first demonstrating an improvement in human
sensory performance by direct stimulation of the brain from
outside. The changes in performance were accompanied by an
enlargement of the cortical map representing the index finger.
Moreover, the changes in the cortical map correlated with the
individually observed gain in performance induced by rTMS.
Separate experiments using paired-pulse stimulation techniques
in combination with recording SEPs had shown that application
of 5 Hz rTMS reduced paired-pulse suppression indicative for
enhanced excitability in SI (Ragert et al., 2004; Gatica Tossi et al.,
2013a,b). Comparable findings were observed after application of
intermittent theta burst rTMS over human primary somatosensory
cortex, where tactile discrimination improved parallel to enhanced
cortical excitability (Ragert et al., 2008a).

In contrast, low frequency ∼1 Hz rTMS applied over SI finger
representation had been found to impair tactile perception of
the hand (Knecht et al., 2003; Satow et al., 2003; Tegenthoff
et al., 2006). The impairment of tactile spatial discrimination
performance outlasted the period of stimulation for a few hours and
was accompanied by an enhancement of paired-pulse suppression
indicating reduced excitability in SI (Tegenthoff et al., 2006). These
data showed that application of rTMS at low or high frequencies
induce lasting bidirectional changes in excitability and in tactile
perceptual performance.

In daily live, human learning is driven by practicing and
repetition. In contrast, in laboratory in vitro studies learning
is induced merely by electrical stimulation in the absence of
attention and motivation. Under these conditions, timing and
temporal structure of pulse trains play a crucial role resulting in
the induction of long-term potentiation and long-term depression
- LTP and LTD (Bliss and Collingridge, 1993; Lynch, 2004; Malenka
and Bear, 2004). To close the gap between these extremes a
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FIGURE 2

Example of paired-pulse suppression recorded after paired-median nerve stimulation in SI before (pre, left) and after (post, middle) application of a
facilitatory stimulation protocol. Shown are SEP components of the N20//P25 complex (first response in green, second response in light blue). Note
that the response amplitudes of the first stimulus are not affected. The recovery curve (right) illustrates the dependence of paired-pulse suppression
from the ISI used. The second response remains also unaffected when long ISIs (100 ms) are used. Changes of paired-pulse suppression are limited
to short ISIs and are exclusively due to changes of the second response amplitude [modified from Höffken et al. (2007)].

approach has been developed that translates protocols that very
effectively evoke plastic changes in vitro into sensory stimulation
protocols that can be applied in human participants. These so-
called long-term potentiation-like or long-term depression-like
sensory stimulation protocol alter persistently human perceptual
performance in parallel to changes of neural processing. Most
importantly, these changes are evoked without explicit task training
and without attention (see review: Dinse and Tegenthoff, 2019).
Recordings made in the hand representation of SI during the
30 min of application showed that each train of stimuli evokes a
transient series of SEPs which after about 500 ms reach a 20 Hz
steady-state response. This response pattern is maintained during
the entire 2-s-train, with no evoked activity during the inter-
train period. Most notably, there is no evidence for a response
habituation over the 40 min of stimulation (Brickwedde et al.,
2020). When this type of repetitive sensory stimulation is applied
to the fingers of a hand, the tactile acuity, i.e., the spatial tactile
discrimination performance of the stimulated finger is improved
(Godde et al., 2000) as well as haptic performance (Dinse et al.,
2005). The neural substrates underlying these perceptual changes
include map reorganization in the hand representation in primary
and secondary somatosensory cortex (Pleger et al., 2001, 2003;
Dinse et al., 2003), changes of cortical excitability (Höffken et al.,
2007), and changes in gray matter volume (Schmidt-Wilcke et al.,
2018). In all cases, neural changes correlated with the amount of
improvement in tactile acuity, such as increased BOLD (blood
oxygenation level dependent) signals or cortical map changes
implicating a strong link between perceptual changes and those
observed a neural level (Pleger et al., 2001, 2003; Dinse et al., 2003;
Höffken et al., 2007; Schmidt-Wilcke et al., 2018).

In contrast to the application of 30 min of a high-frequent
intermittent finger stimulation protocol, which improved tactile
acuity (Ragert et al., 2008b), the application of a low-frequency
(1 Hz) protocol impaired tactile discrimination (Ragert et al.,
2008b). Simultaneous assessment of paired-pulse suppression in
SI revealed an overall reduction of paired-pulse suppression. This
increase in excitability correlated positively with the individual
gain in performance, indicating higher excitability in good learners
(Höffken et al., 2007). The opposite observation was made
when a low-frequency stimulation protocol was used. In this

case, paired-pulse suppression was increased parallel to impaired
tactile discrimination (Gatica Tossi and Dinse, 2008). The general
property of changes of paired-pulse suppression following a
facilitatory stimulation protocol are illustrated in Figure 2.

The similar pattern of parallel changes of performance
and excitability observed independent of the type of evoking
plastic changes provides strong evidence for a fundamental role
excitability appears to play during plastic changes and changes in
perceptual performance (Figure 3).

This view is further supported by a study that combined
the application of high-frequency rTMS with application of
repetitive tactile stimulation (Ragert et al., 2003). Both types
of interventions are known to increase excitability, therefore, if
high levels of excitability are linked to high perceptual gain, an
even stronger gain in perceptual improvement could be expected.
This is exactly what happened: Combined application boosted
the gain in improvement (22% vs. 15%). Most notable, this
boost in performance after combined application depended on
the effectiveness of the repetitive tactile stimulation protocol
when applied alone. Participants, who improved only little in
tactile performance after the single application, showed the
largest improvement after combined application. This observation

FIGURE 3

Parallel changes of excitation (pps – paired-pulse suppression) and
perception (tactile spatial discrimination) for different stimulation
conditions.
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suggests that the effects seen after combined application were
specific for poor learners (Ragert et al., 2003).

Visual cortex and visual perception

Compared to SI and the sense of touch, less human data
are available about the combined assessment of changes of visual
cortical excitability and visual perceptual performance. However,
by putting together the findings from different studies related
to plasticity, perceptual learning and excitability changes a very
similar pattern emerges as described for the sense of touch and
somatosensory plasticity processes.

While there are abundant reports about visual perceptual
learning, few addressed the link to excitability changes (Seitz
and Dinse, 2007; Sagi, 2010; Sasaki et al., 2010). Neary et al.
(2005) showed that training of oriented lines over several days
improved discrimination performance. This typical perceptual
learning effect was accompanied by a reduction of the amount of
TMS suppression indicative of reduced inhibition, or enhanced
excitation in visual cortex. Other studies showed that using non-
invasive brain stimulation protocols improve visual perceptual
performance without concomitant visual input in a way similar to
that described for somatosensory system (Tegenthoff et al., 2005).
For example, applying 10 Hz rTMS over visual cortex improved
visual orientation discrimination (Klaes et al., 2003). A similar
finding was obtained when anodal transcranial direct current
stimulation (tDCS) was applied over 4 consecutive days over visual
cortex (Sczesny-Kaiser et al., 2016). Orientation discrimination
improved, but not for kathodal tDCS. Most importantly, the
discrimination improvement was paralleled by a decrease in paired-
pulse suppression of VEPs and of phosphene thresholds, both
supporting that the visual learning was associated with an increase
of visual cortical excitability.

Repetitive sensory stimulation was also used for studies of
the plasticity of the visual system. Here, instead of repetitive
stimulating the index finger, visual patterned stimulation was
applied (Marzoll et al., 2018, 2022). When for 40 min a
low-frequency 1 Hz stimulation was applied, visual orientation
discrimination was impaired, while a 20 Hz, intermittent
stimulation improved orientation discrimination (Marzoll et al.,
2018). These bidirectional changes in performance resemble those
observed in somatosensory cortex (Ragert et al., 2008b). While for
the somatosensory system, parallel changes of de- and increased
excitability had been reported, comparable studies are missing so
far for the visual system.

Brain stimulation techniques have also been used in animal
studies addressing plastic changes of orientation preference maps
(OPMs) in primary visual cortex and potential mechanisms
underlying these plastic changes. Intracortical high-frequency
micro-stimulation has been shown to reliably drive plastic changes
of receptive fields and of cortical maps within a few hours (Nudo
et al., 1990). Applying this technique in visual cortex demonstrated
that the layout of OPM could be selectively altered (Godde et al.,
2002). Further insight into the plastic processes induced by high-
frequency stimulation was provided by a study combining real-time
optical imaging and TMS. It was found that single pulse TMS large
portion of cortical regions were strongly suppressed, while 10 Hz

rTMS lead to enhanced spontaneous activity accompanied by wide-
spread reduction of inhibition. Importantly, subsequent visual
stimulation showed signs of long-term potentiation (Kozyrev et al.,
2014). Furthermore, this state of enhanced excitability appears
to facilitate plastic reorganization. When a given orientation was
presented during this state, OPMs were altered in way that the
normally balanced representation of all orientations were shifted
toward the stimulated orientation (Kozyrev et al., 2018).

Taken together, the available data from the visual system
demonstrate that different forms of inhibition-excitation markers
are altered during the development of plastic processes consistent
with the view that improved perceptual abilities emerge during
states of enhanced excitability. The apparent similarity to
the observations made in the somatosensory system makes
it conceivable that these processes therefore might reflect
a general property of sensory plastic processes underlying
perceptual learning.

Excitability changes during aging

During aging, brains change in numerous ways. A prominent
characteristic is the overall decline in inhibitory mechanisms
that go in parallel to a deterioration of perceptual and cognitive
performance (Schmolesky et al., 2000; Poe et al., 2001; Leventhal
et al., 2003; Hua et al., 2006). In fact, paired-pulse suppression
in SI has been found to be reduced in aged rats (David-
Jürgens and Dinse, 2010), and motor cortex in elderly healthy
participants (Peinemann et al., 2001; Oliviero et al., 2006; Smith
et al., 2009). A study in SI in elderly participants combining
measurement of paired-pulse suppression with assessment of tactile
acuity demonstrated that age-related reduction of paired-pulse
suppression was correlated with the age-related decline in spatial
discrimination performance (Lenz et al., 2012). These data showed
that age-related enhanced excitability was associated with poor
perceptual performance, seemingly contradicting the observations
summarized above for young adults.

To reconcile these findings made in young adult and elderly
participants computer simulations using a mean-field model of
cortical activation (Wilson and Cowan, 1973) was used (Pleger
et al., 2016). In this model, cortical population activity depends
on two factors, the distance between inputs, here the skin,
and Mexican-hat-type interactions mediated by local excitation
and broad inhibition (Wilson and Cowan, 1973). The presence
of either uni- or bimodal field-responses was regarded as an
equivalent of the “one” or “two” response perceptual decisions in
the psychophysical assessment. Learning and plasticity processes
as seen in young adults were modeled by a decreased amount of
inhibitory interaction. In contrast, effects of aging were simulated
by a broadening of the inhibitory interaction. In the simulations,
both “young” and “old” models give rise to a net increase in
excitability in line with the empirical data, but the resulting
performance differs: While in the young model the interaction
leads to focused, spatially circumscribed activations allowing fine
spatial discrimination, the old model results in broad, smeared
distributions of activation hindering discrimination. According
to these simulations, the structure of intracortical excitatory and
inhibitory interaction is differentially affected by aging and learning
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processes explaining the size of cortical representation, the amount
of cortical excitability, as well as the outcome of perceptual tasks.

Inhibition markers as predictors of
subsequent performance changes

It is common wisdom that there are good and poor learners,
but the reasons that individuals are characterized by a tremendous
learning variability remains to a large extent unclear (Fahle and
Henke-Fahle, 1996). In addition to attention and motivation

(Dayan and Balleine, 2002; Ahissar and Hochstein, 2004), other
features have been found that predict large fractions of learning
variability such as genetic polymorphisms (Kleim et al., 2006;
Cheeran et al., 2008) or cortical gray matter thickness (Conde et al.,
2012).

Recent studies have shown that also the excitatory state
prior to learning can predict a substantial amount of variability.
According to these studies, high levels of baseline inhibition as
measured immediately before the induction of perceptual learning
is associated with largest perceptual improvements (Figure 4).
This property ascribes another important function to excitation-
inhibition processes in plasticity and perceptual learning.

FIGURE 4

Effects of baseline levels of different markers of inhibition. Generally, high levels of inhibition measured immediately prior to induction of a learning
protocol predict high levels of perceptual improvement and vice versa.

FIGURE 5

(A) Time course of alpha power changes in somatosensory cortex (mu rhythm) on both training days, relative to the first baseline measure on day
one (0 dB), revealing considerable training effects of alpha. (B) Correlation between neurofeedback-induced changes of alpha-power and percent
changes in discrimination performance explaining 59% of the variance. (C) Psychometric curves depicting tactile acuity before and after 20 min of
repetitive sensory stimulation. Learning effects are indicated by a shift of the curve to the left. Data are presented as mean ± SEM. *p < 0.05;
***p < 0.001. The alpha-up group shows significant enhancement of improvement compared to controls, while participants of the alpha-down
group show no improvement (Brickwedde et al., 2019).
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In a study measuring the time course of GABA concentrations
by MRS in a voxel located in hand representation of SI, participants
with the highest GABA concentrations showed largest gain in
learning outcome (Heba et al., 2016). By that about 50% of the
entire learning variance was explained. A related observation had
been made in respect to baseline somatosensory alpha oscillations
which have been implicated in gating information processing
by suppressing irrelevant information. Recordings of ongoing
EEG over the hand representation in SI showed that maximal
improvement in a subsequent learning tasks was correlated with
individual highest alpha power predicting 35% of the learning
outcome (Freyer et al., 2013). Interestingly, the analysis of other
frequency bands such as the beta and lower gamma band
revealed no comparable dependencies suggesting a special role
for alpha frequencies. More recently it was shown that paired-
pulse suppression in SI is a similar predictor. Low excitability, i.e.,
high paired-pulse suppression was associated with high learning
outcome explaining around 30% of the variability (Höffken et al.,
in preparation).

These findings raise two interesting questions. First, the fact
that the inhibition markers described explain more than 100% of
the total learning variability suggest that they might to some extent
be interrelated and rely on rather similar or even identical cellular
mechanisms. For example it is presently not clear in how far paired-
pulse suppression is linked to GABA concentrations or alpha
oscillations. Interestingly, a recent study combined measuring
paired-pulse suppression in SI with measuring GABA levels using
magnetic resonance spectroscopy (Cheng et al., 2017). They found
no correlation between suppression and GABA concentrations,
which might indicate that a possible link between both might
be more complex. However, due to methodological differences in
paired-pulse assessment (using of P35 SEP components, ISI of
500 ms) these data are difficult to reconcile with the technical
approach followed in the Höffken et al. (2008) studies.

Second, if it is true that a given inhibition marker predicts up to
50% of the learning variance, and if there is a causal relationship, it
is conceivable that manipulating this marker should result in even
better learning outcome. This hypothesis had been tested in respect
to somatosensory alpha oscillations.

Brain oscillations such as alpha are subject to targeted
modification through neurofeedback techniques (Gruzelier et al.,
2006; Salari et al., 2012). In the past, neurofeedback (NF) training
has been employed to improve cognitive abilities and working
and episodic memory performance (Hanslmayr et al., 2005; Zoefel
et al., 2011; Hsueh et al., 2016). Also, NF training is used in the
treatment of ADHD and epileptic seizures (Sterman, 1981; Egner
and Sterman, 2006). Therefore, to make an argument that tactile
perceptual learning is indeed caused by changes in individual alpha
power, a newly developed neurofeedback protocol was used to
up- or down regulate somatosensory alpha within a few sessions
(Brickwedde et al., 2019). In brief, these data showed that the largest
learning outcome was observed in individuals with highest increase
in alpha power (Figure 5).

In contrast, participants who were trained in the alpha
down group to decrease their alpha power, were not able
to improve discrimination performance implying that learning
processes had been blocked in this group. The results of a control
group were in between. As a main result, baseline alpha power
before learning predicted 59% of the interindividual learning

variability (Brickwedde et al., 2019). In contrast, under spontaneous
conditions, alpha power explained only 35% of the variance (Freyer
et al., 2013) indicating a substantial advantage through the NF
training.

Conclusion

The balance of inhibition and excitation plays a fundamental
role in stabilizing brain processing and is critically involved in
plasticity and learning. We here addressed the role of excitatory
states and inhibition in somatosensory and visual cortex during
various forms of perceptual learning. Generally, studies in human
participants requires indirect and non-invasive approaches to
assess states of excitation and inhibition. We summarized different
approaches used such as the assessment of paired-pulse behavior,
GABA concentrations by MRS, phosphene induction by TMS
or the measurement of alpha oscillations. We emphasize that
the interrelatedness of the different excitation-inhibition markers
is currently poorly understood requiring substantial research.
Simultaneous recordings of paired-pulse behavior in SI and Vi
imply that cortical excitability characterizes the currently prevailing
excitatory state within a circumscribed patch of cortex. We
reviewed the available evidence for parallel and simultaneous
changes of excitability and perceptual performance following
various approaches that can alter perception in a specific way.
We demonstrated that in both SI and VI improved perceptual
abilities are accompanied by enhanced excitation, while impaired
perception is associated with enhanced inhibition. In addition,
recent findings demonstrated that the baseline states of excitation
and inhibition measured immediately before a perceptual learning
protocol can predict the learning outcome to a considerable degree.
This bears important implications for targeted interventions
aiming at enhancing learning outcome by altering baseline states
of excitation. We summarize first attempts that successfully
employed neurofeedback training to up- and down-regulate
alpha power prior to learning, which resulted in a significant
enhancement of learning. High learning efficacy is an essential
requirement for successful clinical rehabilitation measures and in
school education. Accordingly, neurofeedback training or other
interventions targeting baseline states of excitation could be
prime candidates to enhance learning capabilities not only under
laboratory conditions but also in everyday life situations.
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