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A mini-review: recent 
advancements in temporal 
interference stimulation in 
modulating brain function and 
behavior
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Numerous studies have assessed the effect of Temporal Interference (TI) on 
human performance. However, a comprehensive literature review has not yet 
been conducted. Therefore, this review aimed to search PubMed and Web of 
Science databases for TI-related literature and analyze the findings. We analyzed 
studies involving preclinical, human, and computer simulations, and then 
discussed the mechanism and safety of TI. Finally, we  identified the gaps and 
outlined potential future directions. We believe that TI is a promising technology 
for the treatment of neurological movement disorders, due to its superior 
focality, steerability, and tolerability compared to traditional electrical stimulation. 
However, human experiments have yielded fewer and inconsistent results, 
thus animal and simulation experiments are still required to perfect stimulation 
protocols for human trials.
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1. Introduction

Neurological disorders are serious health challenges associated with clinical neurological 
and psychiatric conditions that cause a functional deterioration in motor, sensory, and 
behavioral functioning (Phillips, 2019; Gilmour et al., 2020; Lee et al., 2022a). Individuals with 
such disorders, such as Parkinson’s disease, frequently face impediments that interfere with their 
daily lives which burdens the healthcare system and society considerably (Grossman et al., 2018; 
Alonto et al., 2022). Consequently, efficient approaches are necessary to reduce the severity of 
neurological behavioral disorders.

Pharmaceutical strategies have been employed to combat neurological diseases and reduce their 
symptoms (Rossetto et al., 2021; Vardaxi et al., 2022). Nevertheless, this approach can affect neural 
activity across the entire brain, potentially resulting in undesired results (Vatansever et al., 2021). This 
limitation of pharmaceutical strategies has prompted the development of novel approaches. 
Non-pharmaceutical strategies such as transcranial electrical and magnetic stimulations stimulate 
specific brain regions, resulting in effective clinical treatments (Lozano, 2017; Grossman et al., 2018). 
These approaches have been used to treat depression and Parkinson’s disease. However, these 
therapies cannot achieve focal stimulation of the deep brain structures (Lozano, 2017).

To counter the inadequacies of current transcranial stimulation approaches, Grossman et al. 
created a novel non-invasive brain stimulation method called Temporal Interference Stimulation 
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(TI). TI can produce a low-frequency envelope in the deeper parts of 
the brain, and modulate the activation of neurons. It eliminates the 
hindrance of deep invasive brain stimulation, necessitating the 
implantation of electrodes in the brain (Grossman et al., 2017). Studies 
have explored the influence of TI stimulation on brain function and 
behavior from various perspectives, including animal, human, and 
computer simulation studies. However, no study has summarized the 
studies about TI. Therefore, this review has summarized the existing 
research on TI, providing a foundation for further study and 
application of TI in humans.

2. Temporal interference stimulation

TI involves the application of two high-frequency transcranial 
alternating currents of slightly different frequencies. The interaction 
of the two alternating currents produces a low-frequency envelope 
(Grossman et al., 2017). As the neural membrane is responsive to 
low-frequency electrical signals but not high-frequency signals 
(Hutcheon and Yarom, 2000), TI can focally stimulate the deep brain 
tissues without impacting the overlying and surrounding brain tissues 
(Figure 1). Moreover, the target area can be modulated by changing 
the current amplitude ratio of two pairs of electrodes (Grossman 
et al., 2017).

3. Preclinical studies

3.1. In vitro

Grossman et al. (2017) initiated a study using the mouse brain to 
examine the effectiveness of TI. In this experiment, 10 Hz TI (Channel 
1: 2000 Hz; Channel 2: 2010 Hz) successfully activated c-fos expression 
in the mouse hippocampus without affecting the overlaying cortex. 
Similar to the study of Grossman, Carmona-Barrón et  al. (2023) 
revealed that TI preserved a higher stimulation efficiency in the 
directed area of the deep brain structure and enhanced the 
immunoreactivity of rat blood–brain barrier cells.

3.2. Animal models

Grossman further demonstrated that TI stimulation induced the 
mouse’s forepaw and whisker movements, and the frequency of 
movement was in accordance with the frequency of the envelope 
(Grossman et al., 2017). Subsequently, Song et al. (2021) synchronously 
monitored the Ca + signals in the deep layers of the mice’s superior 
colliculus and the eye movements. They found that by altering the 
frequency of TI stimulation, it was possible to control the neural 
activity of the mice’s superior colliculus and regulate their 
eye movements.

In summary, these animal studies demonstrated that TI can 
effectively regulate brain function and behavior in rats. Compared to 

conventional tES, TI offers more precise stimulation of deep brain 
tissue and the capacity to alter the target area without moving the 
electrodes. However, there are limitations to consider. Specifically, the 
stimulation current intensity was more restricted in humans than in 
animal experiments.

4. Human studies

Five studies were conducted to evaluate the effects of TI on human 
behavioral or neurophysiological function. In neurophysiological 
investigation, Acerbo et al. (2022) used stereoelectroencephalography 
electrodes to compare electric field distributions in the brains of two 
cadavers during TI stimulation and tACS. This study measured brain 
discharge by implanting 12 stereoelectroencephalography electrodes 
in the temporal lobe on both sides and concluded that 130 Hz TI 
better penetrated the human hippocampus than the 130 Hz tACS. Zhu 
et al. (2022) investigated the effects of TI stimulation on the functional 
connectivity of the global brain. The study recruited 40 healthy young 
individuals and collected resting-state functional magnetic resonance 
imaging data before and during 20 Hz TI stimulation. The results 
showed that targeting the primary motor cortex (M1) with 20 Hz TI 
would enhance the functional connectivity between the M1 and the 
secondary motor cortices. However, the study of von Conta et al., 2022 
did not find a change in EEG activity during a simple visual change-
detection task before and after TI stimulation. Compared with sham 
stimulation, TI stimulation did not affect alpha-band brain 
oscillations. This could be due to the low stimulation intensity, which 
was only increased to 1 mA in this study. TI stimulation is 
characterized by a kilohertz frequency likely to lose some current 
intensity when penetrating the brain (Kondgen et al., 2008). With 

FIGURE 1

Concept of TI stimulation. Two high-frequency transcranial 
alternating stimulations with a slight frequency difference of 10  Hz 
(Channel 1: f  =  2,000  Hz; Channel 2: f2  =  2,010  Hz) produce an 
envelope with a frequency of 10  Hz in the intersecting regions. 
(Some elements of this figure are from Vecteezy, https://www.
vecteezy.com/).

Abbreviations: TIS, temporal interference stimulation; RT, reaction time; SRTT, 

serial reaction time task; tACS, transcranial alternating current stimulation; tES, 

transcranial electric stimulation; TMS, transcranial magnetic stimulation.
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lower electrical stimulation intensities, it becomes more challenging 
to detect stimulation effects.

In the behavioral investigation, Zhang et  al. (2022) randomly 
assigned participants to active-TI, sham-TI, active-transcranial 
alternating current stimulation (tACS), and sham tACS groups and 
measured their accuracy, reaction time (RT), and inverse efficiency 
scores on the N-back working memory tasks before, during, and after 
stimulation. The results indicated that the TI group exhibited 
enhanced working memory in high-load cognitive tasks than the 
sham-tACS group. Apart from our team, other research groups have 
examined the impact of TI on human performance. Moreover, Ma 
et al. (2021) studied its impact on a random reaction time task, a serial 
reaction time task (SRTT), and motor cortex excitability. The study 
revealed that 70 Hz TI stimulation benefited the RT in a random 
reaction time task and the excitability of the motor cortex. 
Additionally, 20 Hz TI stimulation substantially improved motor 
learning in the SRTT, which was linked to the increased motor-evoked 
potentials. These studies provide evidence that TI stimulation 
modulates brain function and improves human performance in terms 
of resting-state brain function, cognition, and behavioral performance. 
However, they do not provide data on the distribution of electric fields 
in the brain during TI stimulation.

Studies on humans have demonstrated that compared to tACS, TI 
has greater permeability in transcranial stimulation. Moreover, TI can 
effectively adjust functional brain networks, boosting cognitive 
function and neural excitability. However, the results of TI studies on 
human neurophysiology are inconsistent. Therefore, more studies on 
human neurophysiology and behavior are needed to provide solid 
evidence for the effect of TI.

5. Simulation studies

Simulation studies have focused on scrutinizing algorithms and 
perfecting TI strategies. Algorithms have been continuously 
optimized, significantly increasing the speed of simulations in TI 
stimulation. Bahn et al. (2023) developed an unsupervised neural 
network for simulating TI stimulation on the human brain that could 
rapidly and precisely optimize stimuli at deep brain targets. Moreover, 
Stoupis and Samaras (2022) discovered that using a genetic algorithm 
could drastically reduce the optimization time, making it possible to 
create personal stimulation plans rapidly. Research has indicated that 
unsupervised neural networks and genetic algorithms can be effective 
TI simulation algorithms. While both unsupervised learning and 
genetic algorithms can simulate TI-induced electric fields, no study 
has compared their relative efficiencies.

In optimizing stimulation montages, computer simulations offer 
numerous applicable scenarios for TI research to enhance intensity 
and focality in the targeted area. Regarding stimulation intensity, Lee 
et  al. (2020) employed three realistic finite element human head 
models to modulate the position and current intensity of two pairs of 
electrodes. Delivering TI with an amplitude above the 0.2 V/m 
modulation threshold was possible by optimizing the TI electrode 
conditions. Rampersad et al. (2019) presented optimal four-electrode 
current patterns for the human brain and maximized the TI current 
to 0.37 V/m in the pallidum, 0.24 V/m in the hippocampus, and 
0.57 V/m in the motor cortex. Concerning the stimulation focality, Lee 
et al. (2022c) employed finite element method-based electric field 

simulations of human brain models to demonstrate that epidural TI 
produced a more focal and stronger current in three targets (the 
anterior hippocampus, subthalamic nucleus, and ventral intermediate 
nucleus), and results were confirmed via phantom experiments. 
Huang and Datta (2021) and Lee et al. (2022b) simulated a multipair 
electrode strategy on the human head and observed that multipair TI 
electrodes offer a more focused stimulation than traditional TI using 
two-pair. These studies suggest that optimizing the electrode 
conditions and increasing the number of electrodes effectively 
improve TI efficiency.

In summary, computer simulations yield valuable information 
that can assist us in optimizing TI stimulation protocols.

6. The mechanism of temporal 
interference

Determining the mechanism of how TI influences brain function 
and behavior, allows for a more effective clinical application of 
TI. Currently, investigations of the mechanisms of TI effects on the 
brain have been conducted at the levels of animal models and 
computer simulations. Through their in vitro experiments and animal 
models, Grossman revealed the properties of TI stimulation to be focal 
and steerable. TI applied two kHz-frequency electric currents with a 
slight disparity to generate low-frequency electrical field envelopes. 
The envelopes improved the activation of the mice’s hippocampus 
without affecting its overlying cortex. Additionally, altering the 
current intensity ratio between the electrode pairs allows the 
maximum envelope at the deep site to be controlled without shifting 
the electrodes (Grossman et al., 2017).

By computer simulation approaches, Mirzakhalili et al. (2020) 
investigated the physics of TI neurostimulation from the perspective 
of ion-channel-mediated currents in three aspects to elucidate the 
mechanism more clearly. First, when a subthreshold TI stimulus was 
applied, the Na+ current was the most prominent among the ion 
currents passing through the axonal membrane, leading to a total 
inward current and causing the axons to depolarize. Upon reaching 
the axonal membrane potential threshold, an action potential was 
initiated, consistent with previous studies (Grossman et al., 2017). 
They suggested that the depolarizing property is linked to the 
resonance behavior of the axon, suggesting that the frequency of 
envelope coupling with the axon may improve TI efficiency. Second, 
they examined the initiation of action potentials along the axons when 
exposed to TI stimulation. Amplitude modulation of the electric field 
was confirmed as an essential element in initiating the action potential 
in the axon. The area of maximum amplitude modulation can 
be altered by modifying the current ratio among the electrode pairs, 
thereby allowing the stimulus target region to be modified. Third, the 
neural responses during TI can be classified into multiple categories. 
Grossman’s study determined that the neural response to TI 
stimulation is activated or inactive. In contrast, Mirzakhalili et al. 
(2020) illustrated multiple classes of neural responses during TI. The 
study revealed that the axon displayed physic activity when stimulated 
at the midline (y = 0.0 mm), tonic neural activity at y = 1.7 mm, and 
conduction block at 3.5 mm away from the midline.

Studies have examined factors affecting the effectiveness of 
TI. Plovie et al. (2022) employed a simplified Hodgkin-Huxley model 
of neural activity to assess the influence of TI with various parameters 
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and proposed that the input stimulation intensity is critical in 
modulating the neuron membrane potential. Consistent with the 
study by Plovie, Gomez-Tames et al. (2021) employed a multiscale 
mouse brain model to explore the neural response to TI and verified 
that a greater current at a higher carrier frequency is needed to surpass 
the low-pass filter of the neuromembrane. Moreover, Von Conta et al. 
(2021) revealed that the electrical field strength at the target areas 
differed among individuals, suggesting that considering individual 
variability could enhance the effectiveness of TI. Wang et al. (2023) 
applied biophysically realistic neuron models and conducted 
simulations using various E-field stimulation parameters, assuming a 
uniform field. Subsequently, the total TI E-field vector rotated with the 
phase difference of the individual E-fields, implying that the three-
dimensional characteristics of the TI E-fields should be considered in 
experimental investigations. Therefore, individual differences, three-
dimensional spatial characteristics, and increasing the stimulation 
intensity at target areas, may be  primary factors affecting the 
efficacy of TI.

7. Safety issue

Two studies have been conducted to examine the safety of TI 
stimulation from animal models and humans. At the animal level, 
Grossman et al. (2017) used immunohistochemistry to investigate the 
cellular and synaptic molecular profiles in the cortex and hippocampus 
of mice after 20 min of TI stimulation (2 kHz and 2.01 kHz). The 
profiles of the cellular and synaptic molecules remained unchanged. 
The temperature in the cortex beneath the lateral electrode increased 
slightly to 0.069 ± 0.05°C. At the human level, Piao et  al. (2022) 
explored the safety of TI as regards influencing the human brain. The 
analyses revealed no considerable differences between the active 
(2 mA, 20/70 Hz, and 30 min) and sham (0 mA, 0 Hz, and 30 min) 
groups in various neurological and neuropsychological parameters, 
and no adverse effects were reported. Therefore, the protocols of 
current TI studies are safe.

8. Discussion

Studies have investigated the effects of TI on brain function and 
behavior. In comparison to traditional tES, TI has benefits in focality, 
steerability, and tolerance. The advantages of TI make it a promising 
treatment for neurological motor dysfunction diseases, such as 
Parkinson’s. Nevertheless, fewer studies have been done to assess the 
effects of TI on human neurophysiological function and behavior, and 
the results have been inconsistent. This situation may be attributable 
to a variety of causes. First, the current intensity delivered into the 
human brain is too low. It is insufficient to evoke a noteworthy 
neurophysiological and behavioral reaction in the human brain. 
Second, there is a wide variation of stimulation protocols used in 
existing TI studies, and the design of these protocols fails to consider 
the correlation between neural activity frequency and the frequency 
of stimulation, as well as the effect of functional brain networks on 
behavior. Third, the approaches currently utilized in TI studies of 
behavioral measurement are overly simplistic and limited in scope.

To improve upon the shortcomings of existing research on TI, 
future studies could take into account factors such as:

8.1. Securely increasing the modulation 
amplitude of electric currents in humans

The modulation amplitude of electric currents is critical to the 
effectiveness of TI. Following operational guidelines of conventional 
transcranial electric stimulation (tES), most TI studies have set the 
stimulation intensity at 0–2 mA (Zhang et  al., 2022; Zhu et  al., 
2022). Nevertheless, the impedance of TI stimulation is notably 
lower than that of low-frequency tES, which allows for the 
application of higher stimulation intensity (Ariel et  al., 2019; 
Rampazo and Liebano, 2022). Moreover, TI has a higher tolerance 
than conventional tES (Liu et  al., 2021). Therefore, within safe 
operation parameters, increasing the intensity of TI can be taken 
into consideration.

8.2. Stimulating in closed-loop

The frequency coupling between TI envelopes and axonal 
behaviors affects the efficiency of TI stimulation (Mirzakhalili et al., 
2020), thus necessitating the evaluation of neural activity frequency to 
determine the frequency of TI stimulation. Future studies could 
consider a closed-loop stimulation mode, which incorporates an 
electroencephalogram to detect neural activity or examine the 
frequency of limb movements that are coupled with neural activity, to 
obtain the stimulation protocol.

8.3. Stimulating a functional network with 
multiple targets

Human behavior is not governed by a single region of the 
brain, rather the collaboration of multiple brain regions is 
responsible for its control (Park and Friston, 2013; Marek and 
Dosenbach, 2018). Simultaneously stimulating multiple targets 
in the brain’s functional network may help regulate 
particular functions.

8.4. Temporally interfering transcranial 
magnetic stimulation

Temporally Interfering Transcranial Magnetic Stimulation 
(TI-TMS) is a novel approach that achieves Temporal Interference 
Stimulation in a targeted brain area via the Transcranial Magnetic 
Stimulation technique (Sorkhabi et al., 2020; Xin et al., 2021). Xin 
et al. (2021) and Sorkhabi et al. (2020) determined the efficiency 
of TI using computer simulations, which demonstrated that TMS 
with temporal interference could activate neural activity without 
influencing the cortex above it and that the stimulation targets 
could be directed without adjusting the coil positions. Compared 
with conventional TMS, temporal interference TMS can provide 
a deeper and more focal brain stimulation. Based on this, Khalifa 
et  al. (2023) developed a novel two-solenoid coil to stimulate 
temporal interference. The results of the experiments on 
mice revealed that temporal interference with TMS could 
significantly increase the expression of c-Fos in the deeper layers 
of the mouse brain without affecting the overlaying tissue. 
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Therefore, TI-TMS exhibits excellent potential as a tool for 
managing human behavior.

8.5. Optimizing the behavioral tests

Tests currently employed to validate the behavioral effects of TI 
are open to bias, thus it is suggested that more dependable behavioral 
tests be  utilized to bolster the reliability of behavioral data. For 
example, using Short Latency Afferent Inhibition (SAI) as a 
neurophysiological marker (Bonnì et al., 2017), and collecting the SAI 
data in different phases during TI stimulation to better understand the 
effect of TI on central cholinergic activity.

9. Conclusion

TI is a promising technology for the treatment of Neurological 
Movement Disorders, due to its superior focality, steerability, and 
tolerability compared to traditional electrical stimulation. However, 
human experiments have yielded fewer and inconsistent results, thus 
animal and simulation experiments are still required to perfect 
stimulation protocols for human trials.
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