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Emotion recognition constitutes a pivotal research topic within a�ective

computing, owing to its potential applications across various domains. Currently,

emotion recognition methods based on deep learning frameworks utilizing

electroencephalogram (EEG) signals have demonstrated e�ective application and

achieved impressive performance. However, in EEG-based emotion recognition,

there exists a significant performance drop in cross-subject EEG Emotion

recognition due to inter-individual di�erences among subjects. In order to address

this challenge, a hybrid transfer learning strategy is proposed, and the Domain

Adaptation with a Few-shot Fine-tuning Network (DFF-Net) is designed for

cross-subject EEG emotion recognition. The first step involves the design of

a domain adaptive learning module specialized for EEG emotion recognition,

known as the Emo-DA module. Following this, the Emo-DA module is utilized

to pre-train a model on both the source and target domains. Subsequently,

fine-tuning is performed on the target domain specifically for the purpose of

cross-subject EEG emotion recognition testing. This comprehensive approach

e�ectively harnesses the attributes of domain adaptation and fine-tuning, resulting

in a noteworthy improvement in the accuracy of the model for the challenging

task of cross-subject EEG emotion recognition. The proposed DFF-Net surpasses

the state-of-the-art methods in the cross-subject EEG emotion recognition task,

achieving an average recognition accuracy of 93.37% on the SEED dataset and

82.32% on the SEED-IV dataset.

KEYWORDS

a�ective computing, cross-subject EEG emotion recognition, fine-tuning, domain

adaptation, few-shot

Emotion recognition has emerged as a crucial research task within the field of affective

computing (Cimtay et al., 2020; Doma and Pirouz, 2020; Almarri et al., 2021). Currently,

emotion recognition holds significant potential applications in various domains, including

the diagnosis of affective disorders, affective brain-computer interfaces (Jia et al., 2020),

emotion detection of drivers (Zhou et al., 2023a), and mental workload estimation (Tan

et al., 2020; Huang et al., 2023; Wang et al., 2023). Emotion is a response to both

internal and external stimuli (Jia et al., 2021a). Therefore, human emotions can generally

be detected through two types of signals: non-physiological signals and physiological

signals. Non-physiological signals encompass facial expressions, speech, gestures, and more.

These signals are relatively easy to detect and provide intuitive emotional responses

(Cimtay et al., 2020; Tan et al., 2020). However, non-physiological signals such as facial

expressions, speech, and gestures can also be deliberately concealed. In contrast, while

physiological signals are less accessible for detection and recognition, they are challenging

to deliberately mask. Commonly used physiological signals for emotion recognition include

the electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG).
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Among these, EEG signals stand out due to their high temporal

resolution and abundant information. This makes EEG signals

particularly suitable for emotion recognition when compared

to other physiological signals (Atkinson and Campos, 2016).

Therefore, an increasing number of researchers are delving into

emotion recognition studies based on EEG signals (Xing et al.,

2019).

In recent years, due to its ability to accurately reflect the

genuine emotions of subjects, EEG signals have found widespread

application in the field of emotion recognition (Jia et al., 2020;

Zhou et al., 2023b). Early EEG-based emotion recognition relied

on processes like signal denoising, feature design, and classifier

learning. For instance, Wang et al. (2011). introduced the Support

Vector Machine (SVM) classifier, and Bahari and Janghorbani

(2013). proposed the K-Nearest Neighbors (KNN) classifier, both

achieving effective emotion classification. However, traditional

machine learning techniques are constrained by intricate feature

engineering and selection processes. To overcome these limitations,

deep learning techniques have been introduced. The continuous

refinement of deep learning algorithms has led to significant

achievements in the realm of EEG-based emotion recognition.

Notably, CNN models proposed by Chen et al. (2019) and Kwon

et al. (2018). have substantially enhanced the accuracy of EEG

emotion recognition. Additionally, the application of Transformer

models in EEG emotion recognition has garnered attention, as

exemplified by the EEG Emotion Transformer (EeT) by Liu et al.

(2022). and the Joint Dimensional Attention Transformer (JDAT)

by Wang et al. (2021b).

Despite the success of deep learning, in EEG-based emotion

recognition, significant individual differences among different

subjects pose a challenge. This leads to a noticeable decrease in

the performance of deep learning models on cross-subject EEG

emotion recognition tasks. To address this concern, researchers

have increasingly explored transfer learning techniques. Fine-

tuning, as an effective knowledge transfer method, has gained

widespread adoption. Li et al. (2018b). incorporated fine-tuning

to investigate subject transfer and the extent of knowledge sharing

among subjects. Zhang et al. (2023) introduced the Self-Training

Maximum Classifier Difference (SMCD) model, utilizing fine-

tuning to apply a model trained on the source domain to the

target domain. However, fine-tuning primarily involves adapting

a pre-trained model to a new task within the target domain.

Therefore, there might be certain limitations when transferring

knowledge from the pre-trained model to the target task. If

there are substantial domain differences between the source

and target domains, or if the characteristics of the target task

do not align well with the original task of the model, the

effectiveness of fine-tuning could be constrained. Researchers

have begun exploring the application of domain adaptation in

cross-disciplinary EEG emotion recognition. Jin et al. (2017)

employed a Domain Adaptation Network (DAN) for knowledge

transfer, aiming to alleviate source-target subject disparities and

eliminate variability. Li et al. (2019) proposed aDomain Adaptation

method that enhances adaptability by minimizing source domain

error and aligning latent representations. However, domain

adaptation primarily reduces domain differences by learning

feature representations between the source domain and the target

domain. Therefore, relying solely on domain adaptation may

not fully accommodate the characteristics of the target task and

the variations in the target domain. Models may not adequately

leverage the label information in the target domain, resulting in

a decrease in performance. Domain adaptation typically focuses

on addressing the disparities between a model’s performance in

the source domain and the target domain. Fine-tuning further

enhances the performance of the model in the target domain.

Therefore, by combining both techniques, it is possible to achieve

a more significant improvement in performance, enabling the

model to better adapt to cross-subject EEG emotion recognition

tasks. However, effectively coordinating domain adaptation and

fine-tuning while capitalizing on the strengths of each, reducing

domain disparities, enhancing model adaptability, and ultimately

improving accuracy is a challenging endeavor.

In order to address the aforementioned challenging task, a

hybrid transfer learning strategy for cross-subject EEG emotion

recognition is proposed. Specifically, Domain Adaptation with a

Few-shot Fine-tuning Network (DFF-Net) is employed for cross-

subject EEG emotion recognition. Firstly, the original EEG signals

are divided into segments, each lasting 4 seconds. For each segment,

Differential Entropy (DE) features in the δ, θ , α, β , and γ frequency

bands are extracted. These features are spatially mapped based on

electrode positions to generate EEG feature representations. To

enhance the extraction of EEG features, a Vision Transformer (ViT)

is employed as the Feature Extractor. Subsequently, building upon

the original Domain-Adversarial Neural Network (DANN) model,

a domain adaptive learning module named the Emo-DA module

is devised for EEG emotion recognition. The module addresses

domain discrepancies among different subjects. The Emo-DA

module is then applied to pre-train a model on both the source and

target domains. Fine-tuning is subsequently employed on the target

domain to further test cross-subject EEG emotion recognition.

Lastly, a series of comparative and ablation experiments are

conducted using the DFF-Net framework. These experiments not

only demonstrate the superiority of DFF-Net overall state-of-the-

art models but also explore the contributions of key components

withinDFF-Net to the recognition performance in the cross-subject

EEG emotion recognition task.

The primary contributions of this paper can be outlined

as follows:

• With the aim of reducing the disparities between the source

and target domains, a domain adaptive learning module

for EEG emotion recognition was crafted, named the Emo-

DA module. This module facilitates the model in achieving

improved generalization on the target domain.

• In order to enhance the adaptability of the model to the target

domain and make use of a limited amount of target domain

data, the integration of domain adaptation and fine-tuning

techniques is designed, leading to the creation of the domain

adaptation with a few-shot fine-tuning network (DFF-Net).

This approach is devised to better accommodate the specific

features of the target domain, thereby enhancing the accuracy

of the cross-subject EEG emotion recognition task.

• The proposed DFF-Net model achieves accuracy rates of 93.37

and 82.32% on the SEED and SEED-IV datasets, respectively,

for cross-subject EEG emotion recognition. These rates

surpass those of all state-of-the-art models. Furthermore, a
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series of ablation experiments were conducted to investigate

the contributions of key components within DFF-Net to

the recognition performance of cross-subject EEG emotion

recognition tasks.

1 Related work

This section offers a thorough overview of relevant research

in EEG-based emotion recognition, focusing on the application

of transfer learning strategies in the context of cross-subject

emotion recognition.

1.1 EEG-based emotion recognition

In recent years, there has been a notable proliferation of

applications for electroencephalogram signals in the realm

of emotion recognition. This heightened interest is primarily

attributable to their inherent capacity to accurately and

faithfully capture authentic emotional states within individuals.

Prior investigations have predominantly concentrated on the

enhancement of EEG-based emotion recognition methodologies

through processes such as signal denoising, feature engineering,

and classifier training. For instance, Wang et al. (2011)

introduced an emotion recognition framework grounded in

cerebral signals. This method integrated EEG spectral features

with a Support Vector Machine (SVM) classifier, yielding

experimental evidence that validates the viability of this strategy

for precise emotion classification. Bahari and Janghorbani (2013)

employed a non-linear method, specifically recurrence plot

analysis, to extract distinctive features. These extracted features

were subsequently utilized in combination with a K-Nearest

Neighbors (KNN) classifier for the purpose of emotion recognition

(Bahari and Janghorbani, 2013). However, traditional machine

learning techniques are limited by the requirement of extensive

feature engineering and feature selection, which often requires

domain expertise.

In order to tackle the stated constraints, deep learning

methodologies have been employed (Jia et al., 2022a,b). Given the

ongoing enhancement and notable achievements of deep learning

algorithms, EEG-based emotion recognition approaches utilizing

deep learning frameworks have been successfully implemented,

yielding encouraging outcomes. For example, Chen et al. (2019)

introduced a deep CNN model inspired by those commonly used

for image classification tasks in computer vision. This approach

avoided the laborious task of manually extracting features and

selecting attributes that conventional machine learning methods

necessitate. Consequently, the precision and consistency of

identifying emotions from EEG signals were substantially enhanced

(Chen et al., 2019). Kwon et al. (2018) utilized Convolutional

Neural Networks (CNN) to extract features from EEG signals.

In this model, the EEG signal undergoes preprocessing with

wavelet transform to consider both the temporal and frequency

information before the convolution process (Kwon et al., 2018).

Aside from the effective utilization of 2D Convolutional Neural

Networks (2D-CNN) in EEG emotion recognition assignments,

notable advancements have been achieved using 3D Convolutional

Neural Networks (3D-CNN) as well. For instance, Salama et al.

(2018) carried out an investigation into the application of 3D-

CNN in the realm of emotion recognition. Additionally, they

advanced a data augmentation phase to enhance the effectiveness

of the 3D-CNN architectures (Salama et al., 2018). Moreover,

Cho and Hwang (2020) introduced a 3D-CNN architecture that

effectively captures the spatiotemporal portrayal of EEG signals to

achieve precise emotion classification. In order to more effectively

capture the global features of EEG signals, certain researchers

have begun to explore the use of Transformer models for

EEG emotion recognition. Liu et al. (2022) presented the EEG

emotion Transformer (EeT) framework, which directly acquires

spatial-spectral characteristics from EEG signal sequences, thereby

modifying the conventional Transformer model for EEG data.

Moreover, Wang et al. (2021b) put forward a model named

Joint-Dimension-Aware Transformer (JDAT) for EEG emotion

recognition. By applying adaptive compressed Multi-head Self-

Attention (MSA) on multidimensional features, JDAT effectively

focuses on various EEG information, encompassing spatial,

frequency, and temporal domains (Wang et al., 2021b). Despite

the successful applications of deep learning methods, the inherent

diversity of humanmental states, and varying responses to the same

stimuli introduce challenges due to the non-stationary nature and

individual variability of EEG signals (Jia et al., 2021b). Therefore,

effectively modeling individual differences remains a challenge for

the above-mentioned deep learning models in the context of cross-

subject emotion recognition based on EEG signals. Nonetheless,

transfer learning offers a promising strategy to address this issue.

1.2 Transfer learning for emotion
recognition

Due to the potential applications of deep learning models in

various domains, there has been significant interest in utilizing

these models for EEG emotion recognition. However, when

applying deep learning models to cross-subject EEG emotion

recognition, the limited number of subjects in EEG emotion

datasets, coupled with the inter-individual differences between

subjects, presents a significant challenge. This often results in

a notable performance decline for deep learning models in the

context of cross-subject EEG emotion recognition tasks. To address

the issue of performance degradation in EEG emotion recognition

across subjects, many researchers have started exploring the

application of transfer learning techniques. In cross-subject EEG

emotion recognition tasks, transfer learning primarily addresses

the issue of data domain gaps caused by individual differences.

EEG signals from different subjects under the same emotional state

can exhibit substantial variations due to individual differences. In

this scenario, the target domain represents the feature space of

EEG data obtained from a certain number of subjects, while the

source domain encompasses the feature space of data collected

from one or multiple different individuals. Fine-tuning, a widely

used and effective knowledge transfer method in deep neural

networks, has become a pivotal technology in the field of transfer

learning. It facilitates adapting pre-trained models to specific tasks

or domains. Fine-tuning enables the model to adjust its learned

representations based on the characteristics of the target subjects,

thereby enhancing the performance of cross-subject emotion
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recognition tasks. In order to investigate cross-subject emotion

recognition through fine-tuning techniques, Li et al. (2018b)

incorporate Fine-tuning into the emotion recognition networks

and examine the extent to which the models can be shared among

subjects. Wang et al. (2020) have proposed a method that utilizes

fine-tuning to address the challenge of emotional differences across

different datasets in deep model transfer learning, with the aim

of constructing a robust emotion recognition model. Zhang et al.

(2023) proposed a Self-Training Maximum Classifier Discrepancy

(SMCD) framework for emotion recognition. This method entails

the utilization of the fine-tuning strategy by implementing the

model previously trained on the source domain onto the target

domain. However, the above fine-tuning methods require a large

amount of labeled data in the target domain for model refinement.

If the labeled data in the target domain is limited, utilizing

fine-tuning may become challenging. Therefore, some researchers

have begun exploring the application of domain adaptation for

cross-subject eeg emotion recognition. For example, Jin et al.

(2017) introduced the implementation of the Domain Adaptation

Network (DAN) for knowledge migration in EEG-based sentiment

identification to tackle the core issue of reducing disparities

between the origin participant and destination participant in an

attempt to eradicate subject variability. Li et al. (2019) introduced

a domain adaptation technique for EEG emotion recognition,

enhanced by reducing the classification error on the source domain

while simultaneously harmonizing the latent representations of

the source and target domains to enhance their similarity. Wang

et al. (2021a) introduced a proficient domain adaptation approach

using the multi-subject learning paradigm to address cross-

subject emotion classification tasks with restricted EEG data. This

technique empowers the model to grasp overarching attributes

from diverse participants and swiftly adjust to the specific target

individual (Wang et al., 2021a). However, only relying on domain

adaptation methods may not effectively leverage the available label

information in the target domain, which can result in performance

degradation. Domain adaptation typically focuses on reducing the

performance gap between different domains, especially between the

source and target domains. Fine-tuning involves further training

on target domain data to adapt to its specific characteristics,

thus enhancing the performance of the model in the target

domain. Therefore, combining these two techniques can lead

to more significant performance improvements, allowing the

model to better adapt to cross-subject EEG emotion recognition

tasks. However, effectively coordinating both domain adaptation

and fine-tuning techniques and harnessing their strengths to

reduce inter-domain differences, enhance model adaptability, and

ultimately improve emotion recognition accuracy is a challenging

task. The challenge of this task lies in the need for careful balance

between the two techniques, ensuring that the model can adapt well

to the data characteristics of the target domain while preserving its

generalization capability. Additionally, the selection of appropriate

domain adaptation methods and fine-tuning strategies must also

be considered.

2 Preliminaries

In order to facilitate subsequent reading, some key content has

been defined here:

Definition 1: The features E = (E1,E2, ...,EB) ∈ R
Ne×B

encompass B frequency bands derived from EEG signals, where Ne

denotes the electrode count. The features AE = (AE
1 ,A

E
2 , ...,A

E
B) ∈

R
height and width of the feature map×B are constructed, with H and W

denoting the height and width of the feature map, respectively. This

study aims to establish a correlation between these representations

and emotional states. Given the representation AE, the task of

emotion recognition can be represented as Yout = F(AE),

with Yout signifying the emotional state and F representing the

proposed model.

Definition 2: A labeled source domain is defined as D
E
s =

(AE
i , L

E
i )

Ns

i=1, and an unlabeled target domain is defined as DE
t =

(AE
j )

Nt

j=1. The joint probability distributions of the two domains are

different, indicating that PEs (A
s
i , L

s
i)− PEt (A

t
j , L

t
j ) 6= 0.

Definition 3: The unified representation of transfer learning

methods can be expressed as Formula (1).

F∗ = argmin
F

(
1

Ns

Ns
∑

i=1
Ls(F(A

s
i ,Y

s
i ))+ λLt(F(A

t
j ,Y

t
j ))+ αD(PEs , P

E
t ))

(1)

where F∗ represents the optimized model parameters, Ns denotes

the number of samples in the source domain, F(As
i , L

s
i) represents

the prediction of the model F on the labeled samples from the

source domain,Ls denotes the loss function for the source domain,

F(At
j , L

t
j ) represents the prediction of the model F on the unlabeled

samples from the target domain, Lt represents the loss function for

the target domain, λ and α are regularization parameters,D(PEs , P
E
t )

is a discrepancy metric that measures the difference between the

source and target domain distributions PEs and PEt .

3 Methodology

3.1 Overview

Figure 1 illustrates the overall architecture of our proposed

method, which consists of three main components: the backbone,

domain adaptation, and fine-tuning. The first part is the backbone,

which is a Vision Transformer primarily composed of a linear

embedding layer and a Transformer encoder. The second part is

domain adaptation, consisting of the backbone model, a domain

classifier, a label predictor, domain loss, class loss, and gradient

reversal. The third part is fine-tuning, involving pre-training, and

fine-tuning. The method operates as follows: Initially, one model is

trained by utilizing both source EEG data and target EEG data for

the backbone and domain adaptation. After training, the model is

saved and used as a pre-trained model. Finally, the target EEG data

is divided into a few training samples and test samples, and then the

pre-trained model is fine-tuned using the target data. Algorithm 1

shows the pseudocode for Domain Adaptation with Few-shot

Fine-tuning. Initially, the Domain Adaptive Learning module for

EEG emotion recognition (Emo-DA) is employed, taking labeled

source domain data and unlabeled target domain data as input for

Emo-DA. Subsequently, Fine-tuning is applied, utilizing a small

amount of data from the target domain for training. Testing is

then performed on the target domain, ultimately yielding the

classification results.
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FIGURE 1

The whole process of EEG cross-subject emotion recognition. The entire process of EEG cross-subject emotion recognition begins with utilizing the

EEG feature representation as input. Subsequently, the backbone model is employed for feature extraction. Next, the domain adaptation block is

utilized to train a pre-trained model. Finally, this pre-trained model is fine-tuned for the task at hand.

3.2 EEG feature representations

Figure 2 portrays the conversion process from the original EEG

signals to EEG feature representations. The initial EEG signals are

partitioned into non-overlapping 4-second intervals, maintaining

identical labels as the original EEG signals. To form the EEG feature

depiction, a method for extracting temporal-frequency features

is employed, capturing the Differential Entropy (DE) attributes

of five frequency ranges {δ, θ ,α,β , γ } from the 4-second EEG

segments across all EEG channels. The frequency feature E =
(E1,E2, ...,EB) ∈ R

Ne×B contains the extracted frequency bands

from the DE feature. Here, B belongs to the set B ∈ {δ, θ ,α,β , γ },
indicating the frequency band. Ne pertains to the electrodes,

and is represented by FP1, FPZ, ...,CB2. The collection of EEG

signals from all Ne electrodes on frequency band B is denoted as

SB
b
= (s1

b
, s2
b
, ..., sN

b
) ∈ R

N(b ∈ {1, 2, ...,B}). Subsequently, the
chosen data undergo a transformation to generate a frequency-

domain brain electrode location matrix denoted as AM
b
∈ R

H×W .

Here, b ∈ 1, 2, ...,B represents the frequency band, H signifies

the height of the matrix, and W indicates the width of the

matrix. This transformation is performed based on the spatial

arrangement of the electrodes on the brain. Finally, the EEG feature

representation is crafted by combining frequency-domain brain

electrode position matrices across various frequencies, resulting in

AM = (AM
1 ,AM

2 , ...,AM
B ) ∈ R

H×W×B. This step accomplishes the

construction of the EEG feature representation.

3.3 Transformer

The Vision Transformer (ViT) has achieved state-of-the-art

performance in various computer vision applications, such as

image classification and segmentation. This motivates us to use

ViT as the feature extractor for feature extraction from EEG

feature representations. The architecture of the ViT as the feature

extractor for feature extraction from EEG feature representations is

illustrated in Figure 3.

The ViT model takes the EEG feature representation denoted

as AM = (AM
1 ,AM

2 , ...,AM
B ) ∈ R

H×W×B as input. This initial

EEG feature representation, with dimensions H × W × B, is

partitioned into B EEG representation patches AM
b
∈ R

H×W ,

each patch having dimensions H ×W. The representation patches

are subsequently inputted into the Linear Embedding layer, which

maps them to a fixed size denoted as Ed. According to Equation (2),

WA can be deduced as the input for the Transformer Encoder. In

this context, the class token, denoted by xclsp ∈ R
Ed , contributes

to feature representation learning. The parameter NTB ∈ T,B

signifies the count of EEG representation patches, and EA ∈
R
H×W×Ed represents the linear projection matrix. Additionally,

the one-dimensional position embedding, A
pos
E ∈ R

(NTB+1)×Ed , is
introduced tomaintain the sequential frequency series information.

WA =
[

xclsp ; x1pEA; x2pEA; ...; x
NTB
p EA

]

+ A
pos
E (2)
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Data: Labeled source domain D
E
s = {(AE

i , L
E
i )}

Ns
i=1,

unlabeled target domain D
E
t = {AE

j }
Nt
j=1

Result: Classification results on target domain

Yout

1 r← 1;

2 while r ≤ T do

3 Extract features from source and target

domains using the backbone model: for i = 1 to Ns

do

4 FEi ← F(AE
i )

5 end

6 for j = 1 to Nt do

7 FEj ← F(AE
j )

8 end

9 Train a domain adaptation model using labeled

source data D
E
s and unlabeled target data D

E
t ;

10 θf ← Emo-DA(DE
s ,D

E
t );

11 Save the adapted model for future use;

12 SaveModel(θf , r);

13 Fine-tune the model using a small amount of

labeled data from the target domain D
l
t;

14 θ̂f ← Fine-tuning(θf ,D
l
t);

15 Predict labels on the target domain using the

fine-tuned model;

16 Yout ← F(DE
t );

17 r← r + 1;

18 end

Algorithm 1. Domain adaptation with a few-shot fine-tuning.

As shown in Figure 3, the Transformer Encoder block

consists of three main components: Multi-Head Attention,

Multi-Layer Perceptron (MLP) block, and Layer Normalization.

The Multi-Head Attention component initially performs self-

attention computations using a multi-head mechanism. Each

vector of position simultaneously considers information from other

positions to capture global correlations. The output from theMulti-

Head Attention is fed into a feedforward neural network in the

MLP Block. Typically, the MLP includes two fully connected layers

and a Gaussian Error Linear Unit (GELU) activation function,

introducing non-linear transformations to further adjust and

enrich feature representations. The output from the MLP block

then undergoes layer normalization, which normalizes the feature

vectors to reduce internal covariate shift, thereby enhancing model

training stability and generalization capability. Once these three

steps are completed, the output of the Transformer Encoder

block becomes the input for the next layer. This process is

repeated multiple times, typically involving multiple Encoder

blocks stacked together. This way, the Transformer progressively

extracts and transforms features from the input, resulting in

gradually abstracted feature representations.

3.4 Domain adaptation network

A Domain-Adversarial Neural Network (DANN) is utilized

for achieving transfer learning. This framework was originally

proposed by Ganin and Lempitsky (2015) for image classification.

Based on the original DANN model, a domain adaptive learning

module for EEG emotion recognition is proposed, named the Emo-

DA module, with the aim of addressing domain discrepancies

among different subjects. The primary objective of the Emo-

DA module is to learn feature representations that have strong

generalization capabilities, enabling the alignment of emotional

data from different subjects in the shared feature space. The

architecture of the Emo-DA module comprises three main

components: a feature extractor, an emotion classifier, and a

domain classifier, as illustrated in Figure 4.

The Feature Extractor is used to extract shared EEG emotion

representations from both the source and target domain input data.

For the Emo-DAmodule, the Vision Transformer model is selected

as the Feature Extractor. The formula for the Feature Extractor in

the Emo-DA module can be represented as Equation (3):

Hi = Fθ (xi; θf ) (3)

where xi represents the input sample, and Hi represents the output

feature representation from the Feature Extractor. The Feature

Extractor maps the input sample xi to a high-level feature space

using the parameter θf , which contains abstract features useful for

the emotion recognition task. These features will be passed to the

Emotion Classifier and Domain Classifier for subsequent emotion

recognition and domain adaptive learning.

The Emotion Classifier is a classifier used for emotion

classification. It takes the shared features extracted by the Feature

Extractor as input and performs emotion classification on the

source domain data. In this case, a fully connected layer is chosen

as the classifier for emotion classification. The formula for the

Emotion Classifier in the Emo-DA module can be represented as

Equation (4):

Yi = Gφ(Hi;φy) (4)

where Hi represents the output feature representation from the

Feature Extractor, and Yi represents the emotion prediction results

of the model for the input sample xi. The Emotion Classifier maps

the feature representationHi to a predicted probability distribution

over emotion labels using the parameter φy.

The Domain Classifier is used to differentiate the features

between the source and target domains. It takes the shared features

extracted by the Feature Extractor as input and attempts to

correctly classify them as belonging to either the source or target

domain. The objective of the Domain Classifier is achieved through

adversarial training, which aims to make the extracted features

indistinguishable with respect to the domain. The formula for the

Domain Classifier in the Emo-DA module can be represented as

Equation (5):

Di = Dψ (Hi;ψd) (5)

where Hi represents the output feature representation from the

Feature Extractor, and Di represents the prediction results of the

domain label for the input sample xi. The Domain Classifier maps
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FIGURE 2

The transformation of the initial EEG signal into a feature representation. The EEG signal transformation process involves several steps. Firstly, the raw

EEG signal is divided into segments of a fixed length. Subsequently, features in the frequency domain are extracted from each segment across various

frequency bands. Finally, these features are then linked to the matrix representing the electrode positions, forming the EEG feature representations.

FIGURE 3

The structure of the Vision Transformer serves as the backbone for feature extraction from EEG feature representations. The backbone model takes

the original EEG feature representation and divides it into EEG representation patches. Each representation patch is then used as input to the Linear

Embedding layer. The output of the Linear Embedding layer serves as the input to the Transformer Encoder, which is composed of three main

components: Multi-Head Attention, Multi-Layer Perceptron (MLP) Block, and Layer Normalization.

the feature representationHi to a predicted probability distribution

over domain labels using the parameter ψd.

The Emo-DA module is capable of learning generalizable

feature representations from the emotion data of different subjects,

resulting in improved emotion recognition performance on both

the source and target domains. Through domain adaptive training,

the Emo-DA module aligns the feature representations of the

source and target domains, thereby enhancing the generalization
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FIGURE 4

The Emo-DA module is an emotion recognition network consisting of three main components: a feature extractor, an emotion classifier, and a

domain classifier. The feature extractor and emotion classifier work together to form a conventional feedforward neural network, which can be

utilized for label prediction. Domain adaptation is achieved by employing the feature extractor and domain classifier in conjunction with

backpropagation. Specifically, the gradient flowing from the domain classifier to the feature extractor is multiplied by negative parameters in the

gradient reversal layer. This process ensures domain-invariant feature learning and facilitates the alignment of the source and target domains.

FIGURE 5

The Pre-training and Fine-tuning process for EEG emotion classification. This process involves two main components: Pre-training and Fine-tuning.

In the Pre-training phase, the source EEG feature representation serves as the input to the source model, and upon completion of training, the

source model is saved. During Fine-tuning, the target EEG feature representation is utilized as the input for the target model. The target model is

created based on the pre-trained source model, with certain layer parameters being fixed, while only the remaining layers undergo fine-tuning.
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ability and adaptability of the model to the target domain. The

overall training objective of the Emo-DA module can be expressed

as Equation (6).

E(θf ,φy,ψd) =
∑

xi∈DE
s

Lemotion(Gφ(Fθ (xi)), L
y
i )− λ

∑

xi∈DE
s ∪DE

t

Ldomain(Dψ (Fθ (xi)), L
d
i ) (6)

where θf , φy, and ψd represent the parameters of the feature

extractor Fθ , the emotion classifier Gφ , and the domain classifier

Dψ , respectively. Lemotion denotes the emotion classification loss,

while Ldomain represents the domain classification loss. The

emotion samples are denoted by xi, and L
y
i represents their

corresponding true emotion labels. Additionally, Ldi represents

their corresponding domain labels, where Ldi = 0 indicates that the

sample xi comes from the source domain, and Ldi = 1 indicates that

the sample xi comes from the target domain. The Emo-DAmodule

first optimizes the parameters θf and φy of the feature extractor Fθ
and emotion classifier Gφ by minimizing the classification loss and

the feature extractor loss. This is achieved through the following

formula, as shown in Equation (7):

(θ̂f , φ̂y) = argmin
θf ,φy

E(θf ,φy,ψd) (7)

Then, The Emo-DA module optimizes the parameters ψd of

the Domain Classifier Dψ by maximizing its loss. This is achieved

through the following formula, as shown in Equation (8):

(ψ̂d) = argmax
ψd

E(θf ,φy,ψd) (8)

The two steps mentioned above are alternated until the

network converges. During the domain adaptive learning process,

a Gradient Reversal Layer is employed to induce the feature

extractor to learn adversarial feature representations, as shown in

Equation (9):

x̃i = Rλ(xi; λ) (9)

where xi represents the input feature representation, Rλ is the

function of the Gradient Reversal Layer, and λ is a hyper-parameter

that controls the strength of gradient reversal. During the forward,

the Gradient Reversal Layer behaves as an identity map, making

x̃i and xi equal. However, during the backward, the gradient of

x̃i is reversed by multiplying it with −λ, effectively reversing the

gradient direction. The Gradient Reversal Layer aims to minimize

the loss for the emotion classification task and maximize the loss

for the domain classification task in order to align the feature

representations of the source and target domains. By doing so,

the feature extractor can learn to effectively reduce the impact

of domain differences, aligning the representations between the

source and target domains, thereby mitigating the influence of

domain discrepancies.

3.5 Pre-training and fine-tuning

Pre-training and Fine-tuning are model-based transfer learning

methods. The primary objective of this approach is to identify

shared parameter information between the source and target

domains, facilitating knowledge transfer. When provided with a

target domain dataset DE
t , Pre-training and Fine-tuning leverage

prior knowledge θs to learn a function represented by the

parameters θ , as illustrated in Equation (10).

θ∗ = argmin
θ

L(θ |θs,DE
t ) (10)

where θ∗ represents the optimized model parameters, and

L(θ |θs,DE
t ) is the loss function that measures the discrepancy

between the model predictions using the parameters θ and the

target domain data D
E
t , considering the prior knowledge θs. The

optimization aims to find the best parameters θ that minimize the

loss function and facilitate effective knowledge transfer from the

source domain to the target domain.

Figure 5 illustrates a straightforward Pre-training and Fine-

tuning process for EEG emotion classification. As shown in the

figure, the source EEG feature representation is used as input for

Pre-training the source model, and the model is saved after Pre-

training. The target EEG feature representation is then utilized as

input for Fine-tuning the target model. Subsequently, the source

model is adapted by fixing the parameters of the early layers

obtained from Pre-training and Fine-tuning the subsequent layers

specifically for the EEG emotion classification task. Finally, the

target model is constructed. This approach not only significantly

accelerates the network training speed but also greatly improves the

performance of the EEG emotion classification task.

4 Experiments

In this section, the introduction of two widely used datasets

and the description of the experiment settings are presented.

Subsequently, a comparison is made between our proposed

method and the baseline method. Finally, ablation experiments are

conducted, and the results are reported and discussed.

4.1 Datasets

The study was carried out using the SEED (Zheng and

Lu, 2015) and SEED-IV (Zheng et al., 2018) datasets. Both are

public EEG datasets used primarily for emotion recognition. The

SEED dataset consists of a total of 62 channels of EEG signals

recorded from 15 subjects who participated in 15 experiments.

During the experiments, the subjects were presented with 15

Chinese film clips. The clip-viewing process was divided into

four stages, including a 5-second start prompt, a 4-min clip

period, a 45-second self-assessment, and a 15-second rest period.

The researchers categorized the movie clips into three emotional

categories: negative, neutral, and positive. The positive movies

were comedies intended to evoke feelings of happiness, while the

negative movies were tragic films meant to elicit feelings of sadness.
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TABLE 1 The processing involved in extracting the SEED and SEED-IV

datasets are summarized.

SEED SEED-IV

Number of electrodes 62 62

Number of video clips 15 24

Number of sessions 3 3

Number of subjects 15 15

Type of emotion Positive Happy

Neutral Sad

Negative Fear

Neutral

Frequency band γ : 31 ∼ 50 Hz γ :31 ∼ 50 Hz

β :14 ∼ 31 Hz β :14 ∼ 31 Hz

α:8 ∼ 14 Hz α:8 ∼ 14 Hz

θ :4 ∼ 8 Hz θ :4 ∼ 8 Hz

δ:1 ∼ 4 Hz δ:1 ∼ 4 Hz

Bandpass frequency filter 0 ∼ 75 HZ 1 ∼ 75 HZ

Sampling rate 200 HZ 200 HZ

The neutral movies were world heritage documentaries designed

not to evoke either positive or negative emotions.

The SEED-IV dataset is an expansion of the SEED dataset,

encompassing 72 meticulously chosen film clips. These clips were

carefully selected to elicit emotions of happiness, sadness, fear, or

neutrality in the viewers. The primary objective of these video clips

is to evoke corresponding emotions in the subjects participating

in the experiment. Following the viewing of the video clips, the

subjects self-assessed their emotions. The experiment involved a

total of 15 subjects, with each participant participating in 3 sessions

on different days. Each session consisted of 24 trials, where the

participant watched one of the film clips.

The EEG signals from both the SEED datasets and SEED-IV

datasets were recorded using the ESI Neuroscan system, with 62

channels and a sampling rate of 1,000 Hz. Subsequently, the signals

were downsampled to 200 Hz. To enhance the data quality, a band-

pass filter was applied to remove noise and artifacts. Following the

preprocessing step, various features, includingDifferential Entropy,

were extracted from each segment in five frequency bands: δ (1–4

Hz), θ (4–8 Hz), α (8–14 Hz), β (14–31 Hz), and γ (31–50 Hz).

Table 1 provides a summary of the processing steps conducted to

extract the EEG data from the SEED and SEED-IV datasets.

The differential entropy (DE) features stand out as the most

pertinent EEG characteristics for emotion recognition (Zheng and

Lu, 2015; Zheng et al., 2018; Hwang et al., 2020). Differential

entropy acts as a continuum of Shannon entropy for continuous

variables, quantifying the uncertainty inherent in the probability

distribution of such continuous random variables. The initial

formulation for DE is expressed through Formula (11).

DE = −
∫ ∞

−∞
f (x) ln(f (x))dx (11)

TABLE 2 The summary of hyper-parameter settings for the experiments

on the SEED and SEED-IV datasets.

SEED SEED-IV

Number of classes 3 4

Batch size 32 32

Optimizer Adam Adam

Learning rate 1e-5 1e-5

Loss function Cross-entropy Cross-entropy

Dropout rate 0.2 0.2

Encoder layer 12 12

where DE indicates the value of differential entropy, serving

as a measure of the unpredictability associated with continuous

random variables. For EEG signal analysis, it is assumed that the

signal follows a normal distribution, specifically x ∼ N(µ, σ 2).

To simplify the computation of the DE feature, Formula (12) is

utilized. Formula (12) is given as follows.

DE = −
∫ ∞

−∞

1√
2πσ

exp
(x− µ)2

2σ 2
ln(

1√
2πσ

exp
(x− µ)2

2σ 2
)dx

= 1

2
ln 2πeσ 2 (12)

4.2 Experiments setting

In the experiments, the training and testing were performed

on a Tesla V100-SXM2-32GB GPU, with the implementation

carried out using the PyTorch framework. The main focus of the

experiments was on cross-subject transfer. The EEG data of one

subject was taken as the target domain, and the EEG data of all

the remaining subjects served as the source domain. For training

in the source domain, the source model was obtained. The samples

in the source domain were randomly shuffled, and the data were

divided into training and testing sets with a ratio of 7:3. Similarly,

for training in the target domain, the target model was obtained.

However, in this case, only 0.1% of the target domain samples were

used for fine-tuning training, while the remaining samples were

used for testing. During the training in both the source and target

domains, the cross-entropy loss function was used. The summary

of hyper-parameter settings for the experiments on the SEED and

SEED-IV datasets is provided in Table 2.

4.3 Baseline methods

In order to evaluate the effectiveness of the proposed model, a

comparative analysis was conducted with several baseline methods

using the SEED and SEED IV datasets. Brief introductions to each

of these methods are provided below.

• DDC (Tzeng et al., 2014): The suggested domain adaptation

strategy utilizes the utmost mean discrepancy (MMD) to
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TABLE 3 Comparing the performance of baseline methods with the proposed DFF-Net on the SEED and SEED-IV datasets.

Method Year SEED SEED-IV

ACC (%) ↑ STD (%) ↓ ACC (%) ↑ STD (%) ↓
DDC (Tzeng et al., 2014) 2014 68.99 3.23 37.41 6.36

DCORAL (Sun and Saenko, 2016) 2016 62.14 7.98 40.50 10.05

DAN (Li et al., 2018a) 2018 83.81 8.56 58.87 8.13

SOGNN (Li et al., 2021) 2021 86.81 5.79 75.27 8.19

MS-MDA (Chen et al., 2021a) 2021 79.67 8.01 57.92 10.12

MEERNet (Chen et al., 2021b) 2021 87.1 2.0 71.0 12.1

MSMRA (Cao et al., 2022) 2022 87.62 7.53 69.77 7.37

SDDA (Li et al., 2022) 2022 91.08 7.70 81.58 8.72

DSAAN (Meng et al., 2022) 2022 89.23 1.93 - -

MS-ADA (She et al., 2023) 2023 86.16 7.87 59.29 13.65

SMCD (Zhang et al., 2023) 2023 88.75 8.68 74.49 13.80

DFF-Net 2023 93.37 1.88 82.32 5.38

diminish the total distribution discrepancy between the

source and target domains. It combines an adjustment

stratum and a domain perplexity loss, both grounded on

MMD, to aid the spontaneous attainment of a mutual

portrayal, concurrently refining categorization effectiveness,

and confirming domain constancy.

• DCORAL (Sun and Saenko, 2016): An unsupervised approach

for domain adaptation is utilized to attain complete end-to-

end adaptation within deep neural networks. The primary aim

is to mitigate the divergence in statistical characteristics of the

source and target feature activations.

• DAN (Li et al., 2018a): The suggested Domain Adaptation

Network (DAN) utilizes the combined reduction of multi-

kernel Maximum Mean Discrepancies (MK-MMDs) and

loss specific to the task. This allows the DAN to adeptly

tackle distinctions between different domains while retaining

features pertinent to the task.

• SOGNN (Li et al., 2021): A Self-Organized Graph Neural

Network (SOGNN) is introduced for the purpose of cross-

subject EEG emotion recognition. The graph framework of

the SOGNN is autonomously built employing a self-organized

module for every signal.

• MS-MDA (Chen et al., 2021a): Multi-Source Marginal

Distribution Adaptation (MS-MDA) is utilized to address

multiple sources, each having distinct features. This method

involves generating separate branches by pairing each source

domain with the target domain, facilitating one-to-one

Domain Adaptation.

• MEERNet (Chen et al., 2021b): A network for recognizing

emotions based on EEG signals from various sources

(MEERNet) is introduced. MEERNet is structured with a

shared feature extractor, domain-specific feature extractors,

and domain-specific classifiers. Through harnessing insights

from diverse source domains, the model adeptly conveys

insights to the intended domain.

• MSMRA (Cao et al., 2022): The technique of multi-origin

and multi-presentation adjustment (MSMRA) is applied

for emotion recognition in EEG across different domains.

This entails segmenting EEG data stemming from varied

participants into numerous fields and harmonizing the

distribution of assorted representations acquired from a

blended framework. Moreover, this strategy introduces a

feature extraction module specialized for multiple domains,

aiming to extract numerous elevated-level characteristics of

varying dimensions.

• SDDA (Li et al., 2022): The method introduced is termed

Semi-supervised Dynamic Domain Adaptation (SDDA).

Within SDDA, a limited set of labeled instances from the

target domain is utilized to assess and enhance the Label-

specific Domain (LSD) characteristics. Furthermore, cross-

entropy (CE) is applied as the classification loss on source data

that are sampled independently. Through the simultaneous

minimization of the Global Domain Discrepancy (GDD),

LSD, and CE, the model proficiently acquires intricate

attributes for emotion recognition in situations involving

varying subjects.

• DSAAN (Meng et al., 2022): Presents the Deep Subdomain

Associate Adaptation Network (DSAAN), an approach for

EEG emotion recognition utilizing transfer learning. Domains

are subdivided based on sample labels, where genuine labels

are utilized for the source domain, and forecasted pseudo-

labels are applied to the target domain. DSAAN operates

as a transfer network, harmonizing subdomain distributions

through the Subdomain Associate Loop (SAL). Adaptation

is accomplished via the minimization of a unified loss

encompassing source domain classification and SAL.

• MS-ADA (She et al., 2023): An approach for identifying

emotions that utilizes amulti-origin linked domain adaptation

(DA) framework to integrate features that are both consistent

across domains and distinctive to each domain.
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• SMCD (Zhang et al., 2023): A Self-Training Maximum

Classifier Disparity (SMCD) framework is utilized for emotion

recognition across different individuals. This encompasses the

utilization of the previously trained model on the source

area in the target realm, which results in the establishment

of feature clusters within the target realm. The method to

forestall excessive knowledge adaptation from the existing

source individuals involves the adjustment of the model

through fine-tuning, utilizing a restricted count of annotated

calibration samples from the novel individual.

4.4 Experimental results

Table 3 displays the cross-participant experimental results on

the SEED and SEED-IV datasets, showcasing the mean accuracy

(ACC), and dispersion (STD) of both the reference approaches

and the proposed DFF-Net framework for emotion recognition

based on EEG signals. Within the SEED dataset, the outcomes

indicate our strategy surpasses alternative methodologies in the

inter-subject transfer scenario, accomplishing a mean accuracy of

93.37% alongside a dispersion of 1.88%. Concerning the SEED-

IV dataset, encompassing a four-category classification assignment,

the performance of the technique is relatively lower in contrast

to the SEED dataset. Specifically, for the SEED-IV dataset, our

technique attains an average accuracy of 82.3%, coupled with a

corresponding dispersion of 5.38%.

DDC introduced a domain confusion loss to AlexNet and

fine-tuned it on both the source and target domains. Similarly,

DAN shares similarities with DDC but employs a multi-kernel

selection technique for improved average embedding alignment

and multi-layer adaptation. As a result, Our proposed approach

demonstrates significantly higher accuracy compared to traditional

methods such as DDC, DAN, and DCORAL. When compared to

the best-performing method among these traditional approaches,

namely DAN, our method exhibits an accuracy increase of 9.56%

on the SEED dataset and a remarkable 23.45% increase on the SEED

IV dataset. Compared to methods such as MS-MDA, MS-ADA,

and SDDA that solely employ domain adaptation techniques, our

proposed approach effectively harmonizes cross-domain features

through fine-tuning, mitigating domain shifts, and promoting

domain-invariant representations. In comparison to the best-

performing method among these, SDDA, Our method effectively

harmonizes domain adaptation and fine-tuning, leveraging the

individual strengths of both domain adaptation and fine-tuning

to reduce domain discrepancies and enhance model adaptability.

This results in a remarkable 2.29% accuracy improvement on the

SEED dataset and a notable 0.74% accuracy increase on the SEED

IV dataset.

Figure 6 presents the confusion matrix depicting the

predictions made by our proposed method for EEG emotion

recognition in the cross-subject task on the SEED dataset. It is

evident from Figure 6 that our proposed approach performs well in

accurately classifying positive and negative emotions. However, its

performance appears comparatively weaker in the case of neutral

emotions. This observation can be attributed to several factors.

Firstly, positive and negative emotions tend to be more intense

FIGURE 6

The confusion matrix for EEG emotion recognition in the

cross-subject task on the SEED dataset. Our proposed method

demonstrates e�ective classification for positive and negative

emotions, while its performance is comparatively weaker for neutral

emotions.

FIGURE 7

The confusion matrix for EEG emotion recognition in the

cross-subject task on the SEED IV dataset. Our proposed method

excels in classifying happy and sad emotions e�ectively. However,

its performance is relatively weaker in distinguishing neutral and

fearful emotions.

and elicit stronger neural responses compared to neutral emotions.

This heightened intensity can result in more distinct and easily

detectable features within EEG data, which are more amenable

to classification. Secondly, the challenges in recognizing neutral

emotions could stem from variations in neural responses exhibited

by different subjects toward neutral stimuli. This diversity of

responses among subjects makes it more challenging for the model

to accurately classify neutral emotions in a cross-subject scenario.

Figure 7 depicts the confusion matrix of predictions generated

by our proposed approach for EEG emotion recognition in the

cross-subject task on the SEED IV dataset. As the SEED IV dataset

involves four-class classification, the overall performance of the
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FIGURE 8

Ablation experiments on the major components of DFF-Net. The accuracy of “w/o FT and DA” on the SEED dataset is 58.94%, and it drops to 49.58%

on the SEED-IV dataset. In contrast, “With only DA” demonstrates improved results, achieving 71.32% on SEED and 61.78% on SEED-IV, respectively.

Worth noting is that “With only FT” outperforms the others, achieving 88.09% on SEED and 78.31% on SEED-IV. Our comprehensive DFF-Net model

showcases superior performance, achieving significant accuracy rates of 93.37% on SEED and 82.32% on SEED-IV, surpassing all other methods, thus

validating the e�ectiveness of the proposed approach.

model on the SEED IV dataset is comparatively lower than that on

the SEED dataset. From Figure 7, it is evident that our proposed

method excels in classifying happy and sad emotions. However, its

performance in classifying neutral and fearful emotions is relatively

weaker. This phenomenon can be attributed to the complexity

of neutral emotions, characterized by subtle and less pronounced

neural patterns. Individuals might exhibit diverse neural responses

to neutral stimuli, posing challenges to the consistent classification

of the model across different subjects. Similarly, fear emotions can

manifest various neural responses based on personal experiences,

potentially increasing the difficulty of achieving accurate cross-

subject classification.

4.5 Ablation experiments

In order to validate the effects of different components in

our model on the EEG emotion recognition tasks, we performed

ablation experiments on both the SEED and SEED IV datasets.

Our proposed method, termed DFF-Net, primarily consists of two

components: Domain Adaptation and Fine-tuning. To validate the

effectiveness of these two key components in our approach, we

conducted ablation experiments on DFF-Net. Figure 8 illustrates

the influence of these two key components of DFF-Net on the cross-

subject EEG emotion recognition task. “With only FT” indicates

the utilization of Fine-tuning alone for the purpose of cross-subject

EEG emotion recognition, which implies the exclusion of the Emo-

DAmodule. In this case, the model is trained on the source domain

and then fine-tuned on the target domain for subsequent testing in

cross-subject EEG emotion recognition. “With only DA” indicates

utilizing Domain Adaptation solely for cross-subject EEG emotion

recognition. This entails performing Domain Adaptation on both

the source and target domains and directly testing cross-subject

EEG emotion recognition. “w/o FT and DA” implies the absence

of both Fine-tuning and Domain Adaptation methods. In this

scenario, the model trained on the source domain is directly tested

on the target domain for cross-subject EEG emotion recognition.

“With only FT” achieved an accuracy rate of 88.09% on the

SEED dataset and 78.31% on the SEED IV dataset. In contrast,

“With only DA” achieved an accuracy of 71.32% on the SEED

dataset and 61.78% on the SEED IV dataset. This indicates that

the Fine-tuning method performs better in the cross-subject EEG

emotion recognition task compared to the Domain Adaptation

approach. Additionally, the performance of “With only FT” on

both the SEED and SEED IV datasets is lower than that of the

DFF-Net. This further validates the effectiveness of the proposed

Emo-DA module. The accuracy of “w/o FT and DA” on the

SEED dataset is 58.94%, while on the SEED IV dataset, it is

49.58%. This suggests that the generalization ability of the ViT

model is limited, and without the utilization of transfer learning

methods, achieving the cross-subject EEG emotion recognition task

is challenging. DFF-Net achieved an accuracy of 93.37% on the

SEED dataset and 83.32% on the SEED IV dataset, both surpassing

the results of other methods in the ablation experiments. These

outcomes collectively indicate that the combination of Fine-tuning

and Domain Adaptation contributes to enhancing the recognition

performance of the model in the cross-subject EEG emotion

recognition task.

To intuitively comprehend the effectiveness of the DFF-Net,

We randomly selected a subject from the SEED dataset and used
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FIGURE 9

The performance of various methods in cross-subject EEG emotion recognition tasks was visualized using t-SNE. For simplicity, we only use the SEED

dataset as an example. Data points are color-coded to represent three di�erent emotions: negative (red), neutral (green), and positive (blue). (A) This

figure shows the scatter plot without using any fine-tuning or domain adaptation methods. (B) This figure displays the scatter plot using only domain

adaptation. (C) This figure represents the scatter plot with only fine-tuning methods applied. (D) This figure illustrates the scatter plot using DFF-Net.

their EEG samples as the test set. The data was visualized using

a scatter plot with t-SNE (Van der Maaten and Hinton, 2008),

as shown in Figure 9. More precisely, we selected four methods

for visualization experiments: “w/o FT and DA,” “With only DA,”

“With only FT,” and “DFF-Net.” Data points are color-coded to

represent three different emotions: negative is denoted by red,

neutral by green, and positive by blue. It’s worth noting that the data

range after dimensionality reduction varies for different subjects.

Here, we only showcase the visualization results of ourmethod. The

figure displays scatter plots for four distinct methods. As depicted

in Figure 9A, data points corresponding to the three emotions

are significantly intertwined, exhibiting pronounced overlap.

This suggests that “w/o FT and DA” might face challenges in

differentiating emotions in cross-subject EEG emotion recognition
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tasks. As seen in Figure 9B, clusters appear somewhat separated, but

there remains considerable overlap between emotions, particularly

between the negative and neutral states. This indicates that

while “With only DA” shows improvement over “w/o FT and

DA,” it might not be adequate by itself for optimal emotion

recognition. In Figure 9C, the clustering of each emotion appears

more pronounced compared to both “w/o FT and DA” and “With

only DA.” This implies that “With only FT” significantly enhances

the distinguishability of emotions. As illustrated in Figure 9D, the

clusters for each emotion are distinctly different and well-separated,

especially the positive (blue) cluster, which is almost entirely

isolated from the other two emotions. This further indicates that the

combination of fine-tuning and domain adaptation contributes to

enhanced recognition performance in cross-subject EEG emotion

recognition tasks.

4.6 Discussion and analysis

This paper presents a hybrid transfer learning strategy for

cross-subject EEG emotion recognition, aiming to overcome the

limitations of using a single transfer learning strategy in this task.

In contrast to other single-transfer learning strategies, the proposed

hybrid transfer learning strategy involves an analysis of two

common transfer learning methods: domain adaptation and fine-

tuning. By effectively integrating the distinctive characteristics of

domain adaptation and fine-tuning at the methodological level, the

domain adaptation with a few-Shot fine-tuning network (DFF-Net)

is proposed, creating a novel hybrid transfer learning strategy. The

results of DFF-Net on the SEED and SEED IV datasets demonstrate

its superior performance in cross-subject EEG emotion recognition

compared to other state-of-the-art methods. This introduces a

fresh strategy for future EEG-based emotion recognition systems.

Several noteworthy discussion points arise from the proposed

DFF-Net model.

The performance disparity of our proposed DFF-Net model

between the SEED dataset and the SEED IV dataset is quite

noticeable. Under identical experimental settings, the accuracy

achieved in SEED IV dataset experiments is lower than that

in SEED dataset experiments. The reasons for this discrepancy

can be delineated as follows: Firstly, the SEED-IV dataset

comprises four emotion classes: Happy, Sad, Fear, and Neutral,

while the SEED dataset has three classes: Positive, Neutral,

and Negative. Consequently, the experimental complexity of

the SEED IV dataset is significantly higher compared to the

SEED dataset. Secondly, the feature extractor of the DFF-Net

model employs a Transformer architecture, a type of model that

typically performs better with larger sample sizes. Given that

the SEED IV dataset contains fewer samples than the SEED

dataset, the performance of the model on the SEED IV dataset

is comparatively inferior. Lastly, variations in sample quality

between the SEED dataset and the SEED IV dataset contribute

to the divergent performance of the DFF-Net model on these

two datasets.

To validate the significance of the Emo-DA module and

fine-tuning components within our proposed DFF-Net model,

we conducted ablation experiments on the DFF-Net model.

The experiments were carried out under the same experimental

settings. From the experimental results, it is evident that

the strategy of disregarding any form of transfer learning

yields the poorest outcomes. This strategy involves testing

the transformer model directly on the target domain after

training on the source domain. This further underscores the

limitations of deep learning models in cross-subject EEG

emotion recognition.

Another observation from the experimental results is that

employing the fine-tuning strategy alone surpasses the performance

of using domain adaptation alone. This can be attributed to

several factors. Firstly, fine-tuning enables the model to adjust

its parameters according to the specifics of the target domain.

This flexibility aids the model in maintaining alignment with

subtle variations in target domain data, thereby enhancing its

performance in cross-subject EEG emotion recognition. Secondly,

domain adaptation cannot completely mitigate all domain

discrepancies, such as variations in electrode placement or signal

noise, which significantly impact model performance. Fine-tuning

assists the model in more accurately learning these domain-

specific features.

In the final experimental results, it becomes evident that the

performance of our proposed DFF-Net model surpasses that of

using the fine-tuning strategy alone. This is because DFF-Net,

as a hybrid transfer learning strategy, benefits from the Emo-

DA module, which facilitates more effective alignment between

the source and target domain distributions. In contrast to the

standalone fine-tuning strategy, DFF-Net better leverages valuable

information from the source domain while adjusting according

to specific features of the target domain. In conclusion, the

Hybrid Transfer Learning Strategy of DFF-Net effectively addresses

the limitations of using domain adaptation or fine-tuning in

isolation. This comprehensive approach ensures that DFF-Net can

harness the advantages of domain adaptation and fine-tuning,

consequently enhancing the accuracy of cross-subject EEG emotion

recognition tasks.

5 Conclusion

In this paper, we introduce a hybrid transfer learning strategy,

specifically referred to as the domain adaptation with a few-

Shot fine-tuning Network (DFF-Net), for the task of cross-subject

EEG emotion recognition. First, we extract Differential Entropy

(DE) features and map them spatially based on the electrode

positions to generate the EEG feature representation, which serves

as the input for our proposed model. Then, we employ the Vision

Transformer (ViT) as the Feature Extractor, and building upon

the original Domain-Adversarial Neural Network (DANN) model,

we develop a domain adaptive learning module for EEG emotion

recognition, named the Emo-DA module. Finally, we apply the

Emo-DA module to pre-train a model on both the source and

target domains, and then use fine-tuning on the target domain

for cross-subject EEG emotion recognition testing. This approach

is designed to better adapt to the specific features of the target

domain, thereby enhancing the accuracy of the cross-subject EEG

emotion recognition task. The proposed DFF-Net achieved average

recognition accuracies of 93.37% on the SEED dataset and 82.32%

Frontiers inHumanNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1280241
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fnhum.2023.1280241

on the SEED-IV dataset, surpassing the state-of-the-art methods.

To assess the impact of different components in DFF-Net on EEG

emotion recognition tasks, we conducted ablation experiments on

both the SEED and SEED-IV datasets. The experimental results

demonstrate that the integration of domain adaptation and fine-

tuning effectively enhances the adaptability of the model to the

target domain, mitigates the influence of domain discrepancies,

and minimizes the reliance on large annotated datasets in the

target domain. Ultimately, this approach significantly improves the

accuracy of cross-subject EEG emotion recognition. The proposed

DFF-Net introduces a novel approach for cross-subject EEG

emotion recognition tasks. This method can also be easily applied

to other cross-subject EEG classification tasks, such as motor

imagery and sleep stage classification. However, the current model

still has some limitations in practical applications. For instance, the

model lacks the capability for real-time online processing, and it

requires a small number of samples from the target domain during

training. In future work, we will investigate the real-time online

capability and domain generalization of DFF-Net for cross-subject

EEG emotion recognition, aiming to further enhance its model

generalization and practicality.
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