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Objective: The coronavirus disease 2019 (COVID-19) is an acute respiratory

infectious disease caused by the SARA-CoV-2, characterized by high infectivity

and incidence. Clinical data indicates that COVID-19 significantly damages

patients’ perception, motor function, and cognitive function. However, the

electrophysiological mechanism by which the disease affects the patient’s

nervous system is not yet clear. Our aim is to investigate the abnormal levels

of brain activity and changes in brain functional connectivity network in patients

with COVID-19.

Methods: We compared and analyzed electroencephalography signal sample

entropy, energy spectrum, and brain network characteristic parameters in the

delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands of

15 patients with COVID-19 and 15 healthy controls at rest.

Results: At rest, energy values of the four frequency bands in the frontal

and temporal lobes of COVID-19 patients were significantly reduced. At the

same time, the sample entropy value of the delta band in COVID-19 patients

was significantly increased, while the value of the beta band was significantly

decreased. However, the average value of the directed transfer function of

patients did not show any abnormalities under the four frequency bands.

Furthermore, node degree in the temporal lobe of patients was significantly

increased, while the input degree of the frontal and temporal lobes was

significantly decreased, and the output degree of the frontal and occipital lobes

was significantly increased.

Conclusion: The level of brain activity in COVID-19 patients at rest is

reduced, and the brain functional network undergoes a rearrangement. These

results preliminarily demonstrate that COVID-19 patients exhibit certain brain

abnormalities during rest, it is feasible to explore the neurophysiological

mechanism of COVID-19’s impact on the nervous system by using EEG signals,

which can provide a certain technical basis for the subsequent diagnosis and

evaluation of COVID-19 using artificial intelligence and the prevention of brain

nervous system diseases after COVID-19 infection.
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COVID-19, electroencephalography, functional connectivity network, sample entropy,
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1 Introduction

The coronavirus disease 2019 (COVID-19) is an infectious
disease caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Since its first outbreak in Wuhan, Hubei
Province, China at the end of 2019, it has rapidly spread
worldwide. This virus has triggered a global public health
crisis and has had a huge impact on the global healthcare
system and socio-economy. As the number of COVID-19
cases increases, clinical research has gradually found that the
virus not only affects the respiratory system but may also
have adverse effects on the central nervous system (Varatharaj
et al., 2020). With the increasing reports of neurological
manifestations of SARS-CoV-2 infection, researchers use brain
electroencephalography (EEG) to detect patients (Petrescu et al.,
2020). However, the number of existing articles is still small
and lacks control groups; therefore, it is necessary to investigate
such neurological abnormalities using EEG in patients with
COVID-19.

In recent years, several studies have explored the changes
of EEG characteristics in patients with COVID-19. Research
reported that COVID-19 infection may cause changes in EEG
patterns and wave amplitudes, suggesting that COVID-19 may
have an effect on brain activity (Pasini et al., 2020). Pastor et al.
(2020) observed that temporal lobes showed different distribution
for EEG bands in COVID-19 patients. Additionally, Shannon’s
spectral entropy was higher, and hemispheric connectivity was
lower for COVID-19 patients (Pastor et al., 2020). The possible
causes of EEG abnormalities include inflammatory damage,
hypoxemia, or direct damage to brain neurons caused by the
virus. It was found that EEG signal amplitudes significantly
increased in patients with epilepsy and moderate pneumonia,
indicating that COVID-19 may affect EEG signals. The study
found that in patients with hypoxemia, EEG theta frequency
band enhancement and alpha, beta frequency band attenuation
correlation (Wu et al., 2020). Another study conducted on an
individual who recovered from COVID-19 showed that the
characteristics of EEG signals changed over time, indicating
that viral infection may have long-term effects on the central
nervous system (Zanin et al., 2022). However, the current research
only focused on the changes of brain wave shape and did
not conduct in-depth exploration, so the electrophysiological
mechanism of nervous system injury in patients with COVID-19
is still unclear.

To investigate changes in brain activity and abnormal
phenomena in the brains of COVID-19 patients, this study
preprocessed the resting-state EEG signals of COVID-19 patients
and healthy control group. Sample entropy was used to calculate
the complexity of the EEG signals, indirectly reflecting the activity
levels of the two groups. Energy spectra were used to reflect
the activity states of various brain regions. The directed transfer
function (DTF) matrix was selected to reflect the causal connection
strength between the cortical regions. A brain network model
was constructed using the DTF matrix, and graph theory was
used for quantitative analysis of the brain network to explore
the mechanism of virus impact on brain electrical activity
and understand the indirect effects of the COVID-19 on the
central nervous system.

2 Materials and methods

2.1 Participants

15 patients with COVID-19 patients took part in the study,
with 15 healthy subjects as controls. Demographic and clinical
features of patients are reported in Table 1. All participants
in this study underwent EEG collection at the Neurology
Department of the First Central Hospital in Tianjin. EEG signals
of patients with COVID-19 were collected 28 days after COVID-
19 infection, when the patients were at the stage of mild or
moderate disease, the distinction between mild and moderate
patients were made by the Tianjin COVID-19 Treatment Expert
Group according to the symptoms and CT manifestations of the
patients, all patients were vaccinated with COVID-19 vaccine,
and were given regular symptomatic and traditional Chinese
medicine treatment within 14 days after COVID-19 infection.
The healthy control group had no history of serious neurological
diseases, mental illnesses, or use of psychotropic drugs. Before
collecting EEG data, the healthy group carried out the nucleic
acid testing, the results showed that they were not infected
with COVID-19. And the healthy group had no history of
COVID-19 infection. Informed consent was obtained from all
participants. This study follows the Declaration of Helsinki
and has been approved by the Ethics Committee of Tianjin
First Central Hospital. All participants have signed informed
consent forms.

2.2 EEG recording and preprocessing

During the resting state, EEG data were collected from
30 participants using 8 electrodes (Fp1, Fp2, T3, T4, C3, C4,
O1, O2) to record activity in the frontal, temporal, central,
and occipital regions. The data were collected in a quiet
and comfortable experimental environment, ensuring stable
connections between the EEG amplifier and electrodes. The
participants’ scalps were in close contact with the electrodes
and ground wire through conductive media such as electrode
gel or saline solution to ensure the quality of the EEG
signals. The collection instrument used a BE Micro dynamic
electroencephalogram recorder and a NCC amplifier, the electrodes
were positioned according to the international 10/20 system,
with a sampling frequency of 125Hz and impedance maintained
below 10k�. Each resting state experiment lasted for 5 min with
participants’ eyes closed.

Preprocessing the recorded EEG data used the EEGLAB
toolbox (V2021.1) based on the MATLAB platform.

(1) 1∼30 Hz bandpass filtering, mainly removing high-frequency
interference components and divided the data into four
frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), and beta (13–30 Hz).

(2) Using independent component analysis (ICA) to remove
interference signals such as electromyography and
electrocardiogram.

(3) Using rejection bad channel and epoch method to replace
some channels with imperfect signal recording.
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TABLE 1 Demographic information by clinical status.

Demographics COVID-19 Healthy Test statistic (df) P-value

N 15 15 – –

Age(y) 47.80(3.56) 29.00(3.70) U = 67.50 0.002

Sex (%Male) 53.33% (8) 33.33% (5) X2(1) = 1.22 0.269

MMSE 25.20 (0.82) – – –

AIS 4.85 (0.70) – – –

Comorbidities

Hypertension 26.67% (4) – U = 82.50 0.217

Hyperlipidemia 20.00% (3) – U = 90.00 0.367

Diabetes 13.33% (2) – U = 97.50 0.539

Genetic history 6.67% (1) – U = 105.00 0.775

Coronary heart disease 6.67% (1) – U = 105.00 0.775

Chronic respiratory disease 6.67% (1) – U = 105.00 0.775

Chronic kidney disease 6.67% (1) – U = 105.00 0.775

Values are mean ± SEM or % (N). Mini Mental Status Examination (MMSE) ranges from 0 (worst) to 30 (best). Athens Insomnia Scale (AIS) with a total score of <4 indicates no sleep
disorders, 4–6 indicates suspected insomnia, and a total score of>6 indicates insomnia. MMSE, Mini Mental Status Examination; AIS, Athens Insomnia Scale.

2.3 Calculation of EEG features

2.3.1 Energy
The energy of a signal in the (−∞, +∞) interval of time:

E = lim
T→∞

∫ T

−T

∣∣f (t)∣∣2dt (1)

2.3.2 Sample entropy (SampEn)
SampEn measures the complexity of a time series by the

probability of new patterns being generated in the signal (Liu et al.,
2016).

For a time series composed of N data, X = x1, x2, ..., xN . The
calculation method for SampEn is as follows:

(1) Form a set of vectors X1
m, ...,X

N−m+1
m , for 1 ≤ i ≤ N −

m+ 1, it is defined as:

Xi
m = (xi, xi+1, xi+m−1) (2)

(2) Define the distance between vectors Xi
m and Xj

m as the
maximum absolute difference between their respective scalar
components:

d
[
Xi
m,X

j
m

]
= max

k = 0,...,m−1

∣∣xi+k − xj+k
∣∣ (3)

(3) For a given Xi
m, count the number of j(1 ≤ j ≤ N −

m, j 6= i), denote as Bi, such that d
[
Xi
m,X

j
m

]
≤ r, that is, Bi is the

number of d
[
Xi
m,X

j
m

]
≤ r, j 6= i. Then, for 1 ≤ j ≤ N −m,

Bmi (r) =
1

N −m− 1
× Bi (4)

(4) Define Bm(r) as

Bm (r) =
1

N −m

N−m∑
i = 1

Bmi (r) (5)

(5) Similarly, calculate Am
i (r) as 1/(N – m + 1) times the

number of j(1 ≤ j ≤ N −m, j 6= i), such that the distance
between Xj

m+1 and Xi
m+1 is less than or equal to:

Am
i (r) =

1
N −m− 1

× Ai (6)

Set Am (r) as

Am (r) =
1

N −m

N−m∑
i = 1

Am
i (r) (7)

Thus, Bm (r) is the probability that two sequences will match for
m points, whereas Am (r) is the probability that two sequences will
match for m+1 points.

(6) Finally, define

SampEn (m, r) = lim
N→∞

{
−ln

[
Am(r)
Bm(r)

] }
(8)

Which is estimated by the statistic

SampEn (m, r,N) = − ln
[
Am (r)
Bm (r)

]
(9)

In this study, let m = 2 and r = 0.2.

2.3.3 Directed transfer function (DTF)
In this study, the connectivity measures monitored the

functional connectivity of the EEG signals. DTF is a measure
based on Granger Causality, but defined in the frequency
domain.

(1) Assuming that the original EEG signal is a matrix of
M-channels:

Y (n) =
[
y1 (n) , ..., yM(n)

]T (10)

In the equation, each vector represents the sequence of EEG
data corresponding to the lead.
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(2) Establishing a P-order multivariate autoregressive model
(MYAR) based on Y (t), whose formula is:

The order P in the equation is determined based on the
Bayesian information criterion, where Ar is the coefficient matrix
of size M∗M, and E(n) is the error between the current value and
the predicted value.

Y (n) =
p∑

r = 1

ArY (n− r)+ E (n) (11)

(3) Perform fourier transform on the coefficient matrix, i.e.,:

A
(
f
)
= I −

p∑
r = 1

Are−i2πfr (12)

where I is an M-dimensional identity matrix.
(4) The DTF value from lead j to lead i is defined as:

DTFj→i
(
f
)
=

∣∣Hij
∣∣√∑

k
∣∣Hkj

∣∣2 (13)

DTFj→i represents the ratio of information flowing from lead j
to i to all information flowing into i. The DTF value is a normalized
value, ranging from [0,1]. The larger the value, the stronger the
causal relationship between the two leads.

This research took 8 electrodes as nodes, using the information
flow strength (the DTF matrix) as the edge, and the direction of
information flow as the direction of the edge.

2.3.4 Constructing binary brain networks
Not all of the weighted links in the original connectivity

matrices are significant, and it is necessary to remove the non-
significant ones and minimize the noise level. Network binarization
can be a good solution to this problem; however, there is no
unique strategy for binarizing the connectivity matrices. In this
study, we utilized the uniform threshold method to construct the
binary network of the cerebral cortex (Jalili, 2016). We applied a
threshold T, such that if a link had a weight higher than T, the
corresponding entry of the adjacency matrix was set to one, and
zero otherwise. During the binarization process, it is important
to ensure that the density of the brain network is between 0.3
and 0.8, and that there are no isolated nodes in the network. To
achieve the above requirements, we have selected a threshold of
0.0200 for the delta band, 0.0240 for the theta band, 0.0214 for
the alpha band, and 0.0146 for the beta band 0.2.3.5 Graph theory
metrics.

Through graph theory, any level of network can be abstracted as
a set of nodes and edges. In graph theory, the connection between
nodes in the network is described by the adjacency matrix.

(1) Node Degree (DEG)

D (i) =
∑
jεV

aij +
∑
jεV

aji (14)

The total number of connections between a node in the network
and other nodes is defined as node degree:

Among them, N is the number of nodes, V is the set of nodes,
and aij represents the connection from node i to node j in a binary
matrix, aij represents the connection from node j to node i. Node
degree characterizes the importance of nodes in a network.

(2) Input Degree (ID)

iD (i) =
∑
jεV

aij (15)

The number of connections from other nodes to a certain node:
The larger the iD (i), the higher the impact of other

nodes on this node.
(3) Output Degree (OD)

oD (i) =
∑
jεV

aji (16)

The number of connections from a node to other nodes:
The larger the oD (i), the higher the impact of this

node on other nodes.

2.4 Statistic analysis

Statistical tests were performed using the Statistics-and-
Machine-Learning Toolbox in MATLAB (version 2022b,
MathWorks, Inc. Natick, MA), IBM SPSS Statistics 26.0.0.0
(version 2019, IBM, MA). All figures are expressed as mean± SEM.
After the normality test, the data was all normally distributed, the
two-way repeated ANOVA was applied to comparisons between
two groups. After multiple heavy tests, a P-value < 0.05 was
deemed statistically significant.

3 Results

3.1 The level of brain activity reduced in
patients with COVID-19

3.1.1 The energy of prefrontal cortex and
temporal cortex in patients with COVID-19 is
decreased

We first calculated the energy distribution of various brain
regions in resting state for two groups of subjects. The results
showed that in four frequency bands, the energy values in FP2,
T3, and T4 leads of COVID-19 patients were significantly reduced
(Figure 1, two-way repeated ANOVA; delta, main effect of group:
P = 0.088; main effect of lead: P = 1.042 × 10 −5; group × lead
interaction: P = 9.100× 10−6; theta, main effect of group: P = 0.255;
main effect of lead: P = 0.016; group × lead interaction: P = 0.017;
alpha, main effect of group: P = 0.081; main effect of lead:
P = 1.741 × 10−4; group × lead interaction: P = 0.027; beta,
main effect of group: P = 0.035; main effect of lead: P = 0.001;
group× lead interaction: P = 0.054).

3.1.2 The self-similarity of EEG signals in patients
with COVID-19 is abnormal

We further calculated the SampEn of various brain regions in
resting state for two groups of subjects. The results showed that the
patient group had a significant increase in delta frequency band
compared to the healthy control group, indicating a widespread
increase in delta frequency band (Figure 2A, two-way repeated
ANOVA; delta, main effect of group: P = 0.006; main effect of
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FIGURE 1

The energy of each lead in the four frequency bands in the resting state: comparison between cov19 patients (cov19) and healthy controls (Con).
The horizontal axis has 18 leads, and the vertical axis represents the resting state energy (mean ± SEM). (A) Delta band. (B) Theta band. (C) Alpha
band. (D) Beta band. Asterisks indicate significant differences between the different intervals; *P < 0.05, **P < 0.01.

lead: P = 2.029 × 10 −8; group × lead interaction: P = 0.912).
However, there were no significant changes in theta and alpha
frequency bands, while the SampEn of patient’s EEG signal in the
beta frequency band decreased compared to the control group, with
significant differences in Fp1, C4, and O2 (Figures 2B–D, two-way
repeated ANOVA; theta, main effect of group: P = 0.522; main effect
of lead: P = 0.001; group × lead interaction: P = 0.803; alpha, main
effect of group: P = 0.929; main effect of lead: P = 1.053 × 10−6;
group × lead interaction: P = 0.867; beta, main effect of group:
P = 0.006; main effect of lead: P = 1.322 × 10−10; group × lead
interaction: P = 0.048).

3.2 The brain networks of COVID-19
patients undergo reorganization

3.2.1 The functional connectivity between
different brain regions in COVID-19 patients is
normal

We calculated DTF connectivity matrices for two groups of
participants across four frequency bands. Each row or column of
the DTF matrix corresponds to a different node, with each element
representing an edge. For this study, we selected eight leads as
nodes, resulting in a matrix size of 8x8. We computed the average
DTF matrix heatmaps for 15 healthy participants (Figure 3A) and
15 patient participants (Figure 3B), as well as the mean values of
all elements in the DTF matrices for both groups and compared
them. The results (Figure 3C, student’s t-test; delta, P = 0.329;
theta, P = 0.614; alpha, P = 0.683; beta, P = 0.200) showed no
significant differences in functional connectivity strength between
brain regions in patients during the resting state.

3.2.2 The core nodes of the brain network in
COVID-19 patients have been found to shift

Two groups of resting-state brain network models for each
frequency band were established based on the DTF connection
matrix obtained in section “3.2.1. The functional connectivity
between different brain regions in COVID-19 patients is normal”
(Figure 4). After eliminating false connections using a threshold,
local parameters (node degree, in-degree, and out-degree) were
calculated using graph theory at the optimal threshold for
resting state.

Node degree can identify the core nodes of the brain functional
network. We first calculated the node degree of the two groups
of subjects and found that the node degree of the T3 and T4
leads in patients increased significantly in the four frequency
bands (Figure 5, two-way repeated ANOVA; delta, main effect
of group: P = 0.512; main effect of lead: P = 6.677 × 10−5;
group × lead interaction: P = 0.002; theta, main effect of group:
P = 0.236; main effect of lead: P = 2.194 × 10−6; group × lead
interaction: P = 0.001; alpha, main effect of group: P = 0.366;
main effect of lead: P = 2.078 × 10−5; group × lead interaction:
P = 0.012; beta, main effect of group: P = 0.608; main effect of
lead: P = 0.001; group × lead interaction: P = 0.027), indicating
that the mutual connections between the temporal lobe and
other brain regions in patients were enhanced. To investigate
the reason underlying this enhancement, we further calculated
the in-degree and out-degree of each node (Figure 6, two-way
repeated ANOVA; ID: delta, main effect of group: P = 0.512;
main effect of lead: P = 2.700 × 10−6; group × lead interaction:
P = 0.006; theta, main effect of group: P = 0.236; main effect of lead:
P = 8.346× 10−8; group× lead interaction: P = 0.002; alpha, main
effect of group: P = 0.366; main effect of lead: P = 5.468 × 10−6;
group × lead interaction: P = 0.013; beta, main effect of group:
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FIGURE 2

The sample entropy (SampEn) of each lead in the four frequency bands in the resting state: comparison between cov19 patients (cov19) and healthy
controls (Con). The horizontal axis has 18 leads, and the vertical axis represents the resting state SampEn (mean ± SEM). (A) Delta band. (B) Theta
band. (C) Alpha band. (D) Beta band. Asterisks indicate significant differences between the different intervals; *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 3

The values of DTF of each lead in the four frequency bands of the two groups of subjects in the resting state. (A) DTF matrix heat map of four
frequency bands in the healthy control group (Con). (B) DTF matrix heat map of four frequency bands in the patient group (Cov19). (C) Comparison
of mean DTF values in different frequency bands between patients with COVID-19 and healthy control group. Asterisks indicate significant
differences between the different intervals.

P = 0.608; main effect of lead: P = 1.858 × 10−7; group × lead
interaction: P = 3.678 × 10−4; OD: delta, main effect of group:
P = 0.512; main effect of lead: P = 0.009; group × lead interaction:
P = 0.061; theta, main effect of group: P = 0.236; main effect
of lead: P = 0.100; group × lead interaction: P = 0.004; alpha,
main effect of group: P = 0.366; main effect of lead: P = 0.268;
group × lead interaction: P = 0.006; beta, main effect of group:

P = 0.608; main effect of lead: P = 0.004; group × lead interaction:
P = 0.010) and found that the information flow into the FP1
lead in patients decreased significantly compared to the healthy
control group, while the information flow into the T3 and T4 leads
increased significantly. The results of out-degree showed that the
information flow out of the O1 and FP1 leads in patients increased
significantly.
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FIGURE 4

Visual thermogram of functional connectivity different regions of
cerebral cortex at different frequency bands in patients with
COVID-19 (Cov19) and healthy control group (Con) under resting
state. To eliminate false connections, the connection weights
between channels greater than the optimal T were retained. Each
column displays the top and bottom views of the brain network
connection diagram for both the healthy control group and the
COVID-19 patient group. (A) Delta band, best T = 0.0200. (B) Theta
band, best T = 0.0240. (C) Alpha band, best T = 0.0214. (D) Beta
band, best T = 0.0146.

4 Discussion

Since the outbreak of the novel coronavirus epidemic in
late 2019, there has been widespread concern about its severe
damage to the respiratory system. The SARS-CoV-2 virus invades

the human respiratory system and enters the body through the
ACE2 receptor, which exists in various organs, including the
brain (Zhao et al., 2020). Subsequent clinical studies have found
that COVID-19 not only manifests as respiratory symptoms but
also causes damage to multiple organs and systems, such as
the heart (Sidik, 2022), liver (Fernandes et al., 2023), kidneys
(Gao et al., 2021), eyes (Jeong et al., 2022), and brain (Douaud
et al., 2022). In the field of neuroscience, Mao et al. (2020)
study had shown that approximately 36.4% of COVID-19
patients experience neurological symptoms, such as headaches,
dizziness, consciousness disorders, acute cerebrovascular disease,
ataxia, epilepsy, and neuromuscular damage (Mao et al., 2020).
Furthermore, experimental evidence suggests that impaired mental
and cognitive function in patients is related to changes in brain
neurophysiological data (Fernández-Castañeda et al., 2022).

Galanopoulou et al. (2020) observed changes in dominant
frontal brain sharp waves, but did not identify the cause of these
abnormalities. A recent study suggested that patients infected with
COVID-19 exhibited reduced thickness and tissue contrast of gray
matter in the orbitofrontal cortex and par hippocampal gyrus.
Researchers believe that this phenomenon is related to a reduction
in brain cells in areas that control emotion and memory (Douaud
et al., 2022). Our study found that the energy of the frontal
and temporal lobes in patients with COVID-19 was significantly
reduced in four frequency bands, which is consistent with the
findings of De Stefano et al. (2020). The study identified focal
monomorphic theta slowing in the bilateral frontal-central regions
and suggested that EEG can detect neurological dysfunctions in the
ICU, even in situations where respiratory ailments are severe (De
Stefano et al., 2020).

In this work, we found a significant increase in the complexity
of the delta frequency band. This may be related to the generalized
rhythmic delta activity observed in Chen’s study through EEG
recordings (Chen et al., 2020). Furthermore, a study reported that

FIGURE 5

The node degree of each lead in the four frequency bands in the resting state: comparison between cov19 patients (cov19) and healthy controls
(Con) with best T. The horizontal axis has 18 leads, and the vertical axis represents the values of degree (DEG, mean ± SEM). (A) Delta band, best
T = 0.0200. (B) Theta band, best T = 0.0240. (C) Alpha band, best T = 0.0214. (D) Beta band, best T = 0.0146. Asterisks indicate significant differences
between the different intervals; *P < 0.05, **P < 0.01.
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FIGURE 6

The input degree (ID) and output degree (OD) of each lead in the four frequency bands in the resting state: comparison between cov19 patients
(cov19) and healthy controls (Con) with best T. The horizontal axis has 18 leads, and the vertical axis represents the values of in and out degrees
(mean ± SEM). (A) Delta band. The left side represents the input degree, and the right side represents the output degree. Best T = 0.0200. (B) Theta
band. The left side represents the input degree, and the right side represents the output degree. Best T = 0.0240. (C) Alpha band. The left side
represents the input degree, and the right side represents the output degree. Best T = 0.0214. (D) Beta band. The left side represents the input
degree, and the right side represents the output degree. Best T = 0.0146. Asterisks indicate significant differences between the different intervals;
*P < 0.05, **P < 0.01, ***P < 0.001.

16 out of 18 (88.9%) patients showed generalized EEG slowing,
with a prevalence of slow waves noted in the anterior (bifrontal)
region in 10 out of 18 (55.6%) cases (Cecchetti et al., 2020). These
phenomena indicate an increase in the complexity of the patient’s
brainwave activity in delta frequency band, reflecting more chaotic
changes in their brain activity and a more anxious state. This may

be related to the changes in brain function caused by COVID-19
infection. In addition, the assessment using the Athens Insomnia
Scale showed that the patient’s sleep quality was affected and
insomnia symptoms appeared, further supplementing the reason
for the increase in SampEn in the delta frequency band. However,
we found that the SampEn of patient’s EEG signals in the beta

Frontiers in Human Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1280362
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1280362 November 20, 2023 Time: 16:20 # 9

Yao et al. 10.3389/fnhum.2023.1280362

frequency band decreased, this phenomenon may be related to
the patient’s decreased attention, thinking activity, and cognitive
flexibility.

However, at present, the damage mode of brain network
in patients with COVID-19 is not clear. The human brain
is the most complex network known to humans, composed
of approximately 100 billion (1011) neurons interconnected by
approximately 100 trillion (1014) synapses (Liang et al., 2010).
This vast and complex system is the physiological basis for
information processing and cognitive expression in the brain,
with synapses interacting functionally at multiple time and spatial
scales. It is the foundation of our thoughts, feelings, and behaviors.
Therefore, studies of the brain can be translated into studies of
brain networks. Previous studies have demonstrated that neural
imaging data can aid in understanding the state of neurological
diseases, as many brain networks of neurological diseases undergo
changes. Yu et al. (2020) utilized different frequency bands
of electroencephalogram phase synchronization index (PSI) to
construct the brain functional network of epilepsy patients. The
results indicated that once epilepsy occurred, the patient’s brain
network also changed significantly, and this change occurred
earlier than the clinical symptoms of epilepsy. And researchers
also employed graph theory to quantify the characteristics of the
epilepsy brain network and discovered that the local efficiency
of the patient’s brain network significantly decreased. Slinger
et al. (2022) summarized the study of brain networks of 45
patients with focal epilepsy and found that, compared with the
control group, the integration level of the structural network
of epilepsy patients was significantly reduced. Except for the
clustering coefficient of the β frequency band, there was no
significant difference in the functional network between the two
groups (Slinger et al., 2022). Recently, the observation of the
electroencephalogram signals of COVID-19 patients found that the
pattern of changes in the patient’s electroencephalogram signals is
highly similar to that of epilepsy patients. Chen et al. (2020) also
discovered epileptic-like discharges in the electroencephalogram
of two COVID-19 patients. Therefore, it is believed that the
application of brain network analysis to COVID-19 patients is also
feasible.

After conducting a comparative analysis of EEG signals from
COVID-19 patients and healthy control groups, we discovered that
COVID-19 can cause varying degrees of decreased signal energy
in the prefrontal and temporal regions of the brain across different
frequency bands. The energy decrease in the prefrontal region may
be linked to cognitive, emotional regulation, and social cognitive
impairments, while the energy decrease in the temporal region may
indicate abnormalities in language, hearing, memory, and emotion.
Additionally, further analysis of the complexity of EEG signals
revealed that the sample entropy of patients in the delta frequency
band significantly increased, indicating heightened complexity of
brain activity and a more chaotic state of mind. Conversely, the
sample entropy of the beta frequency band significantly decreased,
indicating a reduction in irregularity of brain activity and a possible
decrease in attention and cognitive flexibility. These phenomena
may be associated with the reorganization of the patient’s brain
functional network, the information flow of the patient’s brain
network mainly flows from the frontal and occipital regions to
the temporal lobe, and the core nodes of the patient’s brain
network have been rearranged to the temporal lobe. These results

preliminarily demonstrate that COVID-19 patients exhibit certain
abnormalities in brain activity during rest.

Due to the impact of the COVID-19, the number of subjects
that we can adopt is very limited, the sample size is not large
enough, the age of the control group and patients also has some
differences. Through literature review, we found that age has no
effect on the global efficiency and average clustering coefficient in
graph theory analysis (Stanley et al., 2015). Further research could
explore the changes in brain activity and topology of patients with
COVID-19 along with the course of the disease. I believe that the
follow-up research will certainly lay a solid theoretical foundation
for the application of artificial intelligence in neurology.

5 Conclusion

This EEG study on 15 patients with COVID-19 and 15 healthy
people at rest shows that, surprisingly, COVID-19 can significantly
reduce the energy in the frontal lobe and temporal lobe of the
brain under the four frequency bands of patients, significantly
increase the brain activity level of patients in the delta band,
significantly reduce the brain activity level of patients in the
beta band, and change the brain functional network structure.
These results preliminarily demonstrate that COVID-19 patients
exhibit certain abnormalities in brain activity during rest, and it is
feasible to explore the neurophysiological mechanism of COVID-
19’s impact on the nervous system by using EEG signals, which can
provide a certain technical basis for the follow-up use of artificial
intelligence to predict the prognosis of COVID-19 patients.
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