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Junjie Guo, Zhenzhu Hu, Shanyu Liu and Dongdong Yang*
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Sichuan, China

Background: Gait is a potential diagnostic tool for detecting mild cognitive

impairment (MCI) and Alzheimer’s disease (AD). Nevertheless, little attention has

been paid to arm movements during walking, and there is currently no consensus

on gait asymmetry. Therefore, in this study, we aimed to determine whether arm

motion and gait asymmetry could be utilized for identifying MCI and AD.

Methods: In total, 102 middle-aged and elderly individuals were included in the

final analysis and were assigned to the following three groups: AD (n = 27), MCI

(n = 35), and a normal control group (n = 40). Gait and cognitive assessments

were conducted for all participants. Gait detection included a single-task gait with

free-speed walking and a dual-task gait with adding a cognitive task of successive

minus seven to walking. Original gait parameters were collected using a wearable

device featuring the MATRIX system 2.0. Gait parameters were shortened to

several main gait domains through factor analysis using principal component

extraction with varimax rotation. Subsequently, the extracted gait domains were

used to differentiate the three groups, and the area under the receiver operating

characteristic curve was calculated.

Results: Factor analysis of single-task gait identified five independent gait

domains: rhythm symmetry, rhythm, pace asymmetry, arm motion, and

variability. Factor analysis of the dual-task gait identified four gait domains:

rhythm, variability, symmetry, and arm motion. During single-task walking, pace

asymmetry was negatively correlated with MoCA scores and could distinguish

between the AD group and the other two groups. Arm motion was not associated

with MoCA scores, and did not exhibit adequate discrimination in either task.

Conclusion: Currently, there is no reliable evidence suggesting that arm motion

can be used to recognize AD or MCI. Gait asymmetry can serve as a potential gait

marker for the auxiliary diagnosis of AD but not for MCI.
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1 Introduction

Alzheimer’s disease (AD) is one of the main causes of disability
and death in the elderly (Alzheimer’s Association, 2023). Mild
cognitive impairment (MCI) is a transitional cognitive state that
occurs between normal aging and dementia, and the conversion
rate of MCI patients to AD is approximately 10–15% per year
(Ghoraani et al., 2021; Alzheimer’s Association, 2023). Owing to
the lack of effective treatment, the early detection of AD and MCI
is essential for slowing progression. Compared to cerebrospinal
fluid markers and imaging examinations, gait detection is easier
to operate, cheaper, and more portable and intuitive, all of
which make gait markers highly applicable. Gait abnormalities
are common in patients with Alzheimer’s disease (AD), and can
also predict a higher dementia risk in individuals with mild
cognitive impairment (MCI) (Montero-Odasso et al., 2017, 2020).
Shared cortical networks may partially explain the correlation
between cognitive impairment and gait impairment (Takakusaki,
2023). Spatial navigation and visuospatial abilities, which are
potentially impaired in individuals with AD and MCI, may also
affected postural control during gait (Cohen and Verghese, 2019;
Plácido et al., 2022; Chepisheva, 2023). Several gait markers have
been identified in individuals with AD and MCI, including high
variability, slow walking speed, and decreased stride length (Yang
et al., 2020; Boripuntakul et al., 2022; Lindh-Rengifo et al., 2022).
However, arm movements during walking are rarely observed.

Arm swing during walking contributes to gait coordination
and stability (Meyns et al., 2013). Gait instability is prevalent in
individuals with AD and MCI, increasing the risk of falls (Sheridan
and Hausdorff, 2007; Auvinet et al., 2017). In healthy adults,
arm swing amplitude is reduced when performing an executing
cognitive task during walking, and an increase in the asymmetry
of arm movement is also observed (Mirelman et al., 2015; Killeen
et al., 2017). A recent study showed that upper-body movements
are highly weighted in the gait diagnostic models used for AD
(You et al., 2021). Therefore, we focused on the arm motion in
individuals with AD and MCI, and examined whether it could serve
as a potential biomarker for AD and MCI.

Furthermore, gait asymmetry in patients with AD and MCI
has not been fully explored, as it has previously been suggested
responding to changes in unilateral pathology (Mc Ardle et al.,
2020; Di Biase et al., 2022). In a recent study, a significant increase
in step length asymmetry was detected in individuals with MCI
and AD compared to healthy individuals (Ghoraani et al., 2021).
However, whether gait asymmetry can identify AD or MCI as an
distinct gait domain remains unknown.

Therefore, in this cross-sectional study, we sought to investigate
the potential of arm movement and gait asymmetry in identifying
AD and MCI. We hypothesized that changes in arm swing
and gait asymmetry could be detected in patients with AD
and MCI and could be used to distinguish between different
cognitive states.

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment;
NC, normal control; ST, single-task; DT, dual-task; FA, factor analysis; PC,
principal component; AUC, area under curve; MoCA, Montreal cognitive
assessment; MMSE, minimum mental state examination; TUG, timed up-
and-go; CI, confidence interval; ROC, receiver operating characteristic.

2 Materials and methods

2.1 Study design and recruitment

This cross-sectional controlled study employed a convenience
sampling method. Patients with AD or MCI from the Dementia
Clinic of the Hospital of Chengdu University of Traditional
Chinese Medicine were invited to participate in this study
from June to December 2022. Cognitively healthy individuals
were recruited from a health screening center. We calculated
the minimum sample size based on the following formula:

n =
(
Z1−α/2∗σ

δ

)2
, and referred to the results of a previous study

(Muir et al., 2012). The minimum sample sizes for the AD and MCI
groups were 18 and 17, respectively. All participants volunteered
to participate in this study and were informed of its objectives,
content, risks, and benefits before data collection. All participants
underwent cognitive assessments and gait detection performed
by three experienced neurologists. This study (2022KL-042) was
approved by the Ethics Committee of the Hospital of Chengdu
University of Traditional Chinese Medicine.

2.2 Participants

Patients with AD and MCI, and healthy individuals aged
45–85 years were included. All participants were able to walk
independently without instrumental aids. AD and MCI were
diagnosed by Min Shi and Dongdong Yang, respectively. The
diagnostic criteria for AD conformed to the clinical diagnostic
criteria for “probable AD dementia” established by the National
Institute of Aging-Alzheimer’s Association (McKhann et al., 2011).
The clinical dementia rating scores for participants with AD ranged
from 1 to 2. The diagnostic criteria for MCI lined with the
expert consensus of the International Working Group on MCI
(Winblad et al., 2004). The exclusion criteria for all participants
included: speech impairment, other neurological disorders, other
types of dementia, musculoskeletal disorders, history of knee
or hip replacement affecting gait performance, consumption
of psychotropic drugs affecting exercise capacity, psychiatric
disorders, and severe diseases of other vital organs. The participants
were allowed to discontinue the study at any time during the
experiment. Participants with incomplete data were excluded from
the analysis. The participant screening process is illustrated in
Figure 1.

2.3 Clinical characteristic collection

The participants’ basic characteristics included age, sex, weight,
height, body mass index, and years of education. The Mini-Mental
State Examination (MMSE) and Montreal Cognitive Assessment
(MoCA) were used to evaluate cognition. The MMSE is the most
widely used standardized cognitive assessment test in clinical
practice (Ciesielska et al., 2016; Gallegos et al., 2022). The MoCA
covers broader cognitive domains than the MMSE and is designed
to screen for MCI with high sensitivity and specificity (Nasreddine
et al., 2005).
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FIGURE 1

Study flow diagram.

2.4 Gait assessment

Three neurologists performed gait assessments to collect the
gait parameters using a wearable device (Gyenno Science Co., Ltd.,
MATRIX system2.0). The device included ten inertial measurement
unit sensors and a host computer loaded with a quantitative gait
assessment system. Sensors were worn on the tester’s chest, waist,
hands, thighs, calves, and feet. The raw kinematic signals of the
participants were captured using sensors and transmitted to the
host computer via a Bluetooth link for further analysis.

The participants were instructed to complete the Timed Up
and Go (TUG) test for single-task (ST) and dual-task (DT).
Verbal guidance was provided during the testing. Each participant
practiced before the formal trial. The TUG test consists of three
consecutive movements of getting up, turning around, and walking
and provides a good assessment of walking ability and balance
(Podsiadlo and Richardson, 1991). TUG of ST: After hearing the
“start” command, the participant walked freely along a straight line
to the “3 meter” marker at a comfortable speed, turned around,
and walked back to the beginning. There was 1 m of free walking
space after the “3 meter” marker, allowing acceleration, deceleration
and turning around. TUG of DT: The participants were asked to
perform consecutive minus seven calculations starting from 100
while performing the TUG test. Cognitive and motor tasks were
not prioritized.

2.5 Gait parameters

The wearable device directly generates a series of objective
gait parameters. From these, we selected 20 parameters (see
Supplementary Table 1) to analyze the mean value, asymmetry,
variability and arm swinging while walking. The parameters were
selected with reference to a previous gait model in older adults

(Lord et al., 2013), and other recent relevant studies (Byun et al.,
2018; Ghoraani et al., 2021; Lindh-Rengifo et al., 2022; Zheng et al.,
2022).

2.6 Data analysis

SPSS version 26.0 (IBM Corp., Armonk, NY, USA) was used
for all analyses. The participant characteristics were descriptively
analyzed in the AD, MCI, and NC groups. Normally distributed
continuous variables were explored using an one-way analysis of
variance. Abnormally distributed variables were analyzed using the
Kruskal–Wallis tests. Gait parameters were descriptively analyzed
using analysis of covariance. Age and years of education were
included as covariates. Natural log transformation was used to
improve the normality of gait parameters. Bonferroni’s correction
states were used for post hoc comparisons. P< 0.05 was considered
a significant difference between the groups.

Factor analysis (FA) was used to reduce the 20 gait parameters
to several main gait domains using principal component (PC)
analysis with varimax rotation. PCs with eigenvalues ≥1 were
selected. Gait parameters with positive or negative loads ≥0.5
were considered relevant component contributors (Costello and
Osborne, 2005). Subsequently, linear regression models were
constructed to explore the correlation between the gait domains
and cognitive performance. Finally, we examined the diagnostic
effect of the gait domains between different cognitive states using
receiver operating characteristic (ROC) curves, and the areas under
the curve (AUC) were calculated. For gait domains with potential
diagnostic value, ROC curves adjusted for age and education
were also constructed (Janes et al., 2009). The best cut-off value
was determined based on the largest Youden index. Sensitivity,
specificity, and 95% confidence intervals (CI) were reported.

3 Results

3.1 Participant characteristics

In total, 102 participants were enrolled and divided into three
groups: AD (n = 27), MCI (n = 35), and NC (n = 40) (see Table 1).
The mean age of AD group was the highest (67.70 ± 8.12 years),
which was followed by the MCI group (65 ± 9.04 years). The
median number of years of education was the lowest in the AD
group (6 years). Compared to the NC group, the cognitive scores of
the AD group were significant in every educational level subgroup,
but were significant for the MCI group only in individuals with
≥6 years of education (P < 0.05). Twelve (44.4%) patients in the
AD group had a CDR score of 2, and 15 (53.6%) had a score of 1.

3.2 Descriptive analysis of gait
parameters during ST and DT walking

The gait parameters were compared during ST and DT walking
(see Table 2). Age and education were included as covariates.
During ST gait, arm peak velocity differed significantly between
the AD and NC groups, and between the MCI and NC groups
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TABLE 1 Participant characteristics.

Variables Total (n = 102) AD (n = 27) MCI (n = 35) NC (n = 40) p-value

Sex: female**, n (%) 63 (61.8%) 19 (70.4%) 21 (60%) 18 (45.0%) 0.111

Age* (years), mean (SD) 63.98 (9.00) 67.70 (8.12) 65.00 (9.04) 60.58 (8.48) 0.004b

Height* (cm), mean (SD) 158.68 (7.14) 157.81 (7.16) 158.20 (7.19) 159.68 (7.15) 0.519

Weight* (kg), mean (SD) 57.70 (8.08) 58.15 (8.67) 58.46 (8.59) 56.73 (7.29) 0.620

Body mass index* (kg/m2), mean (SD) 22.89 (2.69) 23.26 (2.40) 23.37 (3.25) 22.22 (2.21) 0.127

Years of education** (years), median (IQR) 9 (6, 12) 6 (6, 9) 9 (6, 12) 9 (9, 12) 0.010b

MMSE scores**, median (IQR) 27 (21.75, 28) 15 (11, 20) 26 (24, 27) 29 (28, 30) <0.001abc

≤5 years of education (n = 11) 23 (14, 24) 12.5 (9.5, 16.25) 23 (22, 24) 27 (27, 27) 0.013b

6∼12 years of education (n = 57) 26 (19.5, 28) 15.5 (11.75, 19.25) 26 (24.25, 27) 28 (28, 29) <0.001abc

≥12 years of education (n = 34) 28 (27, 30) 20 (8, 22) 27 (27, 28) 30 (29, 30) <0.001bc

MoCA scores**, median (IQR) 23 (15, 27) 11 (5, 15) 21 (17, 23) 27.5 (26, 29) <0.001abc

≤5 years of education 15 (5, 16) 5 (4.25, 9.5) 15 (14.5, 15.5) 26 (26, 26) 0.012b

6∼12 years of education 21 (14.5, 26) 12.5 (7, 15) 20.5 (17.25, 23) 26 (26, 28) <0.001abc

≥12 years of education 26.5 (23, 29) 14 (4, 19) 23.5 (22.5, 24.25) 28 (28, 29) <0.001bc

*One way ANOVA. Bonferroni’s method was used for post hoc comparisons, and P < 0.05 indicated a significant difference between the two groups. **Kruskal Wallis tests, and a two-by-two
comparison was performed. An adjusted P < 0.05 indicated a significant difference between the two groups.
aSignificant difference between AD and MCI.
bSignificant difference between AD and NC.
cSignificant difference between MCI and NC. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; SD, standard deviation; IQR, interquartile range; MMSE, mini-
mental state estimate; MoCA, Montreal cognitive assessment.
Bold values indicate P < 0.05.

(P < 0.05). The asymmetry of stride length and stride velocity
differed significantly between AD and NC and between AD and
MCI (P< 0.05). During DT walking, changes in gait were observed
in the AD and MCI groups compared to the NC group, involving
slow arm peak velocity, decreased arm motion, and high variability
(P < 0.05). High asymmetry was exclusively observed between the
AD and NC groups. However, post hoc comparisons indicated no
significant difference between the AD and MCI groups.

3.3 Extracting gait domains using FA

The mean value and asymmetry of the arm range of motion,
were excluded from FA because of their lack of correlation with
other parameters. The final FA included 18 gait parameters. Each
extracted PC represented a specific gait domain that was named
according to the gait parameter with the highest loading on the PC.
The FA of the ST extracted five independent gait domains: rhythm
asymmetry, rhythm, pace asymmetry, arm motion, and variability,
explaining 77.16% of the total variance (see Table 3). The FA
of DT extracted four independent domains: rhythm, variability,
asymmetry and arm motion, explaining 72.03% of the total variance
(see Table 4).

3.4 Association between gait domains
and cognitive performance

In the linear regression models (see Supplementary
Tables 2, 3), the gait domains were included as predictors of
the MoCA score. Age and years of education were also included

because of their significant differences between the groups. In ST
gait, rhythm asymmetry, pace asymmetry, and variability were
significantly correlated with MoCA scores in the entire sample
(P < 0.05). In DT gait, rhythm and variability were significantly
associated with MoCA scores in the entire sample (P < 0.05).
No significant correlation was detected between arm motion and
MoCA scores in both ST and DT gait (P > 0.05).

3.5 Utilizing gait domains to identify AD
and MCI

Receiver operating characteristic curves were used to evaluate
the diagnostic efficacy of the gait domains (see Figure 2). The
classification was deemed accurate based on the criteria of
AUC ≥ 0.7 and P < 0.05. In the ST state, pace asymmetry could be
used to distinguish between the AD and NC groups (AUC = 0.744,
95% CI: 0.628–0.861, P = 0.001, sensitivity: 100.0%, specificity:
45.0%); and between the AD and MCI groups (AUC = 0.727, 95%
CI: 0.602–0.852, P = 0.002, sensitivity: 51.9%, specificity: 85.7%). In
the DT state, rhythm (AUC = 0.734, 95% CI: 0.615–0.854, P = 0.001,
sensitivity: 85.2%, specificity: 57.5%) and variability (AUC = 0.719,
95% CI: 0.583–0.854, P = 0.003, sensitivity: 55.6%, specificity:
97.5%) could discriminate AD from NC. Notably, only variability
in DT was able to discriminate MCI from NC (AUC = 0.702,
P = 0.003, 95% CI: 0.582–0.823, sensitivity: 42.9%, specificity:
97.5%). Arm motion did not exhibit effective discrimination in
either task state. After adjusting for age and education, the AUC
areas of pace asymmetry, variability, and rhythm were reduced (see
Supplementary Figure 1).
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TABLE 2 Descriptive data of gait parameters.

Variables Single-task Dual-task

AD
(n = 27)

MCI
(n = 35)

NC
(n = 40)

P-value AD
(n = 27)

MCI
(n = 35)

NC
(n = 40)

P-value

Mean stride velocity (cm/s), mean
(SD)

66.93
(22.08)a

83.56
(15.68)

85.45
(20.48)

0.012 52.41
(17.18)b

64.15
(18.05)

76.19
(21.02)

0.001

Stride length (cm), mean (SD) 81.61
(19.75)a,b

97.20
(17.11)

100.03
(16.98)

0.006 70.99
(17.54)b

83.01
(18.88)

92.78
(16.30)

0.002

Gait cycle time (s), mean (SD) 1.25 (0.13) 1.19 (0.10) 1.19 (0.11) 0.220 1.41 (0.22)b 1.36 (0.21) 1.24 (0.14) 0.007

Swing (%), mean (SD) 38.17 (2.62) 39.42 (1.99) 39.05 (2.46) 0.184 36.24 (3.59) 37.42 (2.25) 37.58 (2.69) 0.316

Double support (%), mean (SD) 24.54 (5.11) 22.29 (3.77) 22.97 (4.54) 0.211 28.54 (6.49) 26.16 (4.39) 25.18 (4.89) 0.095

Arm peak velocity (◦/s), mean
(SD)

134.89
(39.03)b

145.55
(47.38)c

197.27
(75.91)

0.001 125.87
(33.72)b

130.77
(41.24)c

193.29
(68.83)

<0.001

Arm range of motion (◦), mean
(SD)

44.67
(14.76)

38.83
(11.01)

43.60 (6.31) 0.070 37.75
(12.03)b

38.03
(11.33)c

44.17 (7.95) 0.015

Variability stride velocity (cm/s),
mean (SD)

9.25 (3.67) 8.13 (3.04) 7.60 (1.72) 0.187 11.41
(4.10)b

11.05 (3.59) 9.22 (2.70) 0.015

Stride length (cm), mean (SD) 9.11 (4.40) 7.41 (3.11) 6.85 (1.70) 0.050 11.41
(4.33)b

10.69 (4.09)c 8.08 (2.69) 0.001

Gait cycle time (s), median
(IQR)*

0.07 (0.05,
0.10)a

0.05 (0.03,
0.06)

0.04 (0.03,
0.07)

0.047 0.16 (0.10,
0.23)b

0.11 (0.07,
0.20)c

0.06 (0.04,
0.12)

0.001

Swing (%), median (IQR)* 2.67 (2.14,
3.52)

2.04
(1.53.2.94)

2.00 (1.46,
2.45)

0.078 2.67 (2.14,
3.52)b

2.04
(1.53.2.94)c

2.34 (1.72,
3.01)

0.001

Double support (%), median
(IQR)*

3.06 (2.55,
4.00)

2.64 (1.96,
3.80)

2.48 (2.01,
3.35)

0.215 3.98 (3.09,
6.53)b

3.98 (3.11,
4.98)c

2.94 (1.89,
3.58)

0.001

Arm peak velocity (◦/s), median
(IQR)*

37.04 (21.46,
63.73)

31.34 (25.46,
40.62)

30.07 (20.53,
50.28)

0.262 36.95 (23.93,
59.52)

34.11 (25.65,
50.47)

36.97 (22.87,
58.37)

0.565

Arm range of motion (◦), median
(IQR)*

6.20 (4.20,
7.47)

4.70 (3.96,
5.54)

4.74 (3.56,
6.30)

0.118 6.34 (5.74,
7.75)

5.65 (4.71,
7.30)

5.21 (4.62,
7.81)

0.185

Asymmetry stride velocity (%),
median (IQR)*

8.44 (6.12,
11.49)a,b

5.89 (4.42,
8.22)

5.76 (4.51,
7.68)

0.009 9.81 (7.12,
13.92)b

8.11 (5.97,
10.69)

6.55 (4.66,
8.17)

0.004

Stride length (%), median (IQR)* 7.96 (4.44,
9.94)a,b

4.24 (3.21,
6.09)

3.96 (2.52,
6.43)

0.010 7.19 (5.42,
8.68)b

5.68 (4.09,
7.85)

4.39 (3.56,
5.60)

0.003

Swing phase (%), median (IQR)* 6.73 (4.77,
10.54)

6.15 (4.22,
9.60)

6.35 (4.50,
8.70)

0.959 9.45 (5.89,
15.13)

8.58 (5.84,
12.38)

6.56 (4.48,
9.77)

0.307

Stance phase (%), median (IQR)* 4.15 (2.98,
6.73)

4.37 (2.85,
5.94)

4.07 (3.04,
5.37)

0.850 5.61 (3.54,
8.55)

5.56 (3.66,
7.37)

4.15 (2.98,
5.64)

0.458

Arm peak velocity (%), median
(IQR)*

25.73 (18.73,
35.00)

21.90 (16.66,
28.01)

22.42 (16.92,
31.04)

0.426 27.58 (24.21,
35.66)

25.22 (21.00,
33.20)

24.72 (20.89,
33.16)

0.496

Arm range of motion (%),
median (IQR)*

35.34 (33.66,
37.45)

34.89 (32.83,
40.96)

34.60 (30.84,
38.54)

0.283 36.79 (34.37,
38.09)

36.94 (34.92,
39.35)

36.20 (31.66,
39.11)

0.051

Analysis of covariance. Age and education were included as covariates. Bonferroni’s method was used for post hoc comparisons, and P < 0.05 indicated a significant difference
between the two groups. *Transformed by natural logarithm.
aSignificant difference between AD and MCI.
bSignificant difference between AD and NC.
cSignificant difference between MCI and NC. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; SD, standard deviation; IQR, interquartile range.
Bold values indicate P < 0.05.

4 Discussion

In this study, we discovered that during ST walking, gait
asymmetry was negatively correlated with MoCA scores and could
differentiate AD from the other two groups. However, we did
not find a significant association between arm motion and MoCA
scores in the multiple linear regression model. In addition, arm
motion did not show good discrimination in either task.

4.1 Arm motion

To our knowledge, this study is the first to detect decreased
arm peak velocity in patients with AD and MCI during both ST
and DT walking. Decreased arm range of motion was also detected
in the AD and MCI groups with the addition of cognitive task.
Similar changes have been observed in the DT gait of patients with
Parkinson’s disease (Baron et al., 2018). Arm-swing movements are
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TABLE 3 Factor analysis of single-task gait.

Variables Rhythm
asymmetry

Rhythm Pace asymmetry Arm motion Variability

Stride velocity −0.600 −0.664

Stride length −0.704

Gait cycle time 0.764

Swing −0.873

Double support 0.878

Arm peak velocity 0.619

Stride velocity variability 0.917

Stride length variability 0.844

Gait cycle variability

Swing variability 0.829

Double support variability 0.707

Arm peak velocity variability 0.852

Arm range of motion variability 0.708

Stride velocity asymmetry 0.858

Stride length asymmetry 0.926

Swing asymmetry 0.887

Stance asymmetry 0.902

Arm peak velocity asymmetry 0.706

Varimax rotation. Only the absolute value of the loading greater than 0.5 is displayed.

important for coordinating walking stability (Meyns et al., 2013).
Arm-swing amplitude typically has a positive correlation with
walking speed (Kubo et al., 2004). In a study by Matuszewska
and Syczewska (2023) the arm-swing amplitude was greater, more
repetitive and symmetrical during fast walking than that during
slow walking. This implies that changes in arm speed and amplitude
may be driven by alterations in walking speed.

Arm movements can be influenced by cognitive load, possibly
due to shared cortical networks involved in gait control and
cognition (Krasovsky et al., 2014; Cohen and Verghese, 2019).
However, our study found no significant association between
arm motion and MoCA scores after considering other gait
domains, age and education, suggesting that arm movements
may passively respond to changes in other gait domains. For
instance, the body performs preceding postural controls, such
as adjusting the amplitude, rhythm and direction of the arm
swing to prevent deterioration of balance and falls (Takakusaki,
2023). Several studies have highlighted the importance of arm
swing in gait recovery (Bruijn et al., 2010; Krasovsky et al., 2014;
Punt et al., 2015). Gait without arm swing is characterized by a
higher perturbation resistance but similar local stability to gait
with arm swing (Bruijn et al., 2010). This suggests arm swing
may not be necessary for walking, but recovery movement of
arm may contribute to overall gait stability. Our study did not
intentionally set up obstacles to cause sudden gait disturbances
and thus may have missed the key function of arm swing.
A recent study suggested that right arm swing attenuation appears
to be the norm in humans performing motor-cognitive tasks
(Killeen et al., 2017). Distinct neural control mechanisms are likely
utilized for the movements of the dominant and non-dominant

arms (Sainburg and Kalakanis, 2000). Therefore, it is advisable
to observe arm swing in overall gait performance rather than
isolation, and pay more attention to lateralised effects in future
studies.

4.2 Gait asymmetry

Gait asymmetry has previously been used to assess unilateral or
asymmetric pathological changes such as hemiplegia, Parkinson’s
disease, and dementia with Lewy bodies (Mc Ardle et al., 2019,
2020; Di Biase et al., 2022). However, our gait assessment detected
increased asymmetry of stride velocity and stride length in the AD
group during ST and DT walking, which is consistent with the
findings of two previous studies (Maquet et al., 2010; Ghoraani
et al., 2021). Ardle’s study detected swing time asymmetry but
not stride length asymmetry in individuals with AD (Mc Ardle
et al., 2020). The method for calculating asymmetry may be the
main cause of the differences among studies. We used the relative
deviation between the left and right feet rather than the absolute
difference. Inconsistencies in the measurement equipment are also
worth considering. The type, number, and placement of sensors
may affect the accuracy of the motion data (Weizman et al.,
2021).

During ST walking, we discovered that gait asymmetry was
negatively correlated with MoCA scores and suggested that
pace asymmetry, could be used to identify patients with AD.
However, our study included mild and moderate dementia, and the
applicability of gait assessment in severe dementia requires further
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TABLE 4 Factor analysis of single-task gait.

Variables Rhythm variability Asymmetry Arm
motion

Stride velocity −0.837

Stride length −0.682

Gait cycle time 0.689

Swing −0.869

Double
support

0.887

Arm peak
velocity

−0.521 0.52

Stride velocity
variability

0.927

Stride length
variability

0.868

Gait cycle time
variability

0.505

Swing
variability

0.54

Double
support
variability

0.577

Arm peak
velocity
variability

0.833

Arm RoM
variability

0.719

Stride velocity
asymmetry

0.576

Stride length
asymmetry

0.546

Swing
asymmetry

0.867

Stance
asymmetry

0.933

Arm peak
velocity
asymmetry

0.652

Varimax rotation. Only the absolute value of the loading greater than 0.5 is displayed.

investigation. Other possible confounding factors such as sex and
comorbidities, should also be considered in future studies.

Compared to the AD group, the MCI group displayed fairly
balanced gait symmetry during both ST and DT walking, which
is inconsistent with previous studies (Ghoraani et al., 2021; Liu
et al., 2021). Including age as a covariate significantly influenced
the results. In Ghoraani et al. (2021) study, the healthy group
had a younger age profile, but the analysis did not account
for this potentially confounding factor. Liu et al. (2021) study
indicated that stance phase asymmetry in MCI group decreased
from performing the count backward task to engaging in more
complex tasks, such as animal naming and subtracting three
continuously. Gait asymmetry appears to become more noticeable
as cognitive load increases. However, differences in education
were not taken into account in these two studies, which may
have impacted the consistency of cognitive load during DT

gait. As for recognizing MCI, gait asymmetry performed worse
than gait variability. Numerous studies have exhibited that DT
gait variability in MCI patients is a highly promising gait
marker for MCI diagnosis (Montero-Odasso et al., 2012; Lee
and Park, 2018; Boripuntakul et al., 2022; Lindh-Rengifo et al.,
2022).

4.3 Effects of cognitive tasks, age, and
education on gait

The choice of cognitive task may affect the sensitivity of
DT gait. The DT paradigm for cognitive tasks considers four
main abilities: working memory, verbal fluency, attention, and
visuospatial abilities (Ramírez and Gutiérrez, 2021). A meta-
analysis found that the largest increase in DT cost occurred
during continuous subtraction or verbal fluency tasks, with
correspondingly greater motor-cognitive interference with step
speed (Bishnoi and Hernandez, 2021). A higher cognitive load is
beneficial to MCI recognition, since simple tasks may lead to ceiling
effects (Bishnoi and Hernandez, 2021). Conversely, for the AD
group, the successive minus seven task posted a challenge. Majority
of patients with AD achieved less than three correct answers during
walking in our study. These results suggest that a DT gait with a
high cognitive load is critical for identifying MCI. However, for
patients with AD, basic cognitive tasks like countdown may be
more appropriate.

Age was a primary confounding factor in our study, resulting
in an overestimation of the diagnostic efficacy of the gait domain.
Aging significantly affects gait performance and increases the risk of
falls (Li et al., 2018). With age, gait becomes increasingly dependent
on executive functions, especially switching abilities (Li et al., 2018).
Older individuals may recruit supplementary cortical and sub-
cortical areas to compensate for degenerative changes in the brain
during motor preparation and execution (Poirier et al., 2021).
Thus, impaired cognition hinders the motor compensation through
cognitive processes, may leading to poorer gait performance.
A Chinese cohort study demonstrated the continued significance
of the longitudinal reciprocal association between gait speed and
cognition after adjusting for baseline age, gait speed, cognition, and
potential con-founders (Li et al., 2023). In conclusion, the impact
of age on gait should be considered cautiously, given that aging
may lead to decreased cognition and motor functions (Collyer et al.,
2022).

Education was also a potential influencing factor on DT
gait performance. In the present study, the AD group was less
educated than the NC group. In the same group, participants with
higher educational levels exhibited better cognitive performance.
Education is the core of cognitive reserves, which is associated
with better cognitive performance and delayed onset of clinical
symptoms of AD (Pettigrew et al., 2023). Education cultivates
the knowledge, skills, and abilities necessary for continued
participation in intellectually demanding activities, which means
continuous new information processing and cognitive stimulation
(Parisi et al., 2012). Therefore, for well-educated participants, the
cognitive task may fail to offer appropriate cognitive load. Thus,
we also suggest that the task design of DT gait takes educational
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FIGURE 2

Receiver operating characteristic curves of gait domains. (A) Single-task: AD vs. NC; (B) single-task: AD vs. MCI; (C) dual-task: AD vs. NC; (D)
dual-task: MCI vs. NC. AD, Alzheimer’s disease; MCI, mild cognition impairment; NC, normal control.

attainment into account in future studies. In summary, cognitive
assessment in older adults requires a multifactorial approach.

5 Limitations

This study has the following limitations. Referring to the
previous literature, we selected only a few gait parameters
for analysis. However, the MATRIX system 2.0 also generated
numerous variables for the trunk and lower leg, which deserves
further exploration in future studies. Moreover, the present study
was a cross-sectional study, and was unable to determine the
sequential relationship between gait changes and cognitive decline.
Some potential confounding factors such as age, sex, education,
comorbidities, and medication use, should also be carefully
evaluated. The selection of cognitive tasks according to different

cognitive reverses and disease subtypes will further improve the
specificity and accuracy of DT gait testing. In future studies, we will
check the applicability of gait in large samples from various sources.

6 Conclusion

In this study, we explored whether arm swing and gait
asymmetry could be used to recognize AD and MCI. The results
revealed that there is no reliable evidence that arm movements
can be used to identify AD and MCI. Gait asymmetry can be
used as a potential gait marker for the diagnosis of AD, but not
for MCI. Our results may aid in the diagnosis of clinical AD and
MCI and provide theoretical evidence for gait-based screening of
cognitive impairment.
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