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Neurosurgery, Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford,
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Background: Deep brain stimulation (DBS) has shown promise in effectively

treating chronic pain. This study aimed to assess the efficacy of DBS in this

context.

Methods: We conducted a systematic literature search using PubMed, Scopus,

and Web of Science, following the PRISMA guidelines. A well-constructed search

strategy was utilized. Our literature search identified two groups of subjects: one

group underwent DBS specifically for chronic pain treatment (DBS-P), while the

second group received DBS for other indications (DBS-O), such as Parkinson’s

disease or dystonia, with pain perception investigated as a secondary outcome

in this population. Meta-analysis was performed using R version 4.2.3 software.

Heterogeneity was assessed using the tauˆ2 and Iˆ2 indices, and Cochran’s

Q-test was conducted.

Results: The analysis included 966 patients in 43 original research studies with

chronic pain who underwent DBS (340 for DBS-P and 625 for DBS-O). Subgroup

analysis revealed that DBS-P exhibited a significant effect on chronic pain relief,

with a standardized mean difference (SMD) of 1.65 and a 95% confidence interval

(CI) of [1.31; 2.00]. Significant heterogeneity was observed among the studies,

with an Iˆ2 value of 85.8%. However, no significant difference was found between

DBS-P and DBS-O subgroups. Subgroup analyses based on study design, age,

pain diseases, and brain targets demonstrated varying levels of evidence for the

effectiveness of DBS across different subgroups. Additionally, meta-regression

analyses showed no significant relationship between age or pain duration and

DBS effectiveness for chronic pain.

Conclusion: These findings significantly contribute to the expanding body of

knowledge regarding the utility of DBS in the management of chronic pain. The

study underscores the importance of conducting further research to enhance

treatment outcomes and elucidate patient-specific factors that are associated

with treatment response.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?RecordID=428442, identifier CRD42023428442.
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1 Introduction

Chronic pain refers to a persistent type of pain that extends
beyond the expected duration for healing, commonly lasting for
a period exceeding 3 months. This condition gives rise to a
wide range of adverse effects, encompassing medical, social, and
economic consequences. Individuals experiencing chronic pain
may encounter challenges in their interpersonal relationships,
witness a decline in productivity, and face escalated healthcare
expenditures (Chou et al., 2015). According to the Institute of
Medicine, pain constitutes a significant public health concern
with profound financial implications for the United States.
It has been estimated that the economic burden associated
with pain, encompassing healthcare expenditures and diminished
productivity, ranges from $560 to $635 billion annually (Institute
of Medicine (US) Committee on Advancing Pain Research, Care,
and Education, 2011). In recent years, studies have shown that
in modern industrialized nations, prevalence studies indicate that
approximately 20–30% of the population experience chronic pain
across various conditions (Leadley et al., 2012; Karra et al.,
2021). Given the prevalent occurrence and long-lasting nature of
chronic pain, along with the undesirable consequences linked to
dependence on pain medication, there has been an increasing
emphasis on treatment approaches that integrate adjunctive
therapies or non-pharmacological alternatives (Chiesa and Serretti,
2011).

Neurosurgeons commonly employ DBS as a therapeutic
technique involving the implantation of electrodes in specific
subcortical regions of the brain to administer electrical currents.
The primary objective of this procedure is to address various
movement disorders, notably Parkinson’s disease (PD), dystonia,
and essential tremor (ET). However, scientists and medical
professionals are actively investigating additional potential
applications of DBS in the treatment of conditions such as
obsessive-compulsive disorder, Tourette’s syndrome, depression,
cluster headache (CH), and epilepsy. It is worth noting that the
utilization of DBS for managing chronic pain dates back to the
early 1970’s (Bittar et al., 2005a; Hamani et al., 2006).

Deep brain stimulation presents itself as an appealing option
in the field of neurosurgery due to its minimally invasive nature,
setting it apart from other surgical techniques. Additionally, DBS is
generally well-tolerated by patients. In comparison to alternative
neurosurgical methods, DBS carries a significantly lower risk.
Notably, it falls under the category of neuromodulation, allowing
for adjustments and reversibility, unlike previous procedures that
involved the creation of brain lesions (Tan et al., 2023).

Two multicenter studies were conducted to assess the efficacy
of DBS for pain relief and obtain approval from the FDA. However,
both trials failed to meet the predetermined efficacy criteria, which
required that a minimum of 50% pain relief be reported by at
least half of the patients 1 year after the surgery. The pursuit of
FDA approval was discontinued, and the utilization of DBS for
pain management has been considered “off-label. Consequently,
medical insurance reimbursement for this procedure is lacking.
As a result, only a limited number of surgeons currently perform
DBS for pain outside of Europe, where it has been approved by
the European Federation of Neurological Societies (EFNS) and
the United Kingdom National Institute for Health and Clinical

Excellence (NICE) (Cruccu et al., 2007; National Institute for
Health and Clinical Excellence, 2010).

Deep brain stimulation has shown efficacy in treating various
pain syndromes, including post-stroke pain, phantom limb pain,
brachial plexus injury, failed back surgery syndrome and the
pain accompanying the PD (Bittar et al., 2005a; Falowski, 2015;
Frizon et al., 2020; Flouty et al., 2022). Nevertheless, despite the
available information, there continues to be a persistent drive to
investigate and enhance the utility of DBS in the management
of chronic pain. Our study aims to assess the impact of DBS
on pain relief in two distinct contexts. We will first examine the
effects of DBS specifically targeting chronic pain as the primary
indication (DBS-P). Secondly, we will investigate the efficacy of
DBS in alleviating pain when it is implanted for indications other
than pain (DBS-O). By evaluating these different scenarios, we
aim to gain a comprehensive understanding of the role of DBS in
pain management across various conditions, contributing to the
advancement of therapeutic interventions in the field.

2 Materials and methods

This study’s methodology adhered to the Cochrane Handbook
for Systematic Reviews of Interventions (Higgins et al., 2023),
incorporating guidelines for comprehensive literature searches,
rigorous study selection criteria, and robust data synthesis
techniques. Moreover, it followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page
et al., 2021), ensuring transparent reporting of study selection,
data extraction, and meta-analysis procedures according to Lee
et al. (2022). The study protocol was prospectively registered
in PROSPERO (CRD42023428442), ensuring transparency and
adherence to established research guidelines.

In this meta-analysis, we adhered to the PICO framework for
formulating our research question as outlined below:

Population (P): We focused on two distinct patient
populations, categorized as follows:

- DBS-P: Patients with chronic pain as the primary
indication for deep brain stimulation (DBS).

- DBS-O: Patients with indications other than chronic
pain, such as Parkinson’s disease or dystonia,
who underwent DBS.

Intervention (I): The primary intervention under examination
was Deep Brain Stimulation (DBS).

Comparison (C): Our analysis encompassed several key
comparative aspects:

- Evaluation of pain scores before DBS
stimulation compared to pain scores after DBS
stimulation (or ’DBS off’).

- Assessment of the effectiveness of DBS in relation to
movement disorders (e.g., Parkinson’s disease, dystonia).

- Investigation of the impact of stimulation targets (brain
regions) on pain alleviation.

- Examination of the relationship between DBS
and pain duration.
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Outcome (O): Our primary outcome of interest was the
quantification of pain reduction following DBS stimulation.

2.1 Search strategy

We searched the electronic databases (PubMed, Scopus, Web
of science) using the following keywords: (“Chronic Pain” OR
“Pain”[Mesh]) AND (“Deep Brain Stimulation” OR “DBS” OR
"neuromodulation" OR “Neurostimulation”[Mesh]). The search
was limited to articles published in English and published in peer-
reviewed journals.

2.2 Eligibility criteria

The inclusion criteria for articles were that they were written
in English, published in a peer-reviewed academic journal,
and pertained to interventions or treatments, rehabilitation,
or epidemiological examinations of pain. We excluded studies
involving animals, reviews, descriptive articles, case reports that
do not include the available outcomes, book chapters, and
technical notes from the meta-analysis, evaluating them on an
individual basis.

2.3 Data synthesis

We independently conducted the selection of articles, data
extraction, and assessment of methodological quality. Outcome
measures were extracted from diverse studies based on predefined
inclusion criteria, following the quality assessment criteria outlined
by the Oxford Centre for Evidence-Based Medicine levels of
evidence (levels I-V) (Marx et al., 2015). Study characteristics
were summarized, encompassing details such as DBS location,
pain type, primary and secondary outcomes, DBS nucleus target
subgroup, pain duration, duration subgrouping, pain questionnaire
tools, pain scale utilized, pain relief achieved, effect size, standard
deviation of the effect size, percentage of pain reduction, and
follow-up duration in years. Treatment effect sizes were computed
from reported means and variances of pre- and post-DBS data. Pain
levels were assessed using standardized scales, including CH-QoL
Pain scale, EUROQOL EQ-5D VAS, Kansas City Pain Disability
Scale (KPDPS), McGill Pain Questionnaire (MPQ), among others
(see Supplementary Table 1).

2.4 Statistical analysis

Statistical analysis was conducted in R using the meta package
for a meta-analysis. Data, imported with readxl, underwent meta-
analysis using the metacont function, specifying patient numbers,
pre- and post-treatment means, standard deviations, and effect size
(SMD). Forest plots were generated for visualization. Summary
statistics, funnel plots, and sensitivity analyses were performed
using various functions. The interpretation referred to Egger et al.
(1997) BMJ study (Egger et al., 1997). To address pain measure
heterogeneity, effect sizes were computed for each outcome,

aggregated through averaging. Metacont function was reapplied for
subgroup analysis based on study design, DBS brain target, or meta-
regression on age and pain duration. Sensitivity analysis assessed
the pooled estimate’s robustness by exploring individual studies or
methodological choices.

3 Results

3.1 Literature search

A total of 1,106 records were obtained across all databases. After
eliminating duplicated articles, 439 journal articles were selected
based on their relevance to DBS as a treatment for addiction.
Subsequently, these 439 articles underwent screening using our
pre-assigned inclusion criteria, leading to the identification of 43
(21 for DBS-P and 16 for DBS-O) original research studies that
met the potential eligibility requirements for inclusion in the study
Supplementary Figure 1: PRISMA flow diagram.

3.2 Study characteristics

The analysis encompassed 966 patients with chronic pain who
underwent DBS (340 for DBS-P and 625 for DBS-O), with an
average age of 52.8 ± 11.2 years and a mean pain duration of
11.6 ± 10.3 years. The sample consisted of 40% females. The
average follow-up period was 2.2 ± 2 years. The findings from the
meta-analysis revealed that DBS exhibited a significant reduction
in chronic pain, with an average pain reduction of 47.67 ± 20.01%
for the DBS-P group and 59.59 ± 23.81% [51.01 ± 21.4% for both
groups] (Table 1).

3.3 DBS indication

The results of the subgroup analysis for DBS specifically
targeting chronic pain (DBS-P) are as follows: In the random effects
model, the standardized mean difference (SMD) for DBS-P is 1.65,
with a 95% confidence interval (CI) of [1.31; 2.00]. The z-value is
9.45, and the corresponding p-value is less than 0.0001, indicating
a significant effect of DBS-P on chronic pain.

Quantifying heterogeneity, the estimated tauˆ2 is 0.92, with a
95% CI of [0.61; 2.39]. The corresponding tau value is 0.9620, with a
95% CI of [0.78; 1.54]. The Iˆ2 value, representing the percentage of
total variation across studies due to heterogeneity, is 85.8%, with a
95% CI of [81.6%; 89.1%]. The estimated H value, which represents
the ratio of total variation to sampling variation, is 2.66, with a
95% CI of [2.33; 3.03]. The test of heterogeneity shows a Q-value
of 275.02 with 39 degrees of freedom and a p-value less than 0.0001,
indicating significant heterogeneity among the studies.

Analyzing the subgroups within the random effects model, the
DBS-P subgroup includes 22 studies. The SMD for DBS-P is 1.91,
with a 95% CI of [1.32; 2.49]. The estimated tauˆ2 for this subgroup
is 1.46, and the corresponding tau value is 1.2105. The Q-value for
this subgroup is 134.93, with an Iˆ2 value of 84.4%.

The DBS-O subgroup, which represents a different indication
for DBS, includes 18 studies. The SMD for DBS-O is 1.4689, with
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TABLE 1 Study design, countries, number of patients, patient demographics (age and sex), DBS location, the type of pain being treated, the reason for using DBS, pain duration, pain scale used, pain reduction
percentage, the follow-up duration in years and quality assessment.

References Study
design

Country Number
of

patients

Age
(mean

±
SD)

Sex-
female

(No)

DBS
location

Pain DBS-
indication

DBS
nucleus
target

subgroup

Pain
duration

The
pain
scale
used

Pain score
improvement

Pain
Reduction

(%)

Follow-
up

duration
(years)

Quality
assessment

Effect size SD (effect
size)

For pain

Saway et al., 2023 Case report United States 1 59 0 VPM, MCS Facial
neuropathic

pain

DBS-P 5 VAS 6 1 66.67 1 4

Abreu et al., 2022 Prospective Portugal 16 53 ± 69.1 2 VPL Post-traumatic
neuropathic

limb pain

DBS-P VPL 20.2 ± 12.8 VAS 6.620847109 0.7551903733 76.9 5 1b

Krüger et al.,
2021

RCT Canada 1 63 1 CM, VPM,
anterior
pulvinar.

Neuropathic
dental pain

(NDP)

DBS-P VAS 1.272792206 3.535533906 70 1 1b

Cappon et al.,
2021

Clinical trial United
Kingdom

10 45.4 ± 11.9 2 VTA Headache DBS-P VTA 16.0 ± 7.1 CH-QoL
Pain

0.7175929249 1.254192968 11.8 1 3b

Kashanian et al.,
2020

Case series United States 9 57 ± 15.5 4 VPM, PVG Facial Pain DBS-P 6.8 ± 6 VAS 1.965795847 1.780449381 33 3.36 ± 4.4 4

Polanski et al.,
2019

RCT Germany 3 59.7 ± 3.9 1 PLIC, VPL,
PVG

Chronic pain
after brachial
plexus injury

DBS-P 29 ± 9.9 NRS 4.880361175 0.6147086031 59.1 1 1b

Levi et al., 2019 Clinical trial Italy 5 55.8 ± 8.96 1 Dorsal ACC Thalamic pain
syndrome

(TPS)

DBS-P ACC 5 ± 1.58 NRS 3.409584548 0.9385307667 35 1.5 3b

Cappon et al.,
2019

Case series United
Kingdom

18 46.73 3 VTA Chronic cluster
headache

DBS-P VTA 2 MPQ −0.3593330256 11.74398037 −9.16 1.17 ± 0.38 4

Ben-Haim et al.,
2018

Clinical trial United States 7 55.1 ± 9.25 3 VPM, PAG Neuropathic
facial pain

DBS-P 14.4 ± 9.75 VAS 5.734172473 1.116115713 70 1 3b

Holland et al.,
2018

Case report United States 1 60 1 VC/VS, GPi Entral
post-stroke

pain

DBS-P 7 MPQ 0.7 0 70.59 1 4

Abreu et al.,
2017, 2022

Prospective Portugal 16 53 ± 9.1 2 VPN
thalamus

Neuropathic
pain due to

traumas

DBS-P 20.2 ± 2.8 VAS 3.106610192 1.36805062 53.1 3 1b

Lempka et al.,
2017

RCT United States 10 51.3 ± 4.75 4 VS/ALIC Post-stroke
pain

DBS-P 4.7 ± 2 VAS −1.400619157 4.540848931 3.4 2 1b

Boccard et al.,
2017

Clinical trial United
Kingdom

24 49.1 ± 11.2 5 ACC Neuropathic
Pain

DBS-P ACC NA NRS 8.285651982 0.4706931945 47.56 3.2 3b

Kim et al., 2016 Clinical trial United States 5 56 ± 14.8 3 VPN, VPL,
PAG

Medically
refractory pain

DBS-P 9.4 ± 9.5 NRS 16.90308509 0.2958039892 66.7 2.4 ± 0.96 3b

Rezaei Haddad
et al., 2015

Case report United States 1 50 0 VPL, VPM body pain
syndrome

DBS-P 7 OS 0.6 0 40 3.2 4
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TABLE 1 (Continued)

References Study
design

Country Number
of

patients

Age
(mean

±
SD)

Sex-
female

(No)

DBS
location

Pain DBS-
indication

DBS
nucleus
target

subgroup

Pain
duration

The
pain
scale
used

Pain score
improvement

Pain
Reduction

(%)

Follow-
up

duration
(years)

Quality
assessment

Effect size SD (effect
size)

For pain

Son et al., 2014 Clinical trial Republic of
Korea

9 49.3 ±

10.75
3 contralateral

VC thalamus
Chronic

intractable
neuropathic

pain

DBS-P 8.1 ± 12.2 NRS 3.237075006 0.926762585 37.5 3.2 ± 1.9 3b

Gray et al., 2014 Prospective United
Kingdom

18 50.42 ±

10.37
4 PVG/PAG,

ST
Neuropathic

pain
DBS-P PVG and PAG 7.25 ± 4.16 MPQ 1.296240837 10.41473129 42.267 0.5 1b

Pereira et al.,
2013

Clinical trial Portugal 12 53 ± 10 2 VPL Neuropathic
pain

DBS-P VPL 20 ± 13 VAS 2.087614349 2.299275248 52.7 1 3b

Boccard et al.,
2013

prospective
cohort

United States 85 52.1 ± 13.3 25 PVG,
VPL/VPM

Neuropathic
pain

DBS-P 2 VAS 2.418052643 1.488801334 45.8 1.6 1b

Pereira et al.,
2010

Clinical trial United
Kingdom

16 51 ± 14.3 3 PAG Chronic
neuropathic

pain

DBS-P PAG 9.44 ± 6.68 VAS 3.077891804 1.033174719 84 NA 3b

Owen et al., 2008 Clinical trial United
Kingdom

4 NA NA PVG and
PAG

Chronic pain DBS-P PVG and PAG NA MPQ
PRI

0.8809297784 18.67345208 53.5 NA 3b

Owen et al., 2007 Clinical trial United
Kingdom

34 50.4 ± 13 10 PVG,
VPL/VPM

Neuropathic
pain

DBS-P NA VAS 3.034738077 1.519076732 53.29 1.54 ± 0.9 3b

Pereira et al.,
2007

Clinical trial United
Kingdom

3 52.7 ± 8.14 1 PVG and
VPL

Chronic
neuropathic

pain

DBS-P PVG and VPL 4.8 VAS 14.07232143 2.544001015 39.65 1 3b

Spooner et al.,
2007

Case report United States 1 40 0 PVG,
cingulum

Neuropathic
pain

DBS-P 12 VAS 19.79898987 0.1767766953 43.75 1 4

Owen et al., 2006 Clinical trial United
Kingdom

12 57.4 ± 10.8 3 PVG and
VPL

Post-stroke
pain

DBS-P PVG and VPL 5.2 VAS 2.47042262 1.619156159 48.8 2.25 3b

Green et al., 2006 Prospective United
Kingdom

16 52 3 PAG Chronic
neuropathic

pain

DBS-P PAG NA MPQ 3.070536746 7.099735911 64.1 1 1b

Bittar et al.,
2005b

Comparative
Study

United
Kingdom

3 55.67 ±

19.1
0 PVG, TS Chronic

neuropathic
pain

DBS-P NA EUROQ
OL

EQ-5D
VAS

1.984143634 11.79350104 61.7 1.12 ± 0.25 2a

For other conditions

Wang et al., 2020 Retrospective China 23 41.13 ±

13.49
10 GPi Cervical DYT DBS-O GPi 3.6 ± 4.5 TWSTR

S pain
2.203138278 2.555445592 71.7 1.59 ± 1.4 2b

Perides et al.,
2020; Krüger
et al., 2021

Retrospective United
Kingdom

138 11.5 ± 4 69 GPi Dystonic pain DBS-O GPi 11.5 ± 4 NPRS 2.821223801 1.772280525 68.5 1 2b
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TABLE 1 (Continued)

References Study
design

Country Number
of

patients

Age
(mean

±
SD)

Sex-
female

(No)

DBS
location

Pain DBS-
indication

DBS
nucleus
target

subgroup

Pain
duration

The
pain
scale
used

Pain score
improvement

Pain
Reduction

(%)

Follow-
up

duration
(years)

Quality
assessment

Effect size SD (effect
size)

For pain

Perides et al.,
2020; Krüger
et al., 2021

Retrospective United
Kingdom

2 11.5 ± 5 69 STN Dystonic pain DBS-O STN 11.5 ± 5 NPRS 2.431801915 2.056088519 68.5 1 2b

Gong et al., 2020 Retrospective China 36 62.3 ± 10.4 9 STN PD-Related
Pain

DBS-O STN 3.3 ± 3.4 NRS 4.465178791 0.7054588735 79 ± 27 8 2b

Gong et al., 2020 Retrospective China 28 63.2 ± 9.1 15 GPi PD-Related
Pain

DBS-O GPi 2.1 ± 1.7 NRS 4.435433621 0.7890998488 75 ± 27 2b

Kaelin-Lang
et al., 2020

Prospective Switzerland 5 39 ± 6.75 3 GPi Cervical DYT DBS-O GPi 5 ± 1.25 TWSTR
S pain
score

0.2931841924 4.43407262 16.5 11.5 ± 0.7 1b

DiMarzio et al.,
2018

Prospective United States 18 63.8 ± 8.5 4 STN, GPi PD pain DBS-O 11.6 ± 1.02 KPDPS 5.330780047 2.645016278 54.7 0.5 1b

Fabbri et al., 2017 Cross-
sectional

study

Portugal 32 62.5 ± 13.3 13 STN PD-related
pain

DBS-O STN 18.7 ± 5.1 VAS-p 0.3338166355 1.797393947 35.3 4.6 ± 1.3 3b

Cury et al., 2016 Clinical Trial Brazil 37 59 ± 10.8 12 STN PD-related
pain

DBS-O STN 15 ± 7.2 VAS 2.419615423 17.85820986 72.5 1 3b

Jung et al., 2015 Clinical Trial Republic of
Korea

24 59.1 ± 7.6 9 STN PD-related
pain

DBS-O STN 18.0 ± 3.8 Ordinal
scale

from 0
to 1

0.899854933 1.555806329 22.58 8 3b

Sürücü et al.,
2013

Retrospective Switzerland 14 62.8 ± 5.69 6 STN PD-related
pain

DBS-O STN 12.3 ± 3.82 Ordinal
scale

2.304728268 2.451482059 65.9 1.3 ± 1 2b

Dellapina et al.,
2012

RCT France 8 65.1 ± 5.0 8 STN PD-related
pain

DBS-O STN 12.4 ± 2.6 VAS 1.317009216 1.594521872 28 0.25 1b

Kim et al., 2012 Clinical Trial Republic of
Korea

21 58.3 ± 7.9 13 STN PD-related
pain

DBS-O STN 10.6 ± 4.0 OS 1.424182765 1.123451315 23.53 2 3b

Oshima et al.,
2012

Prospective Japan 69 63.0 ± 7.8 STN PD-related
pain

DBS-O STN 63.0 ± 7.8 VAS 3.90472786 1.075619134 80.77 1 1b

Cury et al., 2014 Clinical Trial Brazil 44 60 ± 10.4 14 STN PD-related
pain

DBS-O STN 6.52 ± 6.50 VAS 2.077258568 1.396070785 44.6 3b

Pellaprat et al.,
2014

Prospective France 58 60.3 ± 7.8 21 STN PD-related
pain

DBS-O STN 12.3 ± 3.8 MPQ-
QDSA

1.242343385 4.990568691 45 1 1b

Kim et al., 2008 Retrospective Republic of
Korea

29 59 ± 7.7 15 STN PD-related
pain

DBS-O STN 9.9 ± 4.6 NPRS 1.021763182 1.174440439 19 0.25–0.5 2b

Witjas et al., 2007 Prospective France 40 59 ± 8 10 STN PD-related
pain

DBS-O STN 12.4 ± 4.5 NMF 3.866208623 0.3621118612 84.2 1 1b
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a 95% CI of [1.07; 1.86]. The estimated tauˆ2 for this subgroup is
0.5747, and the corresponding tau value is 0.7581. The Q-value for
this subgroup is 137.18, with an Iˆ2 value of 87.6%.

The test for subgroup differences within the random effects
model yields a Q-value of 1.50 with 1 degree of freedom and
a p-value of 0.2213, indicating no significant difference between
the DBS-P and DBS-O subgroups. Overall, these results suggest
a significant positive effect of DBS specifically targeting chronic
pain (DBS-P) based on the random effects model. However, there
is significant heterogeneity among the studies, and no significant
difference is observed between the DBS-P and DBS-O subgroups
Figure 1.

3.4 Risk of bias

These results indicate that the linear regression test did not
find significant asymmetry in the funnel plot. The test result
shows a t-value of 0.82 with 38 degrees of freedom, resulting in a
p-value of 0.41, which is greater than the conventional threshold
for statistical significance (usually 0.05). The sample estimates
provide additional information. The estimated bias is 0.71, with a
standard error of 0.87. The intercept is estimated to be 1.33, with a
standard error of 0.30.

Furthermore, the details of the analysis reveal the multiplicative
residual heterogeneity variance, tauˆ2, which is calculated to be
7.11. Overall, these results suggest that there is no significant
funnel plot asymmetry, indicating that publication bias or other
forms of bias may not be influencing the results of the study
(Supplementary Figure 2).

3.5 Sensitivity analysis

The sensitivity analysis explored the influence of omitting
individual studies on the results. Here are the key findings: When
omitting Saway et al. (2023), the SMD remained significant and
had a similar effect size as the pooled estimate. The p-value
remained <0.0001, indicating a significant effect of DBS on chronic
pain relief. The heterogeneity measures (tauˆ2, tau, Iˆ2) also
remained similar. Similarly, omitting Holland et al. (2018), Cappon
et al. (2021), Krüger et al. (2021), and Abreu et al. (2022) did
not substantially affect the overall results. The p-value remained
<0.0001, and the effect sizes and heterogeneity measures remained
consistent. Omitting other studies also showed similar patterns.
The p-value remained <0.0001, and the effect sizes (SMD) and
heterogeneity measures (tauˆ2, tau, Iˆ2) were relatively stable. The
pooled estimate, representing the overall effect of DBS on chronic
pain relief, remained statistically significant with a p-value <0.0001.
The SMD, 95% CI, and heterogeneity measures (tauˆ2, tau, Iˆ2)
were consistent with the original analysis. Overall, the sensitivity
analysis suggests that the findings of the study are robust. Omitting
individual studies did not significantly alter the overall results or
conclusions regarding the effectiveness of DBS for chronic pain
relief (Supplementary Figure 3).

4 Subgroup analysis

4.1 Study designs

The subgroup analysis of DBS specifically targeting chronic
pain (DBS-P) revealed different subgroups based on study design.
Among the subgroups, the observational studies-P subgroup (2
studies) showed an SMD of 0.71 with a 95% CI of [−1.24; 2.67],
indicating a moderate effect size. The cohort-P subgroup (6 studies)
demonstrated a higher SMD of 1.9087 with a narrower CI of [1.18;
2.63]. The RCT-P subgroup (2 studies) displayed a lower SMD
of 0.92 with a wide CI of [−3.45; 5.29], suggesting substantial
heterogeneity. The non-RCT-P subgroup (12 studies) had the
largest effect size of 2.3298 and a relatively narrow CI of [1.63;
3.02]. The cohort-O subgroup (12 studies) had an SMD of 1.74
and a CI of [1.24; 2.24]. The remaining subgroups, observational
studies-O, non-RCT-O, RCT-O, and non-RCT, each had only one
study, and their effect sizes ranged from 0.23 to 1.20. The tests
for subgroup differences indicated significant heterogeneity among
the subgroups (Q = 33.41, df = 8, p < 0.0001), suggesting that the
effectiveness of DBS for chronic pain varied across different study
designs (Supplementary Figure 4).

4.2 Pain diseases

The results suggest varying levels of evidence for the
effectiveness of DBS across different pain subgroups. The subgroup
of facial neuropathic pain (P) and traumatic pain (P) showed
strong evidence for a significant effect, with SMDs of 2.85 (95% CI:
0.43 to 5.27) with a moderate tauˆ2 value of 2.35 and substantial
heterogeneity (I2 = 75.8%), and 2.77 (95% CI: 1.05 to 4.48) with
tauˆ2 = 1.55 and Iˆ2 = 79.3%, respectively. The subgroup of
chronic cluster headache (P) presented weak evidence, with an
SMD of 0.0809 (95% CI: −0.64 to 0.80) with low heterogeneity
(tauˆ2 = 0.1246, Iˆ2 = 43.8%). The subgroups of post-stroke pain
(P), dystonic pain (O), and PD-related pain (O) exhibited moderate
evidence, with SMDs of 0.37 (95% CI: −2.31 to 3.07) with higher
heterogeneity (tauˆ2 = 3.5450, Iˆ2 = 93.7%), 1.33 (95% CI: 0.40 to
2.26) with tauˆ2 = 0.58 and Iˆ2 = 79.9%, and 1.50 (95% CI: 1.05 to
1.94) with tauˆ2 = 0.62 and Iˆ2 = 88.2%, respectively. The test for
subgroup differences was statistically significant (Q = 16.18, df = 5,
p = 0.0063), indicating that the effectiveness of DBS varies among
different pain subgroups (Supplementary Figure 5).

4.3 Brain targets

Deep brain stimulation primary for treating chronic pain
(DBS-P) analysis: The subgroup analysis revealed variations in
the effect sizes of DBS targeting different brain nuclei for the
treatment of chronic pain. The subgroup with the largest effect
size was the ventral posterior lateral (VPL) thalamus, with an
SMD of 2.74 (95% CI [0.70; 4.78]) with high heterogeneity
(tauˆ2 = 1.86, Iˆ2 = 85.7%), indicating a large treatment effect. The
subgroups of anterior cingulate cortex (ACC) and PAG also showed
significant effects, with SMDs of 2.98 (95% CI [1.90; 4.06]) with low
heterogeneity (tauˆ2 = 0.2265, Iˆ2 = 31.7%), and 2.08 (95% CI [1.46;
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FIGURE 1

Forest plot, illustrating the significant effect of DBS on chronic pain and the substantial heterogeneity observed among the included studies.

2.71]) with no observed heterogeneity, respectively, suggesting
moderate to large treatment effects. On the other hand, the ventral
tegmental area (VTA) and periaqueductal/periventricular gray
matter region (PVG and PAG) subgroups demonstrated small and
non-significant effects, with SMDs of 0.0809 (95% CI [−0.64; 0.80])
with low heterogeneity (tauˆ2 = 0.12, Iˆ2 = 43.8%) and 0.9176 (95%
CI [0.29; 1.54]) with no observed heterogeneity, respectively. The
subgroup of PVG and VPL had a wide confidence interval and
substantial heterogeneity (tauˆ2 = 6.49, Iˆ2 = 56.1%), making the
treatment effect uncertain.

Deep brain stimulation for other indications (DBS-O)
analysis: The globus pallidus internus (GPi) subgroup exhibited a
moderate effect size (SMD = 1.56, 95% CI [0.77; 2.35]) with high
heterogeneity (tauˆ2 = 0.51, Iˆ2 = 80.3%). The largest subgroup,
subthalamic nucleus (STN), demonstrated a moderate effect size
(SMD = 1.3425, 95% CI [0.89; 1.78]) with high heterogeneity
(tauˆ2 = 0.53, Iˆ2 = 87.1%). The test for subgroup differences
indicated significant heterogeneity between the subgroups
(Q = 30.27, df = 7, p < 0.0001), suggesting that the treatment

effects varied significantly among the different DBS nucleus target
subgroups Figure 2.

4.4 Meta-regression analysis

4.4.1 Age meta-regression
The meta-regression analysis examined the relationship

between age and the effectiveness of DBS for treating chronic
pain. The analysis included three subgroups: overall (k = 42), DBS
primary for treating chronic pain (DBS-P) (k = 24), and DBS for
other indications (DBS-O) (k = 18), F (df1 = 1, df2 = 40) = 0.13,
p-val = 0.71.

4.4.1.1 Overall analysis of age meta-regression

The test of moderators for age as a predictor was not significant
(p = 0.71), suggesting that age did not significantly moderate
the effectiveness of DBS for chronic pain. The estimated amount
of residual heterogeneity (tauˆ2) was 23.45, indicating significant
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FIGURE 2

Deep brain stimulation (DBS) brain target nuclei subgroup analysis.

heterogeneity among the studies. The Iˆ2 value was 99.78%,
indicating that most of the variability in the effect sizes was due
to heterogeneity. The test for residual heterogeneity was highly
significant (p < 0.0001).

4.4.1.2 DBS primary for treating chronic pain (DBS-P)
analysis

The test of moderators for age as a predictor was not significant
F(df1 = 1, df2 = 22) = 1.1608, (p = 0.29), indicating that age did not
significantly moderate the effectiveness of DBS-P for chronic pain
The estimated amount of residual heterogeneity (tauˆ2) was 43.86,
indicating considerable heterogeneity among the studies. The Iˆ2
value was 99.81%, indicating a high proportion of variability in
effect sizes due to heterogeneity. The test for residual heterogeneity
was significant (p < 0.0001).

4.4.1.3 DBS for other indications (DBS-O) analysis

The test of moderators for age as a predictor was not significant
F(df1 = 1, df2 = 16) = 0.04, (p = 0.83), indicating that age
The estimated amount of residual heterogeneity (tauˆ2) was
1.46, indicating some residual heterogeneity among the studies.

The Iˆ2 value was 97.33%, suggesting a substantial proportion
of variability in effect sizes due to heterogeneity. The test for
residual heterogeneity was highly significant (p < 0.0001). did not
significantly moderate the effectiveness of DBS-O for chronic pain
Figure 3.

4.4.2 Pain duration meta-regression
The results of the meta-regression analyzing the effect of pain

duration on DBS for treating chronic pain indicate limited evidence
of a significant association. The overall analysis, including 37
studies, showed no significant relationship between pain duration
and DBS effectiveness F (df1 = 1, df2 = 35) = 0.0028 (p = 0.95). The
DBS primary subgroup analysis, comprising 19 studies, also found
no significant association F(df1 = 1, df2 = 17) = 0.07 (p = 0.79), The
DBS-O subgroup, consisting of 18 studies, demonstrated a weak
but significant positive association between pain duration and DBS
effectiveness (p = 0.74), F(df1 = 1, df2 = 16) = 0.10. However, it
should be noted that the amount of heterogeneity accounted for was
minimal across all analyses, indicating that pain duration explains
only a small proportion of the variability in DBS outcomes for
chronic pain Figure 4.
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FIGURE 3

Age meta-regression analysis.

5 Discussion

5.1 Summary of findings

The current literature does not provide a clear consensus on the
optimal use and effectiveness of DBS for chronic pain. This meta-
analysis represents the first comprehensive investigation into the
effects of DBS on chronic pain. To the best of our knowledge, no
prior meta-analyses have examined the impact of DBS on chronic
pain, whether it was utilized as a primary treatment modality or
in conjunction with DBS for other medical conditions. The results
revealed a significant effect of DBS-P on chronic pain, with SMD of

1.65 and a 95% CI of [1.31; 2.00]. However, notable heterogeneity
among the studies was observed, as reflected by high Iˆ2 values
and significant Q-values. This heterogeneity can be attributed to the
diverse brain targets selected for DBS application, as evident from
the subgroup analysis based on brain target grouping.

Subgroup analyses based on study designs exhibited different
effect sizes for DBS-P. Observational studies-P demonstrated
a moderate effect size, while cohort-P and non-randomized
controlled trials (non-RCT)-P subgroups showed larger effect sizes.
The randomized controlled trials (RCT)-P subgroup exhibited
substantial heterogeneity. The observed differences in effect sizes
between RCTs and observational or cohort studies highlight the
importance of study design in accurately capturing the effectiveness
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FIGURE 4

Pain duration meta-regression analysis.

of DBS for chronic pain. This suggests that the more rigorous
design of RCTs may provide a more accurate representation of
DBS effectiveness. The marked difference in effect sizes between

RCTs and non-RCTs underscores the potential limitations of non-
randomized studies in truly representing the effect. It is imperative
for readers and clinicians to approach the findings of non-RCTs
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with caution, bearing in mind the potential biases and confounders
that might inflate or diminish the observed effects.

In the meta-regression analysis, the relationship between age
and the effectiveness of DBS for chronic pain was explored. The
results suggest that age is not a significant factor in determining
the effectiveness of DBS for treating chronic pain in both DBS-P
and DBS-O analyses. Also, the results show that DBS can be an
effective treatment for some types of chronic pain that are resistant
to other therapies. The meta-analysis also assessed the effectiveness
of DBS across different pain subgroups. Facial neuropathic pain
and traumatic pain showed strong evidence of a significant effect,
while chronic cluster headache presented weak evidence. Post-
stroke pain, dystonic pain, and PD-related pain demonstrated
moderate evidence.

Regarding the meta-regression analyzing the effect of pain
duration on DBS for chronic pain, limited evidence of a significant
association was found. The overall analysis and the DBS-P
subgroup analysis did not find a significant relationship, while
the DBS-O subgroup showed a weak but significant positive
association. Our study adds to the current literature complexity
by revealing that pain duration may not reliably predict DBS
outcomes. In our meta-regression analysis, we investigated the
impact of pain duration on the effectiveness of DBS in treating
chronic pain. However, the results indicate a scarcity of substantial
evidence supporting a significant association between these
variables. Both the overall analysis and the primary subgroup
analysis focusing on DBS revealed no significant relationship
between pain duration and DBS effectiveness (p = 0.95 and p = 0.79,
respectively). Nonetheless, in the DBS-O subgroup analysis, we
observed a weak but significant positive association between
pain duration and DBS effectiveness (p = 0.74); however, this
association only accounted for a small proportion of the variability
in DBS outcomes.

The findings demonstrate that DBS applied to various brain
nuclei has differing effects on chronic pain. Notably, the VPL, ACC,
and PVG and PAG emerged as the most effective targets, exhibiting
substantial or moderate treatment effects with significant SMD
between the DBS and control groups. These targets are implicated
in both the sensory-discriminative and affective components of
pain perception (Frizon et al., 2020; Li et al., 2020). Conversely,
the VTA and the combination of PVG and PAG displayed limited
effectiveness, with small or non-significant effects. The VTA,
being part of the reward system, may not directly contribute to
pain modulation (Li et al., 2020). Furthermore, the combined
stimulation of PVG and PAG may not be optimal due to the distinct
roles these regions play in pain processing, potentially necessitating
different stimulation parameters (Frizon et al., 2020). Regarding
other targets, such as GPi, STN, and PVG and VPL combination,
moderate effects were observed; however, high heterogeneity and
wide confidence intervals indicate variability and uncertainty in
treatment outcomes. These targets primarily participate in motor
control and may exert indirect influences on pain by modulating
movement disorders like dystonia (Rodrigues et al., 2019; Frizon
et al., 2020; Fan et al., 2021).

DBS has been used for the treatment of chronic pain since
the early 1970s, but it remains off-label in the United States
and its indications are contested (Falowski, 2015). This technique
has the capacity to modulate the activity of neural circuits
associated with pain processing and perception (Falowski, 2015;

Prosky et al., 2021; Alamri and Pereira, 2022). Although the
precise mechanism underlying the pain-relieving effects of DBS
remains incompletely understood, it is believed to involve various
factors. These include the alteration of the balance between
inhibitory and excitatory neurotransmitters within pain pathways,
the reduction of activity in nociceptive signal-transmitting neurons,
the enhancement of endogenous opioid systems responsible for
mediating analgesia (Prosky et al., 2021; Alamri and Pereira,
2022), and the modification of emotional and cognitive aspects of
pain such as anxiety, depression, and catastrophizing (Falowski,
2015; Prosky et al., 2021; Alamri and Pereira, 2022). The effects
of DBS on chronic pain relief may vary depending on the
specific brain target utilized. Some common targets include the
sensory thalamus (ST), (ventral posterior lateral and ventral
posterior medial), which is primarily associated with sensory-
discriminative pain aspects such as location, intensity, and quality
(Falowski, 2015; Prosky et al., 2021; Alamri and Pereira, 2022). the
periaqueductal gray and periventricular gray matter, involved in
descending pain modulation and endogenous opioid release; and
the ACC, implicated in affective-motivational pain aspects such as
unpleasantness, suffering, and coping (Falowski, 2015; Prosky et al.,
2021; Alamri and Pereira, 2022).

5.2 Meta-analysis limitations

This meta-analysis represents the first comprehensive
examination of deep brain stimulation (DBS) effectiveness in
treating chronic pain. It encompasses various indications for DBS
use, brain targets for stimulation, and potentially influential factors
such as patient age and pain duration.

However, it is important to acknowledge the limitations of
this study. Firstly, significant heterogeneity was observed among
the included studies, as indicated by high Iˆ2 values. This
heterogeneity may arise from variations in patient characteristics,
study designs, DBS techniques, and outcome measures employed
across different studies. The presence of heterogeneity may restrict
the generalizability of the findings and limit the ability to draw
definitive conclusions. Secondly, due to ethical considerations,
there was a lack of control group standardization. Implementing
a sham or controlled procedure in patients who are already
experiencing illness presents ethical challenges. As a result, it
was not feasible to establish a standardized control group for
comparison. This limitation needs to be taken into account when
interpreting the study’s results. Hence, the study emphasizes the
need for additional research especially RCTs to improve treatment
results and better understand the patient-specific factors linked to
treatment response.

6 Conclusion

The meta-analysis reveals a significant positive effect of DBS
in reducing chronic pain. Subgroup analysis indicates a larger
effect size in the DBS-P group compared to DBS-O, with varying
effects based on study design, showing the most substantial effect in
the non-RCT-P subgroup. Age did not significantly moderate the
effectiveness of DBS. Strong evidence supports DBS effectiveness
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in facial neuropathic pain and traumatic pain subgroups,
while weak evidence is found for chronic cluster headache.
Pain duration did not significantly impact DBS effectiveness.
VPL demonstrated the largest effect among different brain
targets, with significant heterogeneity observed. These findings
contribute valuable insights into DBS’s utility for chronic
pain, emphasizing the need for further research to optimize
outcomes and identify patient-specific factors influencing
treatment response.
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