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Interlimb coupling refers to the interaction between movements of one limb 
and movements of other limbs. Understanding mechanisms underlying this 
effect is important to real life because it reflects the level of interdependence 
between the limbs that plays a role in daily activities including tool use, cooking, 
or playing musical instruments. Interlimb coupling involves multiple brain regions 
working together, including coordination of neural activity in sensory and motor 
regions across the two hemispheres. Traditional neuroscience research took a 
univariate approach to identify neural features that correspond to behavioural 
coupling measures. Yet, this approach reduces the complexity of the neural 
activity during interlimb tasks to one value. In this brief research report, we argue 
that identifying neural correlates of interlimb coupling would benefit from a 
multivariate approach in which full patterns from multiple sources are used to 
predict behavioural coupling. We demonstrate the feasibility of this approach in an 
exploratory EEG study where participants (n =  10) completed 240 trials of a well-
established drawing paradigm that involves interlimb coupling. Using artificial 
neural network (ANN), we show that multivariate representation of the EEG signal 
significantly captures the interlimb coupling during bimanual drawing whereas 
univariate analyses failed to identify such correlates. Our findings demonstrate 
that analysing distributed patterns of multiple EEG channels is more sensitive than 
single-value techniques in uncovering subtle differences between multiple neural 
signals. Using such techniques can improve identification of neural correlates of 
complex motor behaviours.
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Introduction

Interlimb coupling—where the movement of one limb interacts with the movement of 
another limb—is a fundamental aspect of human motor behaviour. It plays a crucial role in most 
activities, from daily tasks such as walking or typing on a keyboard to specialised actions like 
playing a musical instrument or driving a manual transmission car. This interference can occur 
due to neural, biomechanical, or task-related factors, leading to coordinated or compensatory 
adjustments in the movement patterns of multiple limbs to maintain stability or 
optimise performance.
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Over decades, understanding the neural mechanisms underlying 
human interlimb coupling is of great interest in the field of 
neuroscience as it unravels fundamental principles of motor control 
and holds significant implications for motor learning (Swinnen et al., 
1993, 1997; Walter, 1998) and the development of interventions for 
individuals with motor impairments (Garbarini and Pia, 2013; 
Pandian and Arya, 2014; Daneault et al., 2015; Schambra et al., 2019; 
Doost et al., 2021).

Previous research has made substantial progress in investigating 
the neural underpinning of human interlimb coupling using various 
neuroimaging techniques, including functional magnetic resonance 
imaging (Debaere et al., 2001; Maki et al., 2008; Dietz et al., 2015; 
Garbarini et al., 2015), positron emission tomography (Goerres et al., 
1998), transcranial magnetic stimulation (Serrien et al., 2002; Steyvers 
et al., 2003), and electroencephalography (EEG; Gerloff and Andres, 
2002; Rudisch et al., 2023). Among these techniques, EEG has the 
greatest advantage in examining neural dynamics associated with 
interlimb coupling. In this brief research report, we  highlight the 
power of using a multivariate approach to identify neural correlates of 
interlimb coupling and demonstrate its benefits in an exploratory 
EEG study.

Univariate approach to the neural 
underpinning of interlimb coupling

Traditional neuroscience research takes a univariate approach 
when investigating the neural underpinning of interlimb coupling. 
This approach involves examining individual features of EEG signals 
such as amplitude, latency, or phase at specific electrode sites or time 
points (Serrien et al., 2012; Kourtis et al., 2014), to identify neural 
activity that is associated with a particular interlimb movement (that 
is, interaction between different limbs or body parts as observed in 
walking, running, throwing, or climbing; Figure 1, left panel). This 
approach provides quantifiable, precise, and localised information 
about the EEG activity during interlimb-coupling tasks (Serrien et al., 
2003, 2012; Kourtis et al., 2014; Desrochers et al., 2020) including 
bilateral symmetrical tasks (both hands perform in-phase synchronous 
movements), bilateral asymmetrical tasks (each limb performs 
different movements simultaneously), and interlimb coordination 
tasks (performing movements that involve alternating or simultaneous 
actions between the limbs as tapping, walking, or tracing patterns). 
One prominent univariate measure is event-related desynchronisation 
(ERD)—a reduction in oscillation power at alpha or beta frequencies. 
Univariate analysis shows differences in this measure between in-phase 
and out-of-phase movements (Deiber et al., 2005; Li et al., 2005).

Distributed univariate EEG analysis

Univariate EEG analyses provide valuable insights into the 
involvement of specific cortical areas during interlimb coupling. Yet, 
these analyses neglect the holistic nature of interlimb motor control and 
are limited in capturing the interdependencies between brain regions 
across both hemispheres. To overcome this limitation, distributed 
univariate EEG techniques have emerged as a comprehensive framework 
for studying the neural correlates of motor behaviour (Figure 1, middle 
panel). Such analyses, instead of examining neural features from a single 

EEG channel, a single feature of coordinated activity across multiple 
brain regions is extracted (Kang and Druckmann, 2020).

A powerful distributed univariate EEG approach is functional 
connectivity analysis. Functionally connected regions exhibit 
synchronised features of neural activity, reflecting their involvement 
in shared motor processes (Lu et  al., 2011; Demuru et  al., 2013; 
Hoshino et al., 2021). There is a variety of techniques to examine 
functional connectivity in motor control using EEG signals (Babiloni 
et al., 2005; Tallet et al., 2009; Li et al., 2015). Most common technique 
is cross-channel coherence which quantifies the extent of similarity in 
neural activity between pairs of channels across various frequency 
bands (Tomiak et al., 2017; Weersink et al., 2019) and thereby sheds 
light on how regions communicate to allow interlimb control (Lu 
et al., 2011; Depestele et al., 2023). Previous work shows that coherence 
between channels across hemispheres over primary sensorimotor and 
premotor areas (C1 and C3 with C2 and C4) and midline (FCz or Cz) 
within the alpha and beta frequency band (8-13 Hz and 13–30 Hz 
respectively) subserves interlimb task execution and coupling (Serrien 
and Brown, 2004; Van Hoornweder et  al., 2022). Others showed 
enhanced phase synchronisation (as a measure for cross-channel 
relations) between bilateral primary motor cortex and premotor 
cortex during interlimb coupling (Li et  al., 2015). This phase 
synchronisation varies depending on the specific task characteristics 
(Andres et al., 1999; Gerloff and Andres, 2002).

Multivariate EEG analysis: a comprehensive 
framework

Most interlimb movements are continuous and span relatively 
long time windows. Therefore, they rely on multiple temporal and 

FIGURE 1

Different approaches for identifying neural correlates of interlimb 
coupling. Left panel: univariate approach focuses on one channel to 
predict the coupling effect (e.g., during bimanual behaviour when 
one hand draws a shape and another hand draws a different shape); 
Middle panel: distributed univariate approach takes into account 
multiple channels but reduce it to one value that predict the 
coupling effect; Right panel: multivariate approach examines non-
linear relations between the EEG signal and the coupling effect. The 
blue dots in this schema indicate predicted behavioural outcomes. In 
our exploratory study, we used one behavioural outcome—CI value.
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spatial relationships between neural signals. Because univariate or 
distributed univariate approaches focus on isolated measures, they 
may fail to capture this complexity. Moreover, univariate approaches 
rely on linear assumptions or simplistic linear transformations in the 
signal and therefore cannot model non-linear relationships between 
the EEG signal and interlimb coupling, and neglect multidimensional 
patterns within the data. For these reasons, univariate approaches are 
limited in capturing subtle changes in neural activity related to 
interlimb coupling behaviours, hindering a comprehensive 
examination of the phenomenon (Groppe et al., 2011a,b).

In addition, univariate approaches typically involve averaging 
across participants or trials to derive group-level results (Wiesendanger 
and Serrien, 2004; Rueda-Delgado et  al., 2014). The reliance on 
averaging poses challenges when studying personalised behavioural 
changes occurring over relatively long time periods—changes due to 
learning, development, injury, and rehabilitation. Previous research 
that examined individual differences in motor behaviour utilised a 
multivariate approach (Figure 1, right panel) alongside univariate 
approaches. For example, graph-theory measures capture network 
properties underlying functional connectivity in motor control 
(Fallani et al., 2010; Ismail and Karwowski, 2020). These measures 
represent brain regions as nodes and functional connections as edges, 
constructing a network that characterises the organisational aspects 
and efficiency of information flow among motor-related brain regions 
at the individual level. Such holistic approach is well-suited to capture 
the interdependencies and interactions between neural signals 
underlying movements from multiple limbs simultaneously.

Machine learning-based approaches, such as pattern recognition 
algorithms and classification models (Bishop, 1995; Bishop and 
Nasrabadi, 2006), have also emerged as valuable tools for decoding the 
complex neural patterns during motor behaviours (Presacco et al., 
2012; Bashar et al., 2016; Sadiq et al., 2019; Tortora et al., 2020; Tidare 
et  al., 2021). By training these models on multivariate EEG data, 
researchers can develop robust classifiers that accurately differentiate 
interlimb movements or predict task performance based on neural 
patterns. For example, artificial neural networks (ANN; Krogh, 2008; 
Kurkin et al., 2018) are computational models inspired by biological 
neural networks. They differ in the types of processing elements (i.e., 
how each neuron processes information) and the weighted link 
between them (i.e., the specific manner in which the neurons are 
connected; Bishop, 1995; Hagan et al., 1997). Different structures and 
weights represent alternative mechanisms and may distinguish the 
underlying neural mechanisms between individuals. Taken together, 
the multivariate approach is a more sensitive technique that has the 
potential to depict nuances in the EEG data that cannot be captured 
using a univariate approach.

Exploratory study

We tested the feasibility of applying a multivariate approach to 
identify neural patterns underlying behaviour and its potential benefit 
over univariate approaches. To that end, we used bimanual coupling 
as a model system for interlimb coupling and tested it using an 
influential paradigm—the circle-line coupling task (Franz et al., 1991). 
This task involves drawing lines or circles with both hands (congruent 
condition) or alternatively drawing lines with one hand while 
simultaneously drawing circles with the other (incongruent condition; 

Franz et al., 1991; Garbarini and Pia, 2013). This task is particularly 
effective in revealing the reciprocal influence of hand actions due to 
the observed tendency of participants to produce curved lines and 
line-like circles in the incongruent condition compared to the 
congruent one. Notably, the paradigm can also be extended to drawing 
tasks involving more complex and discontinuous shapes, such as 
combining squares with circles, thus further illuminating the 
constraints and characteristics of bimanual coupling (Franz, 2003).

We aimed to identify neural correlates of bimanual coupling using 
univariate and multivariate approaches. We  hypothesised that 
employing a multivariate analysis (using ANN with multiple EEG 
features as input to the network) would yield superior results in 
comparison to a univariate approach (using a single EEG feature—
ERDs from single channel and frequency band) and distributed 
univariate approach (using cross-channel coherence). Specifically, 
because the multivariate analysis holistically considers the composite 
influence of various features from distinct channels and spectral 
bands, we hypothesised that it would show better predictions of the 
level of interaction between the hands at the trial level compared to 
both univariate analyses.

To test this hypothesis, we used a digital version of the paradigm 
where participants drew with digital pens on a touch screen. The 
touch screen allowed fine-grained, pixel-level quantification of 
participants’ movement patterns with better temporal and spatial 
accuracy than drawing on paper. The touch screen registered each 
time the pens touched the screen thus allowing us to track the exact 
movement times with respect to the EEG signal.

Behaviourally, we calculated the curvature of each one of the two 
drawn shapes (Figure  2). The change in curvature between the 
congruent and incongruent conditions reflects the mutual influence 
of the hands on each other and provides a direct link to the underlying 
motor control processes involved in the bimanual coupling effect. 
We then examined whether changes in curvature across drawing trials 
correlated with ERD in motor-related channels (univariate approach), 
coherence between motor-related channels (distributed univariate 
approach), and patterns detected from all motor-related channels 
using ANN (multivariate approach).

Methods

Participants

Ten right-handed healthy volunteers participated in the EEG 
study (7 females, mean age 22.04 years, range 20–29 years). All 
participants had normal or corrected-to-normal vision and provided 
written informed consent to participate in the study. The study 
conformed to the guidelines approved by the ethics committee at 
Tel-Aviv University.

Task and design

Participants performed the circles-lines drawing task (Franz et al., 
1991) in which they simultaneously drew either a line or a circle with 
each of their hands. We had 4 conditions: (1) line-line—participants 
had to draw a line with each hand; (2) circle-circle—participants had 
to draw a circle with each hand; (3) line-circle—participants had to 
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draw a line with their left hand and circle with right hand; and (4) 
circle-line—participants had to draw a circle with their left hand and 
a line with their right hand.

We used a digital tablet (iPad 2, iOS6, Apple Inc.) to present 
participants with the shapes they needed to draw in each trial and gave 
them two compatible stylus digital pens (Adonit Jot Pro) for 
performing the drawing itself. The pens featured a precision disc tip 
that allowed for accurate and fine-tuned drawing on the tablet screen. 
Once participants touched the tablet with their pens, the shapes 
stimuli disappeared and the participants drew the two shapes (each 
with one hand) repeatedly six times. Participants received visual 
feedback of their drawing (the trace of their drawing appeared on the 
screen). Participants were instructed to try as much as possible to 
draw the shape in the image at the beginning of the trial.

There were 240 trials (60 per condition in random order; see 
Figure  2A for experimental design) in pseudo-random order (no 
condition repeated more than 4 consecutive times). The trials were 
separated by 5 s of rest where participants were asked to hold the pens 
and not move. Then, the condition was presented to them on the 
screen (the shapes they need to draw) and they were asked to start 
drawing. Once they start moving the pen, our stimulus was removed 
and they saw their own drawing. The trial ended after the participant 
completed 6 iterations of the shape in each hand. To ensure that 
participants understood the task, they had initial practice with the task 
where they performed 5–6 trials until they felt comfortable with the 
instructions and they were ready to begin. The experiment was 
custom-built and programmed in Apple XCode.

Behavioural analysis: curvature calculation

For each shape, we measured the distance of the right-most and 
left-most edges of the shape on the horizontal axis (see Figure 2B), 
using the following formula:

 C C Ct left x left x left_ _ _max _ _min= -

 C C Ct right x right x right_ _ _max _ _min= -

Where Ct_left corresponds to the curvature of the shape that was 
drawn by the left hand in trial t and Ct_right corresponds to the 
curvature of the shape that was drawn by the right hand in trial t.

We then used a curvature-based measure to assess the level of 
bimanual coupling in each trial. High level of coupling in incongruent 
trials indicates strong interference of one hand with the second hand. 
In congruent trials, high levels of coupling are expected and indicate 
joint movement. Our measure CI was calculated according to the 
following formula:

 
CI

C Ct left t right
=

-
1

_ _

CIt  serves as an objective and quantifiable measure of the degree 
of bimanual coupling effect in trial t. The greater its value, the smaller 
the difference in left and right curvature and therefore the stronger the 
coupling effect between the hands.

Previous research examined the possible influence of spatial 
constraints in the coordination and control of interlimb coupling in 
the circle-line task (Franz et al., 1991; Garbarini and Pia, 2013). These 
studies showed that when participants are asked to produce two 
movements of different spatial forms—circles and lines—they tend to 
exhibit spatial accommodation in the performances of both shapes, 
and this was manifested in a tendency for each shape to look more like 
the shape being performed by the other hand. According to these 
papers, this increase in spatial similarity between the shapes represents 
interlimb coupling. The quantification of this spatial similarity hinges 
on the calculation of curvature disparities between the shapes, 
encapsulating intricate geometrical differentiations. The CI value is an 
assessment of the discrepancy in shapes which allows for a rigorous 
assessment of shape alignment, facilitating a precise and objective 
evaluation of their structural resemblance.

Our analyses focused on individual participants and therefore the 
CI values served as our behavioural measure which we correlated with 
several neural features, per participant and across trials. We did not 
correlate across participants. CI values are expected to be high in 
congruent trials (movements are similar) compared to incongruent 
trials (movements are different).

EEG data acquisition and preprocessing

The EEG analog signal was recorded continuously via 64 Ag–
AgCl pin-type active channels mounted on an elastic cap according to 
the extended 10–20 method of electrode placing (BiosemiTM Active 

FIGURE 2

(A) Experimental design. Schematic illustration of two trials. Each trial 
started with a display on the screen of the condition-specific shapes, 
indicating the shapes that participants were required to draw. Upon 
initiating pen movement, the stimuli disappeared, and participants 
were able to view their own ongoing drawing. Each trial concluded 
after participants completed six iterations of the given shape with 
each hand. Between trials, participants were given a rest period of 
5  s, during which they were instructed to hold the pens without any 
movement. (B) Behavioural measure. Example of the curvature-
based measure for each experimental condition. In the incongruent 
conditions, the shapes became more similar to each other compared 
to the congruent conditions—the line drawing is more circle-shaped 
and the circle is more line-shaped. For each shape, we measured the 
distance of the right-most and left-most edges of the shape on the 
horizontal axis (red line; Ct).
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II system,1 Amsterdam, Netherlands). Seven additional channels were 
used: two mastoid channels (right and left), one electrode on the tip 
of the nose and four EOG channels for eye movement monitoring 
(two placed at the outer canthus of each eye and two placed at the 
orbital ridge centered directly above and below the right eye). EEG 
was digitised at a sampling rate of 256 Hz.

Data was analysed offline using the EEGLAB tool for MATLAB 
(Delorme and Makeig, 2004; Delorme et al., 2007). Raw EEG data was 
Band-pass filtered offline between 0.5 and 35 Hz (Butterworth filter, 
24 dB), and re-referenced offline to the digital average of the two 
mastoids. The continuous data were segmented into epochs. The 
epochs differ in length and were based on the length of each trial. 
Therefore they were from −2000 ms relative to trial onset until the trial 
offset. Eye movements and blinks were detected and removed using 
independent component analysis (ICA; Makeig et al., 2000; Delorme 
et al., 2007).

Event-related spectral dynamics were computed using a 
continuous Morlet wavelet transform. For each trial in each 
participant, we computed the logarithm of the power (from trial onset 
to trial offset) relative to power during baseline (from 2000 ms to 
500 ms pre trial onset). This procedure resulted in 200 (time 
points) × 50 (frequencies) matrix per trial in which cells indicated the 
log ratio value in the specific time point and frequency. A negative log 
ratio indicates a suppression in the power of EEG oscillations relative 
to baseline, whereas positive log ratios indicate enhanced power.

Univariate approach: ERD

Bimanual tasks lead to event-related deysnchronisation (ERD) in 
individual motor-related channels in both hemispheres (Gerloff and 
Andres, 2002). In our analyses, for the univariate approach, 
we calculated ERDs for each participant and trial in each frontal-
central channel (FC3, FC4, FCz), central channel (C3, C4, Cz), and 
central-parietal channel (CP3, CP4, CPz) on the alpha band (8–13 Hz) 
and beta band (13–30 Hz). The selection of these channels and 
frequencies is based on previous research showing their relevant to 
bimanual movements (Gerloff and Andres, 2002; Matthews et al., 
2009). For that, we averaged the log ratio values in the time-frequency 
matrix of each trial and each channel across all time points and 
frequencies that are within the relevant band. For each participant, 
we calculated the correlation between each of the ERD values and CI 
values across trials (total of 9 channels × 2 frequency bands = 18 
different correlations).

Distributed univariate approach: coherence 
analysis

As a distributed univariate approach, we adopted an established 
coherence analysis that showed correspondence between EEG 
oscillations from motor-related channels and bimanual coordination 
(Tomiak et al., 2017). We calculated coherence in the frontal-central 
group (average of coherences between three pairs of the 

1 http://www.biosemi.com

frontal-central channels FC3–FC4, FC3–FCz, and FCz- FC4), central 
group (the average of coherences between three pairs of central 
channels: C3–C4, C3–Cz, and C4–Cz), and the central-parietal group 
(CP3–CP4, CP3–CPz, and CP4–CPz). These average coherence values 
were calculated for the alpha band and the beta band separately. In 
total, for each participant and each trial, we had 6 coherence values (3 
channel groups × 2 frequency bands; For full details and equations of 
the coherence calculation, see Tomiak et  al., 2017). For each 
participant, we  calculated the correlation between each of the 
coherence values and the CI values across trials.

Multivariate approach: artificial neural 
network

As a multivariate approach, we designed an analysis using artificial 
shallow neural network which is characterised by a solitary hidden 
layer. We  selected this architecture, as opposed to more complex 
models like convolutional neural network, to provide simplicity and 
interpretability by having low number of free parameters and to 
mitigate overfitting risks by maintaining a succinct model structure 
(Yegnanarayana, 2009; Lamb et al., 2011).

The network architecture was implemented with MATLAB Deep 
Learning Toolbox using mean squared error as a performance 
function and Variable Learning Rate Backpropagation as training 
function. The network comprised one input layer with 3600 nodes 
(200 time points × 2 frequency bands × 9 channels), a hidden layer 
with 100 nodes (based on previous research with a similar size of input 
and output layers; Mahira et al., 2014; Xu et al., 2022), and one output 
layer with 1 node (CI value estimation). This is the main difference 
between the univariate and multivariate approaches. In the ERD 
analysis, continuous data from a single channel were transformed to 
a single measure. In the coherence analysis, continuous data from 
pairs of channels were transformed to a single measure. Here, using 
ANN, we took all the data into account. Importantly, the addition of 
input does not automatically imply better prediction of the behaviour 
because irrelevant input (e.g., noise) can impede performance and 
make it harder for the algorithm to converge on the 
informative features.

The following procedure was conducted: First, we averaged the log 
ratio values in the time-frequency matrix of each trial and each 
channel across the time-frequency matrix of each band (alpha and 
beta). Please note we kept the temporal dynamics by not averaging 
across time points. Then we created 3600 (log ratio values in each time 
point, frequency band and channel) × 240 (trials) matrix indicating the 
patterns of neural activity for each participant. Then, we randomly 
selected 204 trials (85%) as a training set, 12 trials (5%) as validation 
set, and the remaining 24 trials (10%) as testing set. For the testing set, 
the network provided estimated curvature values for each trial 
and participant.

This partitioning aims to ensure the robustness and reliability of 
the network. The training set, comprising most of the data, is used to 
adjust the internal parameters of the model to minimise the error 
between predicted and actual outputs. This training phase is crucial 
for enabling the model to recognise non-linear patterns. The validation 
set functions as an essential aid in controlling the training process and 
preventing overfitting. The performance of the model during training 
is evaluated based on the validation set, which is distinct from the 
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FIGURE 3

Behavioural results. Participants’ average Ct_left (left panel) and Ct_right (right panel) in pixels for each condition. Each colour denotes a different 
participant. The results verify the expected behaviour and replicate previous studies—in all participants and both hands, curvature was smallest in line-
line condition, then incongruent conditions (circle-line and line-circle) and highest in circle-circle condition.

training set, and therefore makes sure the model does not become too 
specific to the training data and performs poorly on unseen instances. 
The process of training is halted when the performance on the 
validation set starts to degrade (‘Early Stopping’ procedure; Bishop, 
1995; Wang et al., 2007), which enhances the generalisation of the 
model. The test set serves as the ultimate ‘assessment benchmark’ for 
the trained model. This set remains untouched during the training and 
hyperparameter tuning stages, allowing for an unbiased evaluation of 
the model’s ability to generalise to entirely unseen data.

To assess network performance, we  calculated the correlation 
between the estimated CI values and the real CI values using Pearson 
correlation. We performed 1000 iterations of this procedure and each 
time randomly split the data to train, validation, and test sets. For each 
iteration, we received r-value and calculated a final mean r-value across 
all iterations. We assessed the significance of our results based on the 
mean r-value. We verified that each trial appeared in at least 5 iterations.

Because the random split was performed across 1000 iterations, 
the neural network was trained and validated multiple times on 
different subsets of the data. This process averts overfitting, as the 
network’s generalisation performance is evaluated using a diverse 
range of validation sets. Because we  considered the overall 
performance of the network across multiple random splits, we provide 
a reliable evaluation of the model’s effectiveness. This procedure 
adheres to establish the best practices and statistical principles, 
warranting robustness and accuracy in the analysis of the neural 
network’s results.

Results

One participant was excluded from the analysis due to a technical 
issue with syncing the EEG computer with the tablet. All further 
analyses were conducted on the remaining 9 participants. The average 
trial duration across participants was M ± SD = 7.26 ±  1.91 s. A 
repeated-measures ANOVAs confirmed main effect of drawing 
condition F(3,531) = 60.03, p < 0.01. Sidak-corrected post-hoc tests 
showed that congruent conditions took less time to complete 

compared to incongruent conditions but it differed across participants. 
Some of them did not exhibit any difference in trial duration across 
conditions and some did.

Figure 3 shows participants’ performance with their left and right 
hand (Ct_left and Ct_right respectively; see Methods) in each one of the 
experimental conditions (line-line, circle-line, line-circle, and circle-
circle). Participants showed the expected performance which is similar 
to previous studies (Franz et al., 1991; Franz, 2003; Garbarini and Pia, 
2013): the curvature for both hands was smallest in the line-line condition 
(Mean Ct_left ± SD = 103.08 ± 23.61 pixels; Mean Ct_right ± SD = 102.21 ± 26.49 
pixels), then in the circle-line (Mean Ct_left ± SD = 222.13 ± 28.77 pixels; 
Mean Ct_right  ± SD = 234.34 ± 28.99 pixels) and line-circle (Mean Ct_

left ± SD = 244.14 ± 47.90 pixels; Mean Ct_right ± SD = 241.51 ± 34.34 pixels) 
conditions, and biggest in the circle-circle condition (Mean Ct_

left ± SD = 379.28 ± 47.04 pixels; Mean Ct_right ± SD = 380.36 ± 44.30 pixels).
Nevertheless, to capture the bimanual coupling effect, we were 

interested in the modulation of one hand movement on the other 
hand movement and not in the mere performance of each one of the 
hands separately. Therefore, our main behavioural measure was CI 
(see Methods). For congruent trials, the coupling is high because both 
hands are performing the same action and CI values are expected to 
be high. For incongruent trials, high CI measures indicate strong 
influence of one hand over the other whereas low CI measures indicate 
weak coupling effect. We expected low CI values in incongruent trials. 
Indeed, participants exhibit higher average CI values in congruent 
trials compared to incongruent trials (MCI  ± SD = 0.09 ± 0.02 and 
0.006 ± 0.002 for congruent and incongruent conditions respectively). 
Mixed repeated-measures ANOVA confirmed main between-subject 
effect F(3,531) > 109.49, p  < 0.01, main effect of condition 
F(24,531) > 3.31, p < 0.01, and interaction F(8,531) > 3.76, p < 0.01. 
Sidak-corrected post-hoc tests confirmed that incongruent trials have 
lower CI value and that some participants were better in reducing the 
coupling effect than others.

At the neural level, we first examined the correlation between 
ERD at each motor-related channel and motor-related frequency 
bands (alpha: 8–12 Hz and beta: 15–30 Hz; see Methods) and the CI 
measure across trials per participant (total of 9 channels × 2 frequency 
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bands × 9 participants = 162 correlations). In three participants there 
was at least one significant correlation rs(238) > 0.28, ps < 0.01 
(uncorrected; Supplementary Table S1), but they were not consistent 
(no common channel across participants). Other correlations were not 
significant ps > 0.11.

Next, we took a distributed univariate approach by calculating 
cross-channel coherence as the neural measures (see Methods) and 
correlated it with the CI measure across trials per participant. Three 
of the nine participants had at least one significant correlation, overall 
there were 5 significant correlations rs(238) > 0.52, ps < 0.01 
(uncorrected; Supplementary Table S2) whereas all other correlations 
were not significant ps > 0.19.

Finally, we used ANN to estimate the CI measure based on neural 
activity recorded in the two motor-related frequencies from all 

motor-related channels (see Methods). We calculated the correlation 
between the predicted CI measure (ANN output, averaged across 
leave-one-out iterations; see Methods) and the actual CI measure 
across trials in each participant. Correlations in all 9 participants were 
significant rs(238) > 0.61, ps < 0.01. For each participant, Figure  4 
shows the average of the CI values estimated by the ANN (across all 
the iterations) and the average correlation between the estimated 
values and the real CI values across all trials.

Discussion

In this brief research report, we examined the use of univariate, 
distributed univariate, and multivariate approaches for identifying 
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FIGURE 4

(A) Exemplar of event-related spectral perturbation map representing averaged changes in oscillation power across all trials for one participant 
(participant 7), locked to participant movement onset (time 0  ms) relative to baseline (−2000 to 0  ms). All trials were trimmed at 5  s only for this 
illustration, analyses were performed at the individual trial level. (B) Scatter plots per participant, showing correlation between the coupling measure CI 
(in all conditions; see Methods) and the CI value estimated by the ANN. The estimated CI value for each trial is the average of the estimated CI values 
across all the iterations in which the trial was in the test set (see Methods). Correlation was significant for all participants. The red line denotes the 
regression line.
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neural correlates of interlimb coupling. Using an artificial neural 
network (ANN) analysis, we were able to predict the level of interlimb 
coupling effect from EEG signal recorded from multiple channels 
simultaneously. In contrast, we did not find similar results using more 
traditional univariate approaches that focus on single channels 
(univariate) or coherence between channels (distributed univariate). 
Although correlates were found in some of the participants, they were 
not consistent in terms of channel or frequency band. Our findings 
provide evidence for the superiority of multivariate analyses in 
identifying neural correlates of interlimb coupling, demonstrating the 
potential of using this approach to expand existing literature in 
the field.

Our findings align with the growing recognition that the 
brain supports motor functions by operating a network with 
intricate interactions between distributed regions over time 
(Gerloff and Andres, 2002; Serrien and Brown, 2004; Chen 
X. et al., 2022; Chen Y.-F. et al., 2022). Some distributed univariate 
approaches such as cross-channel coherence capture functional 
connectivity between regions and therefore reflect this 
distributed-network perspective (Serrien et  al., 2012; Kourtis 
et al., 2014), yet ANNs or other multivariate approaches are more 
powerful in extracting relevant features from the input data and 
reducing its dimensionality. This automatic extraction of salient 
features can capture important aspects of the data that may 
be missed by a distributed univariate approach.

Indeed, previous studies demonstrated how distributed 
patterns of EEG signals predict complex motor behaviours when 
using advanced machine learning algorithms (Ossmy et al., 2011; 
Bashar et  al., 2016; Kurkin et  al., 2018; Tortora et  al., 2020; 
Hausmann et al., 2021), especially in atypical populations (Rad 
and Furlanello, 2016). For example, the use of multi-level 
classifiers and clustering analyses allowed for the identification 
of neural patterns and network-level dynamics involved in motor 
execution coordination (Schorer et  al., 2007; Li et  al., 2020), 
planning (Ieracitano et al., 2021; Mammone et al., 2021), and 
imagery (Amin et al., 2019). We contribute to this literature by 
showing that multivariate analysis tools can provide a more 
accurate and nuanced depiction of the neural mechanisms 
underlying interlimb coupling (Chen et al., 2022). Our findings 
further highlight the need to embrace multivariate approach as a 
valuable tool in studying behaviour. In future research, it is 
important to leverage the diverse structures and architectures of 
ANNs to explore alternative mechanisms for studying individual-
level motor behaviour. Similar to our methodology, patterns of 
EEG signal during motor tasks can be  used as input to the 
network and patterns of motor behaviours can be used as the 
output to predict. Comparison of the weights of each feature of 
the EEG signal and comparison of prediction accuracies between 
different ANN structures may reveal the contribution of each 
neural region to the observed movements.

The disparity between the successful identification of neural 
correlates using ANN and the failure to find such correlates using 
ERD or cross-channel coherence implies that linear models might 
not be adequate tools. Focusing on averaged, isolated measures 
overlook information about the nonlinearity between EEG 
activity and motor movements (Sadiq et  al., 2019). Artificial 
neural networks, by their nature, excel in modelling nonlinear 

relationships, as they can capture complex patterns within 
the data.

In addition to averaging the activity in channels, traditional 
univariate approaches often rely on averaging activity across 
participants (Wiesendanger and Serrien, 2004; Rueda-Delgado 
et al., 2014). In contrast, we show that ANN allows the exploration 
of neural correlates at the individual level. ANNs are known for 
their ability to generalise patterns learned from training data to 
unseen data. This capability is highly advantageous when 
performing individual-level analyses because it allows to capture 
and model unique neural signatures and idiosyncrasies present 
in individual EEG data, enabling personalised analyses that go 
beyond group data. Examining neural correlates at the individual 
level holds paramount importance in motor neuroscience because 
it empowers researchers to uncover individual-specific patterns, 
better understand inter-individual variability in motor 
movement, and facilitate the exploration of personalised neural 
markers of motor dysfunction.

Finally, despite the advantages of multivariate approaches, their 
widespread adoption in studying motor behaviours has been relatively 
small. One of the main challenges is the computational complexity 
and technical requirements associated with multivariate analyses and 
their interpretability. Adequate training and collaboration between 
researchers with diverse skill sets, including neuroscientists, data 
scientists, and statisticians, are crucial to overcome these challenges. 
Promoting interdisciplinary collaborations and providing resources 
and training opportunities can facilitate the integration of multivariate 
approaches in the field of motor neuroscience.
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