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Brain-computer interfaces (BCI) that directly decode speech from brain activity 
aim to restore communication in people with paralysis who cannot speak. Despite 
recent advances, neural inference of speech remains imperfect, limiting the ability 
for speech BCIs to enable experiences such as fluent conversation that promote 
agency – that is, the ability for users to author and transmit messages enacting 
their intentions. Here, we make recommendations for promoting agency based on 
existing and emerging strategies in neural engineering. The focus is on achieving 
fast, accurate, and reliable performance while ensuring volitional control over 
when a decoder is engaged, what exactly is decoded, and how messages are 
expressed. Additionally, alongside neuroscientific progress within controlled 
experimental settings, we argue that a parallel line of research must consider how 
to translate experimental successes into real-world environments. While such 
research will ultimately require input from prospective users, here we identify and 
describe design choices inspired by human-factors work conducted in existing 
fields of assistive technology, which address practical issues likely to emerge in 
future real-world speech BCI applications.
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Introduction

A speech brain-computer interface (BCI) that directly translates brain activity into speech 
has the potential to improve the quality of life and autonomy of people with paralysis who 
cannot speak (Branco et al., 2021; Vansteensel et al., 2022). However, the extent to which these 
benefits are realized in future applications will rest on how successfully a device promotes agency 
– that is, working through a speech BCI, users must have the ability to author and transmit 
messages that enact their intentions on the world (Goering et al., 2021).

What might the properties of such an agency-enabling device be? Relative to traditional 
BCIs that indirectly infer speech through visual cursor control or letter-by-letter using evoked 
response paradigms (e.g., P300 spellers), a BCI that directly decodes speech from cortical 
activity would be  efficient, and grant users more immediate access to the rich expressive 
capabilities of language. Indeed, evidence suggests that people with speech paralysis often prefer 
strategies that directly decode their speech attempts (Branco et al., 2021) and most desire to hold 
normal conversation, prioritizing qualities such as speed, reliability, and ease-of-use in an 
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assistive-communication device (Huggins et al., 2011; Nijboer et al., 
2014; Peters et al., 2015). Thus, our conception of a BCI that optimally 
promotes agency is one which generates speech outputs at a 
conversational rate by precisely and reliably decoding the dimensions 
of brain activity that represent information with communicative intent.

Unfortunately, achieving this ideal is nontrivial because neural 
inference of speech is currently imperfect. Our scientific 
understanding of both healthy and impaired language production 
remains incomplete, and current neural interfaces impose limits on 
the spatiotemporal resolution and signal-to-noise ratio of data, 
restricting our ability to observe linguistic processes in the brain that 
would enable robust real-time decoding (Shen et al., 2023). As a result, 
even the most successful speech BCIs to-date have not matched the 
speed and accuracy of natural spoken language (Metzger et al., 2023; 
Willett et al., 2023). Furthermore, the vast majority of existing research 
has been conducted within highly controlled laboratory settings, using 
artificial paradigms that decode predefined speech targets from 
known temporal epochs of activity. Ensuring that BCIs maintain the 
qualities necessary for promoting agency in real-world contexts will 
pose an even greater challenge. Given that neural inference is 
imperfect, trade-offs and design choices must be guided by human 
factors to ensure robust function as speech BCIs transition from the 
laboratory to less controlled environments.

To address these challenges, we  consider the neurobiological, 
linguistic, engineering, and human factors upon which the agency-
enabling capacities of a speech BCI depend, and we  provide 
recommendations to guide their development moving forward. 
We restrict our focus to clinical BCI applications aimed at restoring 
speech-based communication, and primarily consider intracranial 
recording modalities due to their demonstrated ability to facilitate 
real-time speech decoding from brain activity.

Ensuring volitional control over when 
speech is decoded, what information is 
decoded, and how it gets expressed

In order to precisely and reliably broadcast information, speech 
BCIs must first know when users intend to speak. Within those 
temporal windows, BCIs must know what signals to decode, 
translating only the dimensions of neural activity associated with 
communicative information. Finally, BCIs must know how users wish 
to convey this information and allow for the flexible expression of 
speech output. Below, we describe existing and emerging strategies 
that move toward these goals.

A speech BCI must detect the general temporal windows during 
which users intend to speak. To achieve this, recent BCI systems 
include a separate speech-detection module that functions prior to 
decoding speech content in order to identify the temporal onset and 
offset boundaries of intended speech (Kanas et al., 2014; Moses et al., 
2019; Dash et al., 2020; Moses et al., 2021). Rather than continuously 
engaging a decoder, we argue that such an approach is both efficient 
and can safeguard mental privacy. While erroneously detected speech 
events would degrade usability (e.g., by causing accidental exits from 
standby mode), studies have shown that highly accurate speech 
detection is attainable in real-time intracranial BCI systems. For 
example, (Kanas et  al., 2014) achieved 92% accuracy using time-
frequency representations of electrocorticographic (ECoG) data to 

classify voice-related activity. More recently, (Moses et al., 2021) used 
an artificial neural network to segment continuous ECoG data into 
probable speech events, resulting in the successful detection of 98% of 
word attempts. Thus, inclusion of a separate speech-detection module 
represents a feasible first step toward providing users with volitional 
control over BCI outputs.

Aside from the detection of speech-related windows, decoders 
must selectively read dimensions of activity corresponding to 
information that the user wishes to externalize. A critical consideration 
here is the specific level of the language-production hierarchy 
associated with the neural signals being decoded. It is well established 
that spoken language results from a series of hierarchically-organized 
neural processing steps (Hickok, 2012). An idea originates within a 
conceptual-semantic system, before moving through word-level 
(lemma), phonological, and articulatory processing stages that 
progressively transform abstract ideas into precise speech acts. In 
theory, BCIs may generate speech outputs by decoding activity 
corresponding to any stage within this linguistic hierarchy. For 
instance, recent fMRI work decoded meaningful language from high-
level semantic representations that reside across a highly distributed 
network of brain regions (Tang et al., 2023). In contrast, the majority 
of speech-BCI research has focused on decoding low-level articulatory 
and phonological signals within sensorimotor and auditory regions of 
the cortex (Martin et al., 2014; Herff et al., 2015; Ramsey et al., 2018; 
Anumanchipalli et al., 2019; Moses et al., 2021; Proix et al., 2022). The 
impact of these decoding strategies on user-agency become clear 
when we consider the extent to which the brain implements various 
levels of the linguistic hierarchy during behaviors that lack certain 
qualities – such as physical articulation or communicative intent – 
that characterize healthy spoken language.

In order to elaborate on these considerations, we first propose a 
standard terminology in reference to various speech-related behaviors. 
Healthy speakers produce what we refer to as overt speech. By contrast, 
in order to convey messages, BCI systems may require users with 
paralysis to engage with speech-decoders in two different ways. First, 
users may engage in attempted speech, involving a deliberate attempt 
to articulate. To the extent that residual control of the vocal tract 
muscles is retained, this may result in vocalization or silent (“mimed”) 
articulation. Second, users may engage without articulating, typically 
referred to in the literature as imagined speech. Importantly, despite 
the absence of articulation, imagined speech is by definition a 
volitional act with communicative intent. In contrast, we refer to all 
private processes – ones that lack both articulation and communicative 
intent – as internal speech. While terminology in reference to these 
behaviors has been inconsistent across the speech-decoding literature, 
we  stress the need for standardized nomenclature to facilitate 
collective empirical inquiry into their neural basis.

While overt speech, by definition, recruits representations across 
the language-production hierarchy (from conceptual-semantic to 
articulatory), the extent to which different representations are encoded 
during attempted, imagined, or internal speech is less clear. For the 
purpose of conferring agency, speech decoders must target 
representations that meet two distinct requirements. On one hand, to 
effectively restore speech to people with paralysis, including to those 
who are fully locked-in, decoders must target representations that 
remain sufficiently active even during attempted or imagined speech 
(when articulation is severely limited or absent). On the other hand, 
to safeguard mental privacy, decoders must target representations that 
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only remain active during attempted or imagined speech (when 
speaking is intended) and not during internal speech. The former 
requirement thus demands sensitivity to communicative dimensions 
of brain activity, while the latter requirement demands specificity to 
only those dimensions.

Let us first address the former requirement. Recently, researchers 
decoded meaningful sentences from articulatory representations 
during attempted speech in individuals with severe speech paralysis 
(Moses et al., 2021; Metzger et al., 2023). This demonstrates that – 
even in cases where articulatory control is heavily impaired – the brain 
continues to implement low-level speech-motor programs during 
deliberately attempted speech. A compelling further possibility is that 
– even in fully locked-in patients – deliberate speech attempts elicit 
articulatory representations that closely resemble those of healthy 
overt speech. Future work is needed to determine whether this is 
indeed the case. In contrast with attempted speech, it is likely that 
imagined speech recruits a distinct cortical pathway that largely 
circumvents speech-motor regions. Indeed, evidence from early 
imaging studies (Murphy et al., 1997; Shuster and Lemieux, 2005) as 
well as recent electrophysiological recordings (Proix et  al., 2022) 
suggest that articulatory representations are only weakly encoded 
during imagined speech. While this may be a particularly salient point 
for people with damage to speech-motor cortex, it remains unknown 
whether articulatory organization in these individuals returns as they 
gradually learn to use a speech BCI through adaptation and frequent 
usage, potentially in a rehabilitative manner. Additionally, alternate 
strategies that decode imagined speech from phonological (Brumberg 
et al., 2016) or somatosensory (Wandelt et al., 2022) representations 
have shown promise. In particular, a large body of research has shown 
that speech perception and imagery activate overlapping 
representations within auditory cortex (see Martin et al., (2018) for a 
review), suggesting that decoders trained on activity elicited during 
listening can be used to decode imagined speech (Martin et al., 2014). 
In sum, for the purpose of restoring speech to those with paralysis, 
low-level articulatory and phonological brain signals are a promising 
target for decoders.

Next, let us consider the requirement that decoders respect 
mental privacy. While the neural representation of internal speech 
remains poorly understood, we argue that such private thoughts 
are unlikely to be encoded within low-level regions associated 
with motor or sensory processing. As already discussed, 
articulatory signals are weakly encoded in the absence of a 
deliberate speech-motor goal (Proix et al., 2022). Given that these 
articulatory programs are not robustly implemented during 
(volitional) imagined speech, they are highly unlikely to 
be implemented during (private) internal speech. Nonetheless, it 
is critical for future work to compare the anatomical and 
functional organization of imagined versus internal speech in 
order to isolate the neural basis of communicative intent – a topic 
which has received no empirical neuroscientific attention to our 
knowledge. This issue is of growing importance, particularly in 
light of the fact that it is possible to decode speech from high-level 
semantic representations measured noninvasively (Huth et  al., 
2016; Tang et  al., 2023). The amodal nature of semantic brain 
signals allows for decoders that are highly domain-general – 
perhaps trained to decode during communicative acts but capable 
of reading speech during altogether non-communicative contexts 
(e.g., while watching a silent movie). Research must focus on 

whether and how semantic activity differentiates contexts in 
which intention to communicate is present versus absent.

Finally, the communication modality through which speech BCIs 
ultimately convey output has significant implications for agency and 
ownership of decoded messages. While text-based communication is 
an important modality for interfacing with digital technology, 
synthesis of speech-sounds directly from cortical activity could offer 
more naturalistic and expressive forms of communication that include 
linguistic dimensions, such as intonational prosody and syllabic stress 
patterns, in addition to merely the identity of speech tokens. 
Traditionally, an approach that incorporates these other dimensions 
has been challenging in people with paralysis because – in the absence 
of overtly produced output – the precise temporal alignment between 
neural activity and intended speech remains unknown. However, 
modern machine-learning methods that utilize temporal convolutions, 
data augmentation, and connectionist temporal classification (Moses 
et al., 2021; Metzger et al., 2022, 2023; Willett et al., 2023), alleviate 
this issue by enabling training and inference without precise 
alignment. These approaches thus offer potential to drastically 
improve the expressive capabilities of speech BCIs.

While the factors discussed so far are critical for providing 
volitional control, achieving a high-performance speech 
neuroprosthesis will ultimately require improvements in the neural 
inference of speech. Such improvements could be realized by better 
neural interface design, more advanced computational methods, and 
progress in our neuroscientific understanding of speech production. 
Intriguingly, improvements may also be  realized by introducing 
knowledge outside of users’ brain activity into the inference process, 
via the incorporation of language models.

Agential implications of incorporating 
language models into decoding pipelines

Linguistic sequences have statistical structure, such that the 
probability of possible future outputs are modulated by what came 
before. Language models (LMs), which have internalized this 
statistical structure by training on independent large language 
corpora, are being incorporated into real-time BCI pipelines to aid 
neural decoding. Currently, the operation of LMs within speech BCIs 
is analogous to an “autocorrect” function, seeking to improve neural 
inference either directly at the neural-decoding stage (Sun et al., 2020), 
retrospectively by interpreting decoded word probabilities such that 
final output sentences conform with highly probable sequences 
(Moses et al., 2021), or proactively by first generating a set of candidate 
continuations and then evaluating the most likely candidate 
conditioned on the neural activity that eventually occurred (Tang 
et al., 2023).

In essence, these approaches introduce knowledge outside of 
users’ brain activity into the inference process, potentially morphing 
a person’s intended message to conform with the statistical trends 
found within language corpora. Because of this, concerns have been 
raised that the incorporation of LMs into decoding pipelines may 
improve efficiency at the expense of user control (Maslen and Rainey, 
2021). While we agree with the principles motivating this concern, 
we highlight the need to consider use of LMs in the context of current 
speech-decoding capabilities. Given that neural inference of speech is 
inaccurate, the use of LMs serves to drastically improve the accuracy 
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of decoded outputs (Moses et al., 2021; Metzger et al., 2022). That is, 
relative to unaided neural decoding, the incorporation of LMs aligns 
decoded outputs more closely with users’ intended expression. So long 
as LMs provide such accuracy gains, the promotion of user agency will 
not necessarily involve constraining their use.

While we have considered the use of LMs as an “autocorrect” 
function within BCI pipelines, in principle, they may also be used to 
predictively generate output, analogous to an “autocomplete” function. 
Indeed, given that speed is a priority for prospective BCI users, some 
suggest that until speech can be decoded at fluent conversational rates, 
“developers should explore rate enhancement features… such as word 
and phrase prediction” (Peters et al., 2015). If LMs are used in such a 
way, it will be  necessary to decouple speed from accuracy, and 
consider the trade-off between efficiency and user control proposed 
by prior literature (Maslen and Rainey, 2021). The question of where 
a given speech BCI should sit along the speed-accuracy continuum is 
for individual users to decide, and must therefore be  made 
customizable and context-dependent in the design of BCIs. This is 
particularly necessary if certain “high-stakes” contexts (e.g., legal 
testimonies) require confidence in the veracity of decoded output, 
even if this comes at the expense of speed (Chandler et al., 2021). 
Flexibility along the speed-accuracy continuum is just one of many 
requirements that must be  met if speech BCIs are to successfully 
transition from experimental to real-world environments – a topic 
that we turn to next.

Bringing speech BCIs into real-world 
environments

As speech BCIs continue to advance in research settings, it is 
important to keep the primary clinical goal of this technology in focus: 
to improve autonomy and quality of life for patients who cannot 
speak. Therefore, in parallel with the continued scientific pursuit of 
fast, precise, and reliable speech BCIs, research must consider how to 
translate existing experimental successes into real-world settings in a 
manner that ultimately realizes those patient benefits.

To effectively achieve this transition, we argue that BCI developers 
should implement human-centered design (HCD) frameworks, 
soliciting input from those with acute needs and engaging with them 
in an iterative process of co-design (Boy, 2017). To our knowledge, no 
HCD work has been conducted specifically for speech BCIs, and 
we  strongly advocate for such future research. Additionally, BCI 
developers may consider design insights from existing assistive 
technologies (Hill et al., 2021). Specifically, commercial augmentative 
and alternative communication (AAC) devices already help many 
patients with physical disabilities to communicate (Beukelman et al., 
2007; Linse et al., 2018). These devices are designed to be user friendly 
and robust, and implement important features that facilitate agency, 
including the ability to personalize the voice of generated speech 
outputs and perform error-correction before finalizing outputs. 
Speech-language pathologists (SLPs) work closely with patients to 
customize AAC devices, tailoring decisions to each patient’s needs and 
capabilities. In turn, this improves adoption and reduces abandonment 
of AAC devices (Johnson et al., 2006). While these insights are not 
intended to replace the crucial user-perspectives that HCD research 
on speech BCIs would provide, they may nonetheless prove useful for 
practical implementations of speech BCIs in the future. In this section, 

we highlight three design elements that may promote agency in future 
real-world BCI applications: (1) maximally reliable control outputs, 
(2) error-correction capacity, and (3) communication customization.

Despite recent advances in speech BCI performance within 
research settings (Metzger et al., 2023; Willett et al., 2023), decoding 
is unlikely to reach the accuracy of spoken language in the near 
future. Therefore, speech BCI systems will need guardrails against 
generation of unintended outputs. One solution involves using 
maximally reliable and highly detectable signals as control signals for 
high-level command over the system. This is analogous to fail-safe 
mechanisms and multimodal-input options that are common in 
commercial AAC devices (Hurtig et al., 2019). A control signal could 
comprise any attempted command that reliably generates a salient 
signal. Although attempted speech can be used for this purpose, a 
non-speech motor attempt may be  preferable because its neural 
signature is known to be distinct from attempted speech (Penfield 
and Boldrey, 1937). Indeed, researchers have recently shown that 
attempted hand movements can be reliably decoded from the same 
brain implant that decodes speech while generating signals that are 
highly distinguishable from attempted speech (Metzger et al., 2022, 
2023). Other approaches may leverage residual physical capabilities 
instead of neural signals (e.g., eye gaze, foot movements, or 
unintelligible vocalizations). The identification of these control 
outputs should be tailored to – and developed in collaboration with 
– individual users. This mechanism may then be  used to access 
application-control menus, engage error-correction modes (see 
below), indicate the endorsement of messages in high-stakes 
scenarios (Chandler et al., 2021) and mitigate the overall risk of users 
losing control over BCI outputs in the event of inaccurate decoding. 
Additionally, as current speech BCIs rely on intracranial neural 
interfaces that cannot be physically switched on or off, this control 
mechanism could also be used to toggle the streaming of neural data 
or speech-decoding function on or off as desired.

Given that decoded speech is more error-prone than spoken 
language, there will likely be a need for error-correction capabilities, 
which is a common feature in traditional AAC devices (Thompson 
et  al., 2013). Many possible strategies exist for enabling error 
correction in speech BCIs. Again, these strategies must be developed 
and refined with input from prospective users. Possible strategies 
include: (1) Suggesting high-likelihood alternatives using the 
decoded probabilities from a classifier or beam-search algorithm, (2) 
Using attempted spelling or writing to correct individual letters 
(Willett et  al., 2021; Metzger et  al., 2022), and (3) Allowing the 
repeat of certain words and/or the entire utterance to aggregate 
probabilities across the multiple attempts for a refined prediction. 
Engagement of an error-correction process can be initiated by using 
the highly reliable signal discussed in the previous paragraph. For 
BCI systems that convey decoded messages as speech-sounds with 
low-latency, error-correction may prove more difficult, as decoded 
outputs may be generated contemporaneously with speech attempts, 
leaving no time for post-hoc correction. Such a case may require 
generation of an additional phrase to correct what was 
previously output.

Finally, customization over the communication parameters is an 
important consideration for promoting agency. In traditional AAC 
devices, users can customize various features of the communication 
interface, including keyboard layouts, the presence of autocomplete 
options, the vocabulary of the system, and the voice of the generated 
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speech (Moorcroft et al., 2019). Speech BCI users may benefit from 
similar customizations, including: (1) How adaptive they want the 
language model to be to their long-term communication patterns; (2) 
The relative weight that the language model carries during decoding; 
(3) Common high-utility phrases for reliable access; and (4) The voice 
of the speech synthesizer and, potentially, the face of a digital avatar 
to accompany synthesized speech output and further embody the user, 
both of which can be personalized (Metzger et al., 2023). Users may 
wish to customize these features independently or in consultation with 
SLPs, caregivers, and BCI support technicians.

Discussion

In summary, clinically relevant speech BCIs must afford volitional 
control over when and what is communicated through the device, and 
how exactly this is expressed. Language-modeling techniques are 
currently necessary to reach usable performance levels with existing 
approaches, but the rate of advancement of speech BCIs in recent 
years illustrates the need to consider how reliance on language models 
can affect agency. Moving forward, speech BCI research must look 
beyond the science and toward the ultimate needs of prospective users 
situated in everyday environments. We advocate for HCD approaches 
to achieve this. However, in this article we  have considered how 
insights from other domains of assistive technology could address 
practical issues that speech BCI users are likely to face in real-
world contexts.

While we  have largely focused on software implementations, 
advances in hardware will also continue to improve the agency-
promoting qualities of speech BCIs. Advances in neural interface 
design will yield better signal resolution (for increased performance), 
data transmission (for wireless data telemetry to enable fully 
implantable devices, reducing infection risks and daily setup effort), 
and portability (Weiss et al., 2019). In addition, in an increasingly 
digital world, the optional integration of speech BCIs with users’ 
personal devices (e.g., smartphones, laptops) would improve their 
autonomy, and provide expanded opportunities for social interaction, 
education, and employment (Zickler et al., 2009).
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