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Introduction:Volume conductionmodels of the human head are used in various

neuroscience fields, such as for source reconstruction in EEG and MEG, and for

modeling the e�ects of brain stimulation. Numerous studies have quantified the

accuracy and sensitivity of volume conductionmodels by analyzing the e�ects of

the geometrical and electrical features of the head model, the sensor model, the

sourcemodel, and the numerical method. Most studies are based on simulations

as it is hard to obtain su�ciently detailed measurements to compare to models.

The recording of stereotactic EEG during electric stimulation mapping provides

an opportunity for such empirical validation.

Methods: In the study presented here, we used the potential distribution of

volume-conducted artifacts that are due to cortical stimulation to evaluate

the accuracy of finite element method (FEM) volume conduction models. We

adopted a widely used strategy for numerical comparison, i.e., we fixed the

geometrical description of the head model and the mathematical method to

perform simulations, andwe gradually altered the headmodels, by increasing the

level of detail of the conductivity profile. We compared the simulated potentials

at di�erent levels of refinement with the measured potentials in three epilepsy

patients.

Results: Our results show that increasing the level of detail of the volume

conduction head model only marginally improves the accuracy of the simulated

potentials when compared to in-vivo sEEG measurements. The mismatch

between measured and simulated potentials is, throughout all patients and

models, maximally 40 microvolts (i.e., 10% relative error) in 80% of the

stimulation-recording combination pairs and it is modulated by the distance

between recording and stimulating electrodes.

Discussion: Our study suggests that commonly used strategies used to validate

volume conduction models based solely on simulations might give an overly

optimistic idea about volume conduction model accuracy. We recommend

more empirical validations to be performed to identify those factors in volume

conduction models that have the highest impact on the accuracy of simulated

potentials. We share the dataset to allow researchers to further investigate

the mismatch between measurements and FEM models and to contribute to

improving volume conduction models.
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1 Introduction

Volume conduction models of the head are widely

used for source reconstruction of electro- (EEG) and

magnetoencephalography (MEG) activity (Malmivuo and

Plonsey, 1995; Nunez and Srinivasan, 2006; Hansen et al., 2010),

and are used to understand and optimize the effects of electrical

(Neuling et al., 2012; Rampersad et al., 2014) and magnetic brain

stimulation (Janssen et al., 2013) applied intra- and extracranially

with transcranial electrical, deep brain, and magnetic stimulation

(tES, DBS, and TMS). Although there are numerous model

studies that quantified the accuracy of numerical approximations

of electric potentials (in the EEG case) and magnetic fields (in

the MEG case) by comparing different simulated models, there

are fewer studies that investigated differences between actual

measurements in humans and simulated potentials and fields

(Rush and Driscoll, 1968; Bangera et al., 2010; Huang et al., 2017).

Previous work shows that the accuracy of the potential resulting

from volume conduction models relies on a number of factors,

such as the geometrical representation of the model (Vorwerk

et al., 2014), the conductivity of the different tissues (Oostendorp

et al., 2000; Aydin et al., 2014), the representation of the sensors

(Pursiainen et al., 2012; Vermaas et al., 2020a), the representation

of the sources [e.g., dipoles (De Munck et al., 1988) or bipoles

(Vermaas et al., 2020b)], and the method used to solve the

mathematical problem [e.g., with analytical formulas (de Munck

and Peters, 1993; Zhang, 1995; Mosher et al., 1999), boundary

element methods (Fuchs et al., 2001; Oostenveld and Oostendorp,

2002; Akalin-Acar and Gençer, 2004; Kybic et al., 2005; Stenroos

and Sarvas, 2012; Makarov et al., 2020), finite difference methods

(Montes-Restrepo et al., 2013; Morales et al., 2018; Moridera et al.,

2021), and finite element methods (Marin et al., 1998; Schimpf

et al., 2002; Miinalainen et al., 2019)].

The geometrical, electrical, and numerical aspects of volume

conduction models are inherently interlinked. For example,

the BEM assumes the geometry to be comprised of nested

compartments with homogenous and isotropic conductivity,

resulting in a geometrical description of the boundaries between

compartments by triangulated surface meshes, where most BEM

implementations require the surfaces not to touch or intersect,

and where triangles should have a desired aspect ratio (Sun

et al., 2012). Another example is the assumption of white matter

conductivity being anisotropic, which limits the choice of the

numerical method to FEM or FDM. The specific link between

geometrical and electrical volume conduction model aspects is

exemplified by including high-resolution anatomical details in the

model, such as CSF, the compact and spongiform bone parts of

the skull, blood vessels, or the dura mater, which require the

geometrical description to have a spatial resolution that is high

enough to be able to assign the detailed conductivities (Engwer

et al., 2017; Piastra et al., 2018).

A strategy often adopted in validation studies that involve
computer simulations is to focus on one or two of these factors
and keep the remaining aspects fixed. In Nüßing et al. (2016), for

example, the geometry of the head model was kept constant and
the mathematical method to solve the forward problem was varied.

In Piastra et al. (2018), the numerical method and the source model

were changed, whereas the geometry was kept constant. In Vorwerk

et al. (2014), the geometrical description and the numerical method

were kept constant, and the conductivity profile was varied. Here,

we adopt the same strategy as, e.g., in Vorwerk et al. (2014),

keeping the identical geometry and numerical method, and explore

the effects of increasing the level of detail in the head model by

including more compartments with different conductivities. Going

beyond existing simulation studies, we empirically compared the

simulated potentials to measured potentials.

An interesting opportunity to empirically validate the

forward model accuracy is provided by stereotactic EEG (sEEG)

measurements during electric stimulation mapping, a technique

used in the pre-surgical evaluation of epilepsy patients. Electrical

stimulation mapping is essential for epilepsy surgery planning

(Ritaccio et al., 2018), where pharmaco-resistant epileptic patients

that are considered for resective surgery are implanted with

intracranial (sEEG or electrocorticography (ECoG) electrodes to

guide surgical resections of epileptiform tissue while sparing the

eloquent cortex. In particular, by detecting behavioral changes,

electrical stimulation is used to identify the epileptogenic zone

or to localize the eloquent cortex which is to be spared in the

subsequent resection. Electrical stimulation can also be combined

with simultaneous recording of brain activity, resulting in cortical

stimulation evoked potentials (CSEPs) that allow studying the

spread of the induced activity, similar to how transcranial magnetic

stimulation (TMS) evoked potentials are studied with scalp EEG

(Bonato et al., 2006; Conde et al., 2019).

In the current study, we challenged the commonly employed

strategy to improve volume conduction models based on the

comparison between one simulation to another simulation,

by validating volume conduction models using empirical data

recorded from sEEG during stimulation. Rather than looking

at the (biological) neuronal propagation of the activity of the

CSEPs, we used the (physical) spatial potential distribution of the

passively volume-conducted stimulation artifact. We compared the

measured potential to the simulated potential that was computed

with state-of-the-art FEM models based on the individuals’

anatomical CT and MRI data of three epileptic patients. We

investigate how the mismatch between recorded and simulated

potentials depends on the level of detail in the FEM model, i.e.,

tissue conductivity, and on the distance between stimulating and

recording sites.

2 Materials and methods

2.1 Ethics statement

Participants were recruited at the Guangdong Sanjiu Brain

Hospital. The placement of the depth electrodes and the cortical

stimulation were based solely on the clinical needs for the treatment

of the patients and were thus independent of the purpose of the

present study. This study did not add any invasive procedure

to the intracranial recordings. The MRI, CT, and sEEG were all

approved by the Ethics Committee of the School of Psychology,

South China Normal University (SCNU-PSY-2020-1-050), and

the Ethics Committee of Guangdong Sanjiu Brain Hospital. All

the participants gave their written informed consent prior to the

experiments in accordance with the Declaration of Helsinki.
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TABLE 1 Conductivity values (in S/m) of the three isotropic head models

created and used in this study, with five (5C), four (4C), and three

compartments (3C).

Tissue 5C
(S/m)

4C
(S/m)

3C
(S/m)

References

White
matter

0.14 – – Ramon et al., 2003

Gray matter 0.33 – – Ramon et al., 2003

Brain : 0.33 0.33 Ramon et al., 2003

CSF 1.79 1.79 – Baumann et al.,
1997

Skull 0.01 0.01 0.01 Dannhauer et al.,
2011

Scalp 0.43 0.43 0.43 Ramon et al., 2003,
Dannhauer et al.,
2011

The column (:) indicates that the compartment has been split, e.g., the brain compartment

divided between gray and white matter, while the dash (-) indicates that the relative

compartment has been neglected in the head model.

2.2 Participants and data acquisitions

This study used data recorded for pre-surgical evaluation

in three patients suffering from refractory epilepsy. The three

participants (referred to as s1, s2, and s3) were 18, 21, and 25 years

old. The three patients had 11, 9, and 15 semi-rigid multi-lead

electrode shafts implanted, respectively. The electrode shafts had a

diameter of 0.8 mm and contained 10–16 contacts that were 2 mm

wide and 1.5 mm apart, with a total of 146, 124, and 186 electrodes

per participant.

Intracranial sEEG recordings were conducted using

commercial video-intracranial monitoring systems (Nihon

Kohden). The data were bandpass filtered from 0.1 to 300 Hz and

sampled at 1,000 Hz, using a reference electrode located in the

white matter. During the CSEP recording procedures, around 40

electric stimulations were induced per patient in 20, 38, and 26

pairs of neighboring electrodes, respectively, while the sEEG signal

was recorded on all remaining contacts. The total recording time

was 17 m 15 s, 29 m 39 s, and 19 m 35 s, respectively.

Prior to the sEEG electrode implantation, T1 weighted spoiled

gradient-recalled (SPGR) MRIs were acquired with a 3T scanner

(GE Discovery MR750). Post-implantation CT images were

acquired with a Philips Brilliance 64 scanner. The MRI resolution

was 1.0 × 1.0 × 1.0, 0.5 × 0.5 × 0.5, and 0.5 × 0.5 × 0.5 mm for

participants 1, 2, and 3, respectively, and the field of view (FOV)

was 256 × 256 × 172, 390 × 435 × 418, and 374 × 424 × 377 for

participants 1, 2, and 3, respectively. The CT resolution was 0.5 ×

0.5 × 0.5 mm for all participants, and the FOV was 512 × 512 ×

368, 390 × 435 × 418, and 374 × 424 × 377 for participants 1, 2,

and 3, respectively.

2.3 Processing the sEEG data

All signal analysis was performed using FieldTrip (Oostenveld

et al., 2011). The sEEG data was high-pass filtered at 10

Hz, segmented around the stimulation moments, and baseline

corrected. Noisy channels were excluded following different

criteria: variance of the after-peak signal higher than 10 millivolts,

electrode positioned in the skull or scalp, and electrode close to or

involved in the stimulation. The sEEG data were subsequently re-

referenced to a bipolar montage (Allen et al., 1992), and the average

of the peaks occurring at the moment of the electric stimulations

was extracted.

2.4 Processing the anatomical MRI and CT
data

Each participant’s pre-implantation T1-weighted MRI scan was

coregistered with the post-implantation CT scan, using rigid affine

transformations derived from FSL’s FLIRT algorithm (Jenkinson

et al., 2002). The positions of sEEG electrodes were manually

identified on the CT scan using the procedure outlined in Stolk et al.

(2018). Some electrode contacts were located outside the brain and

therefore not used in further analysis.

The MRI and CT scans of each patient were used to construct

three individualized head models for each participant: a simple

three-compartment isotropic head model (3C), where scalp, skull,

and brain are included, a four-compartment isotropic head

model (4C), where the cerebrospinal fluid (CSF) is additionally

distinguished, and a more detailed volume conductor head model

with five isotropic compartments (5C), i.e., scalp, skull, CSF, gray

matter, and white matter.

To facilitate the segmentation procedure, the pre-implantation

T1-weighted MRI scan and post-implantation CT scan were

resampled so that the voxels of the anatomical data are cubic with 1

mm resolution. Furthermore, the images were truncated at 36, 30,

and 35 mm below the spinal cord opening of participants 1, 2, and

3, respectively, following the suggestions in Lanfer et al. (2012).

As the T1-weighted anatomical MRI provides poor contrast

to delineate the skull from the surrounding tissue, we segmented

the skull from the CT scan by thresholding the CT scan, keeping

the biggest connected components (performed in MATLAB),

manually deleting electrodes and CT artifacts, and, finally, applying

a smooth erode-dilate filter [performed in Seg3D (CIBC, 2016)].

The resulting skull geometry was closed, apart from the spinal cord

opening, and skull burr holes drilled during surgery were excluded

in the model.

The scalp, gray, and white matter compartments were

segmented from the T1-weighted MRI scan using the SPM12

(Penny et al., 2011) routine implemented in FieldTrip. Finally, a

series of binary operations was performed in Seg3D to combine

the volumetric masks deduced from the two segmentations. In

particular, the CSF compartment was constructed by subtracting

the dilated inner skull mask from the scalp, skull, and gray and

white matter masks. The dilation of the inner skull compartment

was necessary to remove artificial holes at both the outer and inner

skull interfaces generated by merging the skull segmentation from

the CT and the one from the MRI. Since no DTI scans were

acquired, we excluded the anisotropic conductivity tensors in the

model (Tuch et al., 2001; Aydin et al., 2017).

Once the masks were assembled, a 1 mm volumetric hexahedral

mesh was created (with a nodeshift of 0.3), resulting in∼3.5 million
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nodes and 3.5 million hexahedrons. For the three-compartment

(3C) and four-compartment (4C) head models, only the tissue

labels (and hence conductivities) were modified, while the mesh

remained the same as the one for the five-compartment (5C) head

model. The specific features of the three models are gathered in

Table 1.

2.5 FEM simulations

The FEM simulations computing the electric potential

difference distributions were performed using the DUNEuro

software (Schrader et al., 2021). As Pursiainen et al. (2012) and

Vermaas et al. (2020a) show that the spatial extent and geometry

of electrodes do not play a significant role, we modeled the sensors

as point-sensors. The stimulating electrode pairs were modeled as

point-dipoles located at the midpoints between the neighboring

anode and cathode.

2.6 Validation analysis/strategy

Figure 1 gives a schematic representation of the analysis

pipeline. We computed the absolute difference between measured

and simulated potentials for all combinations of the stimulation

electrode pairs and all recording electrode pairs. Since the electrical

stimulation pulse duration is only 0.3 ms and the sampling rate is

1,000 Hz (i.e., each sample represents 1 ms), the recording does

not capture the full temporal detail of the rising and falling flank

of the electrical stimulation and we were not able to retrieve the

actual peak amplitude of the stimulation artifact in the data. We,

therefore, determined a scaling factor that minimized the absolute

error between simulated and measured potentials, i.e., 200, for

all the participants and multiplied the simulated potentials by

this factor.

As we have around 30 stimulating electrode pairs which

were each recorded with about 150 electrode pairs (channels),

there are about 4,500 model simulations per participant and per

volume conduction model to be compared to their corresponding

measurements. We summarized the model errors over all

stimulation sites and all recording sites by computing the

cumulative distribution of the absolute differences between

measured and simulated potentials. In addition, we normalized

the absolute difference with the root mean square (RMS) over

time and channels of the preprocessed signal, thus obtaining a

relative difference between measured and simulated potentials. The

RMS values are ∼610, 332, and 96 µV , for participants 1, 2,

and 3, respectively. We investigated how the absolute and relative

difference between measured and simulated potentials depends on

the level of detail of the head model. In Figure 2, the absolute

cumulative distribution curve and the relative error are visualized

as boxplots.

Furthermore, we studied how the relative error depends on the

distance between stimulating and recording sites. To do so, we

computed the distances between stimulation and recording sites,

divided them into 5 mm bins, resulting in 9, 11, and 14 bins,

respectively for the three participants, and visualized boxplots of

the relative difference for each volume conduction model and for

each participant (Figure 3).

3 Results

3.1 Di�erence between measured and
simulated potentials for the three head
models and participants

For each of the participants and for each of the volume

conduction models we compared the measured potential to the

simulated potentials for all combinations of stimulation and

recording electrodes. Figure 2 shows the cumulative distribution

(in the percentage of the total number of stimulating-recording

electrode pairs) of the absolute error (top) and boxplots of the

relative error (bottom) difference between the measured and

simulated potentials in the three head models, i.e., 3C, 4C, and

5C, for the three participants, i.e., s1, s2, s3. From Figure 2 we

can see that in 80% of the stimulation-recording electrode pair

combinations, there is an absolute error of ≤5 (for s3), 15 (for s1),

and 35 (for s2) µV (Figure 2A), which corresponds to a relative

error with median values of less than 1, 2.8 and 2.4%, respectively,

(Figure 2B).

From Figure 2, we furthermore observe that the difference

between the three head models (3C, 4C, 5C; line thickness)

is considerably smaller than the difference between the three

participants (s1, s2, s3; line color). In general, there is hardly

any dependency of the error on the level of detail of the volume

conduction head model used in the FEM simulation, since the

cumulative distribution curves relative to 3C, 4C, and 5C are nearly

overlapping for most participants.

3.2 Dependance of the simulation errors
on the distance between stimulating and
recording sites

In Figures 3A–C, we used a boxplot to visualize the relative

error between measured and simulated potentials for different

distances (in mm) between stimulating and recording electrode

pairs, for the three head models and the three participants, i.e., s1,

s2, and s3, respectively. Furthermore, we showed histograms of the

distance distribution for each participant (gray bar plot on top of

the boxplots).

From Figure 3, we observe that the relative error depends on

the distance between the stimulating and recording electrode pairs.

In particular, we can see that in all three participants, the error is

very high for small distances and decreases for larger distances. For

participant 2 and, to a smaller degree, also for participant 1, we can

further notice that the relative error increases for distances larger

than 65 mm. This effect is not present for participant 3 (Figure 3C).

All in all, without considering the closest stimulating-recording

electrode combinations, i.e., the 0–5 mm bin, the medians

of the relative errors are below 15% for all of the three

participants. In particular, very low (2%) relative errors can be

found for stimulating-recording electrode distances between 35

and 45 mm. Note that the distance histograms are very different
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FIGURE 1

Schematic representation of the analysis pipeline. Following the collection of electrophysiological (sEEG) and anatomical (MRI and CT) data, the

sEEG analysis was performed to obtain the measured potentials (red box), and the volume conduction simulations were set up, starting from the MRI

and CT image processing, the electrode localization, and the source placement. Subsequently, the simulated potentials were computed (blue box)

and the measured and simulated potentials were finally compared (green box). The software tools used in each step are indicated.

among participants, which is not surprising considering that

each epileptic patient has an individualized electrode implantation

plan aligned with the clinical requirements and the suspected

epileptogenic zones.

4 Discussion

In our study, we found that increasing the level of detail

of the volume conduction head model only marginally improves

the accuracy of the simulated potentials, when compared to in-

vivo sEEG measurements of three epileptic patients undergoing

electric stimulation mapping. In 80% of the stimulation-recording

combination pairs, the relative error is around 10%; for stimulating-

recording electrode distances between 35 and 45 mm, the relative

error is 2%.

Many possible factors can explain why the difference among

patients is much larger than the differences among models. One

main difference lies in the different electrode implantation, the

positioning and the number of electrodes are individualized and

based on the collective assumptions of the epileptic network of the

patient. This means that not only the density of sampling but also

the within-tissue location of the electrodes are different. This can be

partially seen, for example, in the three gray bar plots of Figure 3.

Another possible explanation for bigger differences among

patients is the choice of fixed values for the conductivity profiles,

whose modeling represents, in our opinion, the most delicate

aspect to discuss. The standard approach used to include tissue

conductivity in the volume conduction model relies on the

MRI-based classification of the human head into a limited

number of compartments; whereas FEM allows each volume

element to have its own conductivity, we therefore only make

use of a limited number of conductivity values. On top of

this simplified compartmentalization, conductivity values are

typically assigned independent of the individual characteristics of

the participant. Moreover, template conductivity values are not

consistent throughout the literature (McCann et al., 2019). Finally,

there is no consensus on the method or technology that should

be used to deduce or estimate such values (Ferrée et al., 2000;

Verhoeven et al., 2015; Ranta et al., 2017; Acar and Makeig, 2022;

Altakroury et al., 2022).

In literature, several direct and indirect volume conduction

validation attempts have been carried out. In the pioneering

work of Rush and Driscoll (1968), for example, simulated EEG

potentials were tested both with a phantom, i.e., an electrolytic tank
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FIGURE 2

Absolute and relative errors per participant and head model. (A) Cumulative distributions in the percentage of the total number of

stimulating-recording electrode pairs of the absolute di�erence between measured and simulated potentials in the three head models, i.e., 3C, 4C,

and 5C, for the three participants, i.e., s1, s2, s3. The dashed vertical line represents 80% of the stimulation-recording combination pairs. (B) Boxplots

of the relative di�erence between measured and simulated potentials in the three head models, i.e., 3C, 4C, and 5C, for the three participants, i.e., s1,

s2, s3.

containing a human skull, and by comparison with in-vivo data

from within the brain of a monkey (Burger and Van Milaan, 1943)

and from the surface of a human head (Hayes, 1950). Given the

technology available nowadays, it would be interesting to repeat

such validation studies with, for example, 3D-printed phantoms

that more accurately mimic the complexity of human head tissues

(Avery et al., 2017; Zhang et al., 2017; Tsizin et al., 2018; Morales-

Quezada et al., 2019; Kuratko et al., 2022).

Both in our study and in Bangera et al. (2010), it is found that

increasing the level of detail of the volume conduction model does

not improve the accuracy of the iEEG forward simulations within

the skull compartment. Bangera et al. made use of stereo EEG

recordings of four epileptic patients to assess which level of detail

should be adopted in volume conduction modeling of the inner

skull head. Similar to our work, they computed FEM solutions in a

variety of headmodels with an increasing number of compartments

included in both isotropic and anisotropic models. Differently

from Bagera, where they restricted their claims to intracranial EEG

forward solutions accuracy, the overall goal of our study is to

have a critical eye on how the accuracy of forward simulations is

assessed in literature, independent of whether intra or extracranial

compartments are included in the model.

In a reciprocal sense (see, e.g., Vallaghé et al., 2008; Wagner

et al., 2016), validation conducted for transcranial electrical

stimulation (tES) simulations can be associated with and compared

to forward solutions validations. In Opitz et al. (2016), for

example, sEEG recordings during extracranial tES stimulations

were acquired and analyzed in monkeys and humans. In their

study, the focus is on assessing the intracranial amplitude of the

potential induced by tES, and did not study the effect of variations

in the volume conductor model, e.g. by varying the number of

compartments. In Datta et al. (2013), the attempt on characterizing

scalp voltages generated by tES to validate participant-specific

FEM models of current flow for clinical dose is presented. They
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FIGURE 3

Relative errors and distances. Boxplot of the relative errors in percentage between measured and simulated potentials in 3C (in blue), 4C (in orange),

and 5C (in green), for increasing distances between stimulating and recording electrode pairs, for participant 1 (A), participant 2 (B) and participant 3

(C). The gray bar plots on top of the boxplots are the histograms of the distances. Note the di�erent scaling of the y-axis.
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concluded that the FEM model accurately predicted the distinct

voltage distributions and correlated the induced scalp voltages with

current flow through the cortex, without directly validating the

model prediction of brain current flow.

In recent work of Huang et al. (2017), the influence of different

volume conduction head models is quantified in a tES/sEEG

validation. Despite multiple refinements in the head model, Huang

et al. (2017) did not find consistently that a more complex model

improves the simulation performance across the ten participants

analyzed in their work. Our findings are therefore also in line with

their conclusions.

One indirect way to validate volume conduction models is

to compare source reconstruction results with known intracranial

sources, in terms of source location, magnitude, and orientation. In

several studies (e.g., in Cohen et al., 1990; Murakami et al., 2016;

Mikulan et al., 2020; Unnwongse et al., 2023), such validation has

been performed without, nevertheless, studying the influence of the

forward model accuracy on the source reconstruction results. In

contrast, Leahy et al. (1998) performed such validation in a three-

layered human phantom, concluding that the influence of using a

realistic head model instead of a sphere for computing the forward

solution was found to be minimal on the location mismatch. In

addition, Gullmar et al. (2006) and Lau et al. (2016) made use of

in-vivo measurements of a rabbit implanted with actual dipoles

to study the influence of white matter anisotropic conductivity

(Gullmar et al., 2006), and skull defects (Lau et al., 2016), on

EEG (Gullmar et al., 2006), and MEG (Lau et al., 2016), source

reconstruction. Gullmar et al. (2006) found a strong influence of

the anisotropy on the magnitude in the forward as well as in the

inverse solution and on the orientation of dipoles in the inverse

solution. They concluded that source localization procedures in

animals will improve by including white matter anisotropy. In

Lau et al. (2016), the forward simulation of the MEG signals

reproduced the experimentally observed characteristic magnitude

and topography changes due to skull defects. They conclude that

detailed finite element head models can improve the localization of

brain function, specifically after surgery.

Despite our best efforts, there remains some model inaccuracy

that are related to data limitations. For example, partial volume

effects might lead to inaccurate brain structure quantification in

MRIs or electrode identification in CTs.

Moreover, there are features of the sEEG signal we cannot fully

take into account in our study due to limitations in recording

hardware. Both the onset and the offset of the pulse are affected

by capacitive filtering effects that last more than a millisecond.

As a result, the pulse (which has a duration of 0.3 ms) ends well

before the capacitive effect from the start has subsided. In addition,

since the sample period (1 ms) is longer than the pulse duration,

the recorded potential cannot be related directly to the stimulation

strength. As already mentioned, we, therefore, adopted a scaling

factor of 200 to fit the simulated potentials into the measured

potentials which compensates for the uncertain, but fixed, relation

between the stimulation strength and the average of the recorded

potentials. Since the technical features of the stimulation and

recording setup were the same for all participants, we believe it is

appropriate to assume the same scaling factor for all participants.

The scaling factor does not affect the main conclusion of this work,

since we would notice a consistent global rescaling of the error

curves and bars in Figure 2, but the relation between curves with

different head models would be untouched. We are nevertheless

planning to perform a similar study with higher sample rates and

longer pulse durations.

As to model inaccuracies, we know that assuming point-

like dipoles introduces modeling errors at small distances, see

Figure 3, which can be reduced if monopole models are adopted

instead. We recently developed a tool, i.e., FEMfuns (Vermaas

et al., 2020b), that is able to model monopolar sources in volume

conduction simulations, and we are planning to use it in the future.

Nevertheless, this inaccuracy does not explain why more detailed

head models do not lead to more accurate FEM solutions in our

study. We believe that a U-shaped behavior with a subsequent

descent slope might be present in all subjects, but only part of this

shape is visible given the electrode configuration, i.e., distance. In

all subjects, the errors are the highest for the smallest distances

and decrease until reaching a minimum at around 35-65 mm.

Subsequently, the errors are increasing again for higher distances,

describing a U-shape. What is visible for subjects 2 and 3 (and not

for subject 1) is that after around 95 mm for subject 2 and 75 mm

for subject 3, the errors are decreasing with higher distances. While

the U-shaped behavior of the errors in the vicinity of the sources

(i.e., dipolar vs monopolar source model) and in the proximity of

conductivity jumps (at higher distances) is clear, further analysis

is required to understand the behavior of the errors for further

higher distances.

Though they could only be important for intracranial recording

simulations, CSF shunting effects in the electrodes’ vicinity are

not sufficiently captured by our volume conduction model.

Similar to what is demonstrated in Vermaas et al. (2020a), more

accurate features of the electrodes, such as volumetric extent,

shape, and electrical properties, can be neglected since we are

looking at distances higher than the dimension of the electrodes

themselves. However, by not including the electrode structure, we

are neglecting a possible CSF layer that is around the electrodes

and relative shunting effects. During surgery, holes are drilled in

the skull and the electrode shaft is inserted into the brain, allowing

CSF to flow between the shaft and neighboring tissue.

There exist more sophisticated numerical methods to solve the

quasi-static approximation of Maxwell’s equations. Recently, for

example, the discontinuous Galerkin FEM (Engwer et al., 2017;

Piastra et al., 2018) was shown to alleviate modeling inaccuracies

that occur in head geometries when using classical FE methods,

e.g., so-called “skull leakage effects” for skull compartments with

a thickness in the range of the mesh resolution (Engwer et al.,

2017). Since we are focusing on the model accuracy in the inner

skull compartment, our study does not fall in the scenario where

the DG-FEM can be beneficial and therefore we do not expect

these numerical solutions to substantially improve the accuracy

in our study.

All in all, in the last decades, a lot of effort has been

directed toward improving volume conduction models in terms

of geometrical approximation (Vorwerk et al., 2014), source

representation (Riera et al., 2012; Gratiy et al., 2013) and

discretization (Haueisen et al., 1997; von Ellenrieder et al.,

2006), and numerical accuracy (Engwer et al., 2017; Miinalainen
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et al., 2019), each individually showing incremental improvements.

However, comparing the mismatch between measured and

simulated potentials found in our study, the improvements in FEM

models achieved in recent years that we were able to incorporate

in our forward models appear relatively marginal and result in a

limited accuracy compared to real data.

Considering our results, we feel that the commonly employed

strategy to improve volume conduction models based on the

comparison between one simulation to another simulation might

not be the most efficient, we rather might want to reorient and

channel more efforts toward actual measurements and empirical

validations. We believe that empirical validations are more likely

to reveal which aspects of the data, of the model assumptions

and/or methodological details have the most impact to improve

model potential distributions, for example, working with higher

resolution imaging data and model geometries, better use of

template anatomical models to deal with details that are too small

to be imaged, and improved approaches for conductivity estimation

such as Bayesian (Stahlhut et al., 2011) or deep learning techniques

(Rashed et al., 2020).

Finally, we share the dataset of this study to allow researchers

to shed new light on the reasons behind the high mismatch and to

contribute to improving volume conduction models.

5 Conclusions

From our empirical comparison of FEM volume conduction

model simulations with in-vivo measured sEEG potentials, we

conclude that even with state-of-the-art model, increasing the level

of detail of the volume conduction head model only marginally

improves the accuracy of the simulated potentials when compared

to the measurements. We argue that commonly employed methods

for validating volume conduction models that rely solely on

simulations should be supplemented with empirical validations

based on actual data, as these will highlight the volume conduction

model elements that have the greatest influence on the accuracy of

simulated potentials.
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