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Within the field of Humanities, there is a recognized need for educational
innovation, as there are currently no reported tools available that enable
individuals to interact with their environment to create an enhanced learning
experience in the humanities (e.g., immersive spaces). This project proposes
a solution to address this gap by integrating technology and promoting the
development of teaching methodologies in the humanities, specifically by
incorporating emotional monitoring during the learning process of humanistic
context inside an immersive space. In order to achieve this goal, a real-time
emotion recognition EEG-based system was developed to interpret and classify
specific emotions. These emotions aligned with the early proposal by Descartes
(Passions), including admiration, love, hate, desire, joy, and sadness. This system
aims to integrate emotional data into the Neurohumanities Lab interactive
platform, creating a comprehensive and immersive learning environment. This
work developed a ML, real-time emotion recognition model that provided
Valence, Arousal, and Dominance (VAD) estimations every 5 seconds. Using PCA,
PSD, RF, and Extra-Trees, the best 8 channels and their respective best band
powerswere extracted; furthermore,multiplemodelswere evaluated using shift-
based data division and cross-validations. After assessing their performance,
Extra-Trees achieved a general accuracy of 94%, higher than the reported in the
literature (88% accuracy). The proposed model provided real-time predictions of
VAD variables and was adapted to classify Descartes’ six main passions. However,
with the VAD values obtained, more than 15 emotions can be classified (reported
in the VAD emotion mapping) and extend the range of this application.
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1 Introduction

An emotion is a psycho-physiological process triggered by the

conscious or unconscious perception of an object or situation. This

process is associated with a broad range of feelings, thoughts, and

behaviors (Jarymowicz and Bar-Tal, 2006). The study of emotion

generation is pivotal, as it underpins the human experience,

influencing cognition, perception, and daily activities, including

learning, communication, and rational decision-making (Koelstra

et al., 2012; Mikhail et al., 2013).

Among the early descriptions of emotion, one is provided by

Descartes, which he described as passions in his work “The Six

Passions of Descartes.” For Descartes, the passions/emotions were

experiences of the body on the soul, who, applying his famous

method to moral philosophy, represented the problem of the

passions of the soul in terms of its simplest integral components,

distinguishing six different fundamental passions: admiration, love,

hate, desire, joy, and sadness (Descartes, 1649).

According to Descartes, admiration is understood as a sudden

surprise of the soul that makes it consider (carefully) objects

perceived as rare and extraordinary. This passion is directly related

to the search for knowledge and philosophical reflection; love can

be interpreted as the origin of the desire for union with someone

or something that seems to be convenient; hate leads or drives

to the rejection of something or someone; desire leads to an urge

of possessing something that is out of reach; joy manifests when

someone obtains that which they desire, while under a pleasant

situation; lastly, sadness is experienced when losing something

desired or during the experience of a painful situation (Descartes,

1649).

The study of emotion has evolved over the years. While

early definitions of emotions characterized them as bodily

phenomena, modern approaches also acknowledge a cognitive

component (Dixon, 2012). The concept of emotion has been delved

into both in the Humanistic and Scientific domains.

Carew and Ramaswami (2020) define the humanities as

encompassing all facets of human society and culture, including

language, literature, philosophy, law, politics, religion, art,

history, and social psychology. They underscore the importance

of establishing closer collaborations between specific scientific

domains, such as Neuroscience and the humanities. They posit

that these collaborations will be mutually enriching and usher in a

new era of profound and influential academic endeavors (Carew

and Ramaswami, 2020). Hartley and Poeppel (2020) contend that

advancements in theoretical, computational, neuroimaging, and

experimental psychology have enabled linguistics, music, and

emotion to emerge as central pillars of contemporary cognitive

neuroscience.

In education, the advancement of Humanities teaching

methodologies has been notably slower compared to other fields,

such as Science and Engineering (Manuel Cebral-Loureda, 2022).

This lag underscores the necessity of integrating technology into

the Humanities, given its potential to foster human flourishing

and enhance emotional education. Recent studies suggest that

immersive and interactive teaching environments can significantly

improve learning experiences and outcomes (Chih and Lin, 2014).

Moreover, the infusion of neuroscience principles into pedagogical

strategies is a burgeoning area of interest, with preliminary

results indicating promising potential for improved educational

experiences (Wilcox et al., 2021).

Developing research-based teaching approaches that combine

Neuroscience and Education can help implement immersive and

interactive systems for the teaching of Humanities. With this in

mind, the Neurohumanities Lab project emerges, which intends

to implement an immersive and interactive platform for the

education of humanities that allows users to interact with the

environment (the classroom) and fosters impactful, logical and

intuitive learning (Cebral-Loureda and Torres-Huitzil, 2021). The

idea behind the Neurohumanities Lab is to integrate a system

that can detect movements, actions, emotions, and physiological

and mental states through cameras and wearable biometric devices

to modify the classroom environment (e.g., through changes in

images, lighting, and sound). The proposal for this project is to

implement a real-time emotion recognition system using portable

Electroencephalography (EEG) that can be integrated into the

interactive platform of Neurohumanities Lab.

Our solution is both timely and fitting to address the outlined

challenge. It revolves around developing a real-time prediction

model for the previously mentioned emotions (admiration, love,

hate, desire, joy, and sadness) using brain signals as input. This

model is seamlessly integrated into the Neurohumanities Lab’s

interactive platform. This integration makes the platform an ideal

tool for educational innovation, offering students an immersive

experience. As they interact within this enriched environment, they

can explore and deepen their understanding of Humanities in a

classroom setting, which traditionally might not have had such

technological engagement. At the same time, students and teachers

can understand emotion generation during such experiences and

analyze them in context.

Central to our solution is the use of EEG signals.When properly

processed, these signals reveal features pivotal for classifying

the target emotions. The use of EEG in emotion recognition

is not novel; its efficacy has been demonstrated in previous

studies (Valenzi et al., 2014; Islam et al., 2021). Many studies suggest

that EEG signals provide enough information for detecting human

emotions with feature-based classification methods (Valenzi et al.,

2014). Others have shown that emotional processing in the brain

can be seen from the asymmetry in the brain activity recorded by

EEG (Brown et al., 2011).

Various models have been proposed in the intriguing journey to

understand and classify human emotions. One of the notable ones

is the Circumplex 2D model put forward by Rusell (1980). This

innovative model utilizes a two-dimensional approach, mapping

emotions based on Valence and Arousal. Valence measures the

emotion’s intrinsic appeal, determining whether it is perceived

as positive or negative. On the other hand, Arousal gauges the

level of excitement or intensity associated with the emotion.

However, the quest for deeper understanding did not stop there. A

subsequent, more intricate, 3D model known as Pleasure, Arousal,

and Dominance (PAD), or Valence, Arousal Dominance (VAD),

came to the fore (Islam et al., 2021). This model broadened the

horizon by incorporating these three elements. While Pleasure and

Arousal are reminiscent of Russel’s 2D model, adding Dominance

provides additional insight. Dominance delves into the realm

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1319574
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Blanco-Ríos et al. 10.3389/fnhum.2024.1319574

of control, assessing the extent to which an individual feels in

command of, or subdued by, a particular emotion (Islam et al.,

2021). This addition elevates the complexity of the model, shedding

light on the dynamic interplay between emotions and the sense of

power or submission they instill.

The EEG data acquisition process is characterized by several

factors: the number of electrodes/channels, electrode placement

system on the scalp (measurement of different brain regions), types

of stimuli, sampling frequency, and the device used for signal

acquisition. The International 10–20 electrode placement system is

commonly used for emotion recognition using EEG (Islam et al.,

2021).

The most fundamental and challenging task of recognizing

human emotion is to find the most relevant features that vary

with emotional state changes. The extracted EEG features for

shallow and deep learning-based emotion recognition methods

are the following: Time-domain features, which include statistical

features such as mean, median, standard deviation, mode, variance,

minimum, and maximum. The EEG frequency domain features

usually contain more relevant information. The main methods

are Power Spectral Density (PSD), Fast Fourier Transform (FFT),

and the Short Time Fourier Transform (STFT) (Lee et al., 2014;

Chaudhary et al., 2016). The Wavelet transform method of analysis

presents a good performance both in the time and frequency

domain (Mohammadi et al., 2017) and can be classified into two

types: Continuous Wavelet Transform (Bostanov and Kotchoubey,

2004) and Discrete Wavelet Transform (Islam et al., 2021). The

frequency domain approach was used for this work, focusing on

PSD analysis. PSD analysis is a widely used technique for examining

the power distribution of various frequency components in a

signal and allows us to gain insight into the underlying frequency

characteristics of the data. This approach enables the identification

of prominent frequency bands or patterns that may indicate specific

phenomena or attributes of the EEG signal. In addition, PSD

analysis allows for quantifying the relative power contributions of

different frequency components, providing valuable information

for further analysis and interpretation of the mental states of the

participants.

EEG-based emotion recognition systems reported in the

literature can be classified into two major groups: Deep machine

learning-based and Shallow machine learning-based systems. The

first one includes Convolutional Neural Networks (CNN), Deep

Neural Networks (DNN), Deep Belief Networks (DBN), Recurrent

Neural Networks (RNN), Bimodal Deep Auto Encoder (BDAE),

Voting Ensembles (VEn), as classifiers. On the other hand,

the second one includes Support Vector Machine (SVM), k

Nearest Neighbor (kNN), Random Forest (RF), Decision Tree

(DT), Multi-Layer Perceptron (MLP) (Islam et al., 2021). Deep

learning techniques are more effective than shallow learning-

based algorithms among a wide range of algorithms. However,

it may be noted that the SVM performs well in EEG-based

emotion. Whenever portability and simplicity are not required,

the multimodal data incorporating the other physiological signals

(e.g., heart rate, skin conductance, among others) can significantly

improve the performance of the emotion recognition system.

In this work, an evaluation of different classification algorithms

was implemented to obtain the most accurate model that classifies

the desired emotions through VAD estimations in real time. In

order to achieve this, a feature extraction, feature selection, and

model evaluation process was followed. The length of timewindows

for the real-time estimation was also included as a parameter when

evaluating the models.

Given the aforementioned background, this work describes

a real-time emotion recognition algorithm based on VAD

estimations for the prediction of the six Descartes’ passions.

Section 2 presents the details about the dataset used during

this work; Section 3 shows a detailed description of the data

analysis, feature extraction and selection, and model performance

evaluation; Section 4 presents the results of the implementation

and a detailed analysis of the variables and models, as well as the

specifics of the best predictive model. Finally, Section 5 presents a

discussion of the obtained results.

2 Materials

2.1 Datasets

A review on EEG-based emotion recognition algorithms using

deep and shallow learning techniques is presented in Islam et al.

(2021), analyzing 41 papers on this topic.Within those articles, 85%

use publicly open datasets; in the rest 15%, a self-generated dataset

was preferred. Among the 85% articles using publicly available

datasets, 61%, 7%, 2%, and 15% of the articles used: A Database

for Emotion Analysis using Physiological Signals (DAEP) (Koelstra

et al., 2012), The Shanghai Jiao Tong University (SJTU) Emotion

EEG Dataset (SEED) (Zheng and Lu, 2015), MAHNOB (Soleymani

et al., 2012) and other datasets, respectively. About 26% used the

images as stimuli, 23.8% used video, 17.5% used audio, 22.2%

used the existing dataset comprising a combination of physiological

and emotional data (Alarcão and Fonseca, 2019). The rest of

the 10.5% works exploited the emotional data related to games,

live performances, or life events. Among these works, different

researchers used a diverse range of frequency band-pass filters, and

among them, the 4–45 Hz is predominantly used (Lakshmi et al.,

2014).

2.2 DEAP dataset

One of the main areas where Human-Computer Interfaces

(HCI) are deficient is in the field of emotional intelligence. Most

HCI systems are unable to interpret information derived from

human emotional states and use it to prompt appropriate actions.

With this in mind, the article by Koelstra et al. (2012) describes a

multimodal dataset that aids in analyzing human affective states.

With this objective, the experiment was divided into two parts.

The chosen dataset used to train the model for this project was

the DEAP dataset (Koelstra et al., 2012). The first part consists

of a self-assessment where 16 subjects observed 120 1-min videos

and rated the three variables, Valence, Arousal, and Dominance, on

a discrete (1–9) scale. The participants self-rated this scale using

the Self Assessment Mannequins (SAM) (Bradley and Lang, 1994).

These three planes can be used to quantitatively describe emotion

with (1) Arousal, ranging from inactive (uninterested) to active

(excited); (2) Dominance, either feeling weak (without control) or
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empowered (in control); and (3) Valence, ranging from unpleasant

to pleasant, where sadness or stress are considered unpleasant and

happiness or excitement are considered as pleasant (Koelstra et al.,

2012). This dataset also contains an extra value not utilized in the

present study: Liking, which measures the extent of positive or

negative emotions linked with the given emotional state.

From 120 videos used, 60 were chosen semi-automatically using

the “Last.fm”music enthusiast website, which allows users to assign

tags to songs and retrieve songs assigned to those tags. In order to

select these songs, a list of emotional keywords, as well as inflections

and keywords, was used to generate a list of 304 keywords. For

each of these keywords, a corresponding tag was searched in the

“Last.fm” database, and the ten songs that were most often labeled

with this particular tag were selected. This criterion yielded a

total of 1,084 songs (from which 60 of them were selected for

the experiment). In order to choose these 60 songs, the valence-

arousal space was divided into four quadrants, and 15 songs

were manually selected for each quadrant. The quadrants are Low

Arousal/LowValence (LALV), LowArousal/High Valence (LAHV),

High Arousal/Low Valence (HALV), and High Arousal/High

Valence (HAHV) (Koelstra et al., 2012). In addition to those 60

videos, another 60 were manually selected (15 videos for each

quadrant).

For each of the selected (120) videos, a 1-min segment was

extracted for the experiment. Subjects were asked to watch each

video and provide a VAD rating. Based on the subjective rating

obtained from the volunteers, 40 videos were selected out of

the original 120 videos, where videos with the strongest ratings

and smallest variance were selected for the second part of the

experiment (Koelstra et al., 2012).

The second part of the experiment consists of 32 subjects who

watched 40 videos in a laboratory environment with controlled

illumination and rated through a self-assessment the familiarity of

the video on a discrete scale of 1–5 and the liking, arousal, valence,

and dominance on a continuous scale of 1–9. While the volunteers

were watching the videos, EEG and peripheral physiological signals

were recorded, and face video was recorded for 22 participants.

Peripheral physiological signals included in this experiment are

Galvanic Skin Response (GSR) and Photoplethysmography (PPG).

The database shows an in-depth analysis of the correlates

between the EEG signals from the subjects and the subjective

ratings given to each video in order to be able to propose a

new method for stimuli selection for emotion characterization,

providing a statistical analysis of the data obtained (Koelstra et al.,

2012).

2.3 NHLab functionality

The NeuroHumanities (NH) Lab’s immersive platform

integrates three primary functionalities: real-time emotion

recognition, movement detection, and brain synchronization,

which form the foundation of the proposed interactive platform.

The real-time emotion recognition functionality aims to

monitor and identify the emotions of individuals within the

platform’s space. This capability allows for real-time environmental

adjustments (colored lights, sounds, music) based on detected

emotions and physiological signals, ensuring a tailored experience

that aligns with the user’s current emotional state. The movement

detection functionality provides an interactive dimension to the

platform. It enables individuals to interface with the environment

using bodily movements and carry out interactive tasks such as

painting over a projected screen, selecting words from a projection,

and generating changes on images using facial expression

recognition. This interaction facilitates active participation and

increases user engagement, fostering a more effective learning

process. The brain synchronization function seeks to analyze the

synchrony between the brain activity of two users. By monitoring

the synchronization between EEG channels of both and comparing

it with their concurrent behaviors, insights into neural activity

related to different aspects of social interactions can be obtained.

By merging these three functionalities, the NH Lab’s immersive

platform offers a comprehensive educational experience that

incorporates real-time emotion monitoring, active user movement

interaction, and insights into brain synchronization.

2.4 Emotion classification model

The classification model used in this study is based on a 3D

model of emotion, which utilizes the VAD framework, shown at

Figure 1. This 3Dmodel represents a three-coordinate system, with

each coordinate corresponding to one of the VAD labels.

In order to obtain emotions based on the VAD values, a new

classification framework was created. Values between 1 and 3.6

were considered low and represented by −1 in the 3D model.

Values between 3.7 and 6.3 were considered as medium and

represented by 0. Values between 6.4 and 9 were considered high

and represented by 1 in the 3D model.

Coordinates were then obtained based on the relationship

between the three classes, where each class is associated with

a specific emotion. The 3D model of emotion used in this

study is based on both (Islam et al., 2021) and the six different

passions proposed by Descartes: admiration, love, hate, desire,

joy, and sadness. The emotions highlighted in Table 1 are selected

for classification in this work. This approach allows for the

classification and representation of emotions within the 3D model,

providing a framework for understanding and analyzing the

participants’ emotional responses.

3 Methods

3.1 Data preparation

A pre-processed subset of data was used from the

aforementioned DEAP Dataset to obtain the desired emotion

recognition model. The pre-processing consists of three main

steps: (1) downsampling the data from 512 to 128 Hz, (2) applying

a band-pass filter between 0.4 and 45 Hz, and (3) averaging the

data to the common reference. These files were then combined,

and the VAD values were extracted after applying the continuous

to discrete transformation explained in Section 2.4. The complete

methodological approach can be found in Figure 2, which consists

of searching through the best hyperparameters regarding PSD’s

window length, Machine Learning (ML) model, and helmet’s
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FIGURE 1

Three-dimensional VAD emotion model based on the work by Islam et al. (2021). Each VAD value had their unique direction and color: Arousal is
green and at the y-axis (upwards and downwards), Valence is blue and at the x-axis (leftwards and rightwards) and dominance is red and at the z-axis
(in and out). Additionally, Descartes’ emotions are colored in purple (Hate, Love, Admiration, Joy, Desire, Sadness), while others are colored in yellow.

8-channel configuration. This required a combination of both

categorical mapping and continuous VAD ratings, in addition to

discriminating according to the model’s testing dataset accuracy,

validated through a shift-based cross-validation approach

regarding the proposed intra-subject data split (60:20:20 when

considering training, validation, and testing).

The methodology in Figure 2 was parallel divided into

searching for the best parameters; on the left side, using categorical

mapping of discrete VAD ratings, the optimal PSD’s windows

length and ML model was selected using eight-fold shift-based

cross-validations on an intra-subject data split framework; while on

the right-side finding the eight mostly correlated channels for the

OpenBCI helmet with continuous VAD rating through a lobe-based

PCA, Pearson’s correlation coefficient and RF, thus subsetting from

the DEAP’s original 32 channels; finally, using the best parameters,

spectral features and indexes calculated, on which an optimal 34

features model was fitted. The shift-based cross-validations consist

of shifting the index in which the data is partitioned, thus adding a

+φ to it in order to change the whole distribution of the 18, 560

sample dataset for each subject. The PSD window selection can

be found at Section 3.3.1, the model selection at Section 3.5.1, 8-

channel configuration at Section 3.4.1, and PSD and indexes at

Section 3.3.2.

3.2 Preliminary model testing

In the initial stages of the project, a preliminary analysis

was performed to obtain a suitable machine-learning model for

extracting valuable insights from the EEG data. A comparative

study involved three well-established algorithms: the RF Classifier,

XGBoost, and the SVM. These models were selected based on

their known efficacy in handling high-dimensional data. For

the preliminary analysis, data with all the available channels

was used to train these models. Evaluation metrics, including

accuracy, sensitivity, and specificity, were then used to measure the

performance of each model. This foundational step was deemed

critical for guiding the subsequent feature and channel selection

procedures and validating them.

3.3 Feature engineering

3.3.1 PSD estimation
The pre-processed EEG data was segmented into 5-second time

windows to capture transient and evolving neural dynamics over

time. FFT was then applied to each segment, transforming the raw

time-domain EEG data into the frequency domain to obtain PSD

using the FFTProcessing function created by Xu (2018).

PSD values were segmented into five distinct frequency bands:

Delta (δ) [0.5–4 Hz], theta (θ) [4–8 Hz], alpha (α) [8–12 Hz], beta

(β) [12–30 Hz], and gamma (γ ) [30–45 Hz].

Selecting an optimal time window length for practical real-

time EEG analysis remains critical. A balance between precision

and computational speed is essential: while longer windows often

provide increased resolution and potential model accuracy, they

may compromise processing speed and real-time responsiveness.

On the other hand, shorter windows can facilitate rapid processing
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TABLE 1 Relation between the emotion and its coordinate system based

on the 3D model at Figure 1.

Arousal Valence Dominance Emotion

0 0 0 Neutral

0 0 1 Other

0 0 –1 Other

0 1 0 Desire

0 1 1 Other

0 1 –1 Satisfaction

0 –1 0 Other

0 –1 1 Pessimism

0 –1 –1 Other

1 0 0 Admiration

1 0 1 Other

1 0 –1 Other

1 1 0 Joy

1 1 1 Generosity

1 1 –1 Love

1 –1 0 Distressed

1 –1 1 Anxious

1 –1 –1 Hate

–1 0 0 Other

–1 0 1 Calm

–1 0 –1 Other

–1 1 0 Relaxed

–1 1 1 Overconfident

–1 1 –1 Relief

–1 -1 0 Sadness

–1 –1 1 Rejected

–1 –1 –1 Other

Emotions in bold are Descartes’ passions.

but might reduce precision. In order to address this balance, the

accuracy of VAD prediction was evaluated across different time

window lengths and identified an optimal window length. This

strategic decision underpins the reliability and efficiency of the

real-time implementation.

3.3.2 Frequency band ratios
To aid with the models’ performance, different frequency band

ratios were implemented for each channel,

Relaxation Index ( θ
δ
): this ratio accentuates the interplay

between the theta waves, linked with drowsiness or light meditation

states, and delta waves, associated with deep sleep and unconscious

processes (Machado et al., 2010). An elevated Theta/Delta ratio

often suggests a state of relaxation without lapsing into deep

unconsciousness, making it a valuable marker for assessing

relaxation in awake individuals.

Excitement Index ( β
α
): this ratio is served as an indicator of

attention and engagement. It is suggested by a higher ratio that

individuals are more alert and attentive, which can be interpreted

as excitement or heightened interest. In the context of the research

paper, the efficiency of advertisements at a population level was

predicted using this ratio, indicating that ads evoking higher

engagement, as measured by the beta/alpha ratio, are deemed more

effective (Kislov et al., 2023).

Mental Fatigue Index ( α
θ
): by examining the Alpha/Theta ratio,

signs of mental weariness can be observed. A predominant alpha

wave activity in relation to theta can signify a relaxed or idling

state of the brain, which, especially during tasks requiring sustained

attention, can indicate cognitive fatigue (Ramírez-Moreno et al.,

2021).

Engagement Index ( β
θ+α

): in order to represent the balance

of active cognitive processing vs. a more passive state, this ratio

is particularly crucial in contexts where the depth of cognitive

immersion or focus is under scrutiny. A high value suggests

robust cognitive engagement or alertness, paramount in activities

demanding continuous mental effort (Ismail and Karwowski,

2020).

3.4 Feature selection

3.4.1 Channel selection using PCA and RF
Among the crucial features of the real-time model, it is

noteworthy that the evaluated dataset includes data from 32 EEG

channels; however, the proposed real-time algorithm is intended

to be integrated into an 8-channel, dry-electrode OpenBCI system

(OpenBCI, New York, NY, USA) for a highly-portable, practical

implementation (Lakhan et al., 2019; Zhou et al., 2019). Many

studies have used only 8 channels to obtain EEG signals (Brown

et al., 2011; Mikhail et al., 2013; Valenzi et al., 2014; Zhou et al.,

2019). This 8-channel system allows the re-configuring of different

positions of electrodes around the scalp.

The channel selection was conducted to assess which are the

best 8 channels to use by the OpenBCI for the proposed emotion

recognition algorithm. Following this idea, channels were grouped

into their respective lobes and joined their data via dimensionality

reduction techniques; then, three RF models were fitted (one for

each emotion component) in order to assess lobe importance with

respect to a series of frequency bands.

Feature importance becomes quite challenging given the high

dimensionality of source features (32 channels · 5 frequency

bands = 160), and the vast amount of total samples (593, 920; 58

seconds of a video clip through a 0.125 seconds moving window,

58/0.125 = 464 samples for each 40 videos and 32 subjects, 464 ·

40·32 = 593, 920). Regressionmodels such as RF would be not only

slow due to high dimensionality, but slight differentiation between

features’ importance from one to another would be absent due to

using normalized relative importance, which gives each feature an

importance such that the sum of importance is equal to 1.

PCA was used to reduce the dimensionality of the

data; it was applied to source features regarding their
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FIGURE 2

Flowchart of the methodology followed in order to pre-process and process the DAEP dataset to obtain the best-performing model using the
optimal hyperparameters (PSD’s window length, ML model, 8-channel selection, spectral features, and indexes).

TABLE 2 Brain lobes and channels are assigned to each lobe regarding

brain anatomy; although some lobes have more channels than others,

PCA always reduced the dimensionality to k components.

Lobe Channels

Frontal Fp1, Fp2, F3, F4, F7, F8, Fz, AF3, AF4

Temporal T7, T8

Parietal P3, P4, P7, P8, Pz, PO3, PO4

Occipital O1, O2, Oz

Central FC5, FC1, C3, C4, FC2, FC6, Cz

Central-Parietal CP5, CP1, CP2, CP6

channel anatomical location, separated within the Frontal,

Temporal, Parietal, Occipital, Central, and Central-

Parietal lobes, for each frequency band, and subjects’

data. Table 2 shows which EEG channels were assigned to

which lobe.

The objective of applying PCA to the dataset is to gather

insights about the brain region whose features are most linearly

correlated to the target features, which would suggest a strong

relation. The calculation of the PCA first consists of the Singular

Value Decomposition (SVD) technique, which decomposes matrix

X into the matrix multiplication of three matrices U 6 VT , as in

Equation 1.

X = U · 6 · VT (1)

V has the unit vectors of the k components, represented in

Equation 2.

V =







| | |

c1 c2 · · · cn
| | |






(2)

V has n × k dimensionality, although we only require the first

component in order to compress all the channels’ vectors on each

lobe to a single vector. So for each V matrix calculated, when

considering the first component V1, for each lobe l and frequency

band b with respect to a subject s, the whole X data (consisting of n

samples by m channels), was transformed to a Z vector (consisting

of n samples by 1 dimension), thus leaving a unique vector of values

for each combination of l and b on a subject s. The computation can

be seen in Equation 3.

Zs,l,b = Xs,l,b · V1,s,l,b (3)

Pearson correlation coefficient is calculated for each subject

s as in Equation 4; afterwards, an average across S subjects was

calculated; variance between each subject’s data was thus reduced as

if PCA would be calculated on all complete data, features’ domain

between subjects would make PCA unstable, as the technique

assumes that the dataset is centered around the origin; where

zi represents each sample for each PCA l lobe and b frequency

band, while yi represents each sample for each e emotion VAD

component. Thus, a single mean absolute correlation coefficient is

calculated for each source feature, averaged among each subject’s

data. This coefficient was further used in order to determine which

channels are the most linearly correlated to the target emotion
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VAD, hence reducing the dimensionality of the whole dataset when

sub-setting the best lobes on a particular frequency band for each

emotion component.

r(l, b, e) =
1

S

S
∑

s=1

|
6(zi,s,l,b − zs,l,b)(yi,s,e − ys,e)

√

6(zi,s,l,b − zs,l,b)26(yi,s,e − ys,e)
2
| (4)

Once the most relevant lobes were found, an RF regressor

was used to determine feature importance, thus obtaining the best

8 channels using feature selection. The RF model from Sklearn,

a ML package from Python, contains the Gini importance (GI)

metric, which is the normalized total reduction of a given criterion

brought by each feature. On classification, it represents the number

of splits in a decision tree that used that feature within the RF

ensemble (Morales-Menendez et al., 2021); while on regression, it

uses the Mean Squared Error (MSE) criterion, which follows the

Euclidean norm, thus reducing the Euclidean distance between two

points in a given vector space (Candela-Leal et al., 2022) and giving

highest importance to the feature that reduced most variance.

The MSE criterion is shown in Equation 5, which is essential

when calculating GI in RF regression; the reduction of variance

is calculated by minimizing the squared difference between target

feature y and predicted target feature ŷ, based on the RF model.

The channel c, whose inclusion as a feature leads to the greatest

reduction of this criterion, will also exhibit the highest GI,

normalized across all channels C.

MSE(c, e) =
1

N

N
∑

i=1

(yi,e − ŷi,c,e)
2 (5)

GI was obtained for each subject’s data s and then averaged

across the total number of subjects S. Since RF is randomly

initialized, I iterations were carried out to generalize better and

ensure that a random initialization would not benefit a specific

feature (in which I = 10). Therefore, for each subject s, I RFmodels

with different random initializations were run, and GI was averaged

to obtain GI for a specific subject. Furthermore, each subject’s GIs

were averaged to obtain a global importance based on all subjects.

This aforementioned calculation is shown in Equation 6.

GI(c, e) =

(

1

S

)(

1

I

) S
∑

s=1

I
∑

i=1

GI(c, e)i,s (6)

Considering only the best band and lobe combination, the

criterion is computed for C channels (C = 32); hence, the

normalized feature selection criterion would be capable of detecting

slight importance changes between features. Three RF models, one

for each emotion e component VAD, would be fitted; thus, each

emotion component would have their best set of features, in which

Equation 7 must be satisfied.

C
∑

c=1

GI(c, e) = 1 (7)

Given that the three GI would have the same domain and

the same number of features, an Emotion Importance Index (EII)

was calculated in order to evaluate the overall importance of each

feature to the process of predicting E emotions, as in Equation 8,

hence proposing a more holistic approach on the feature selection

process of selecting the best 8 EEG channels.

EII(c) =
1

E

E
∑

e=1

GI(c, e) (8)

3.5 Model evaluation

3.5.1 Model selection
A range of metrics was adopted to identify the optimal classifier

model. Recognizing that a single metric might not fully capture

a model’s effectiveness, especially with varied data distributions,

two metrics were employed: accuracy and F1-Score. These metrics

were selected to offer a comprehensive understanding of model

performance and to ensure a reliable choice wasmade.Metrics were

calculated as in Aguilar-Herrera et al. (2021), where True Positives

(TP), TrueNegatives (TN), False Positives (FP) or type-I errors, and

False Negatives (FN) or type-II errors are used to build up these

metrics.

Accuracy: In the model selection process, accuracy was utilized

as a primary metric. Defined by the equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Equation 9 represents the ratio of correctly predicted

observations to the total observations. This measure assessed the

overall correctness of the model’s predictions.

F1-Score: Given the potential pitfalls of using accuracy alone,

especially in imbalanced datasets, F1-score was also employed for

further depth in evaluation (Equation 10). The metric represents

the harmonic mean of the positive predictive value, or precision

(Equation 11) and the true positive rate, or recall (Equation 12).

F1-Score = 2 ∗
Precision · Recall

Precision+ Recall
(10)

Where

Precision =
TP

TP + FP
(11)

And

Recall =
TP

TP + FN
(12)

This metric gives a more nuanced understanding of the model’s

performance on both the positive and negative classes.

By employing these metrics, a comprehensive understanding

of the performance of different classifier models was ensured,

allowing for a more informed model selection to be made. For

each of the VAD classes (Low, Medium, and High), a total of

five different classifier models were trained. Including three tree-

based classification models: Extra-Trees (ET), Random Forest
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FIGURE 3

Flowchart of the real-time emotion recognition implementation.

FIGURE 4

Testing the real-time application of the algorithm at the NeuroHumanities Lab at Tecnologico de Monterrey, Campus Monterrey.

FIGURE 5

Accuracy comparison of di�erent time windows (2, 4, 5, 8, 10 seconds), prior to the feature selection process, for each ML model averaged across
the three VAD components.
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(RF), XGBoost (XGB); as well as other models such as k-Nearest

Neighbor (kNN), Support Vector Classifier (SVC).

3.5.2 Feature importance selection
Once the model was selected, its performance was evaluated

over a range of feature subsets, specifically between 20 and 40

features. The optimal subset was identified based on the best

performance metrics. The feature importance function from scikit-

learn, applied using the ExtraTrees model, was utilized for this

assessment.

In tree-based models such as Extra-Trees, a feature’s

importance is determined by the frequency and depth of its

use for data splits across all trees (Olivas et al., 2021). A feature

frequently used and closer to the tree roots is considered more

crucial. The importance of a feature is typically calculated by

averaging the decrease in impurity, often quantified using the

Gini criterion, across all nodes where the feature facilitates a

split (Martínez et al., 2021). By aggregating over the ensemble of

trees, more robust and less biased feature importances are typically

achieved.

3.6 Real-time implementation

In this work’s final phase, the real-time application was

developed. Emotion recognition was achieved by integrating

insights derived from three distinct ML models. This methodology

was further enriched by including the three-dimensional emotion

model proposed by Islam et al. (2021).

Figure 3 shows the real-time pipeline implemented for the

EEG-based VAD estimation and thus detecting of Descartes’

passions.

The pipeline consists of retrieving EEG signals from an 8-

channel OpenBCI Ultracortex IV EEG helmet using a Cyton board.

Further, using 5-second data and pre-processing it according to

Section 3.1, features are created according to Section 3.3, further

subsetting the best features according to each VAD model, as well

as their respective prediction. Finally, the user received feedback

based on the VAD predictions and the 3D emotion model mapping

described in Figure 1. The OpenBCI Ultracortex IV EEG helmet

has a total of 35 possible node locations, with the default version

being FP1, FP2, C3, C4, P7, P8, O1, and O2. However, these

channels were used in the initial iteration of the project; these would

be further replaced with the optimal emotion recognition channels

regarding the channel selection results in Section 4.2.

On the other hand, the real-time use of the NH Lab platform

can be seen in Figure 4. In this platform, the user wears the

OpenBCI helmet, and the emotion recognition model identifies

in real-time one of the six Descartes’ passions. Depending on

the detected emotion, the lighting of the environment changes. A

camera, and a motion tracking algorithm are used to detect the

users’ movements that allow the generation of a painting on the

projected screen. The color palette of the visualization, as well as

sound effects and music related to the movement, are different

depending on the detected emotion.

Moreover, the participants wear an Empatica E4 (Empatica Inc,

Milano, IT), which measures Electrodermal Activity (EDA), Blood

Volume Pulse (BVP), three-axis acceleration, and temperature.

Empatica E4 signals are also acquired in real time. Changes in these

values are reflected in the system as well; for instance, the volume

of specific sounds related to the EDA (electrostatic noise) and BVP

(heartbeats) changes in accordance with increases/decreases of the

estimated engagement (via EEG).

TABLE 3 Mean absolute Pearson correlation coe�cients between the

emotion component and each lobe’s first Principal Component across

each subject.

fband Lobe Arousal Valence Dominance 6

δ

F 0.0472 0.0447 0.0422 0.1341

T 0.0511 0.0455 0.0436 0.1402

P 0.05 0.0435 0.0445 0.138

O 0.0438 0.0423 0.0426 0.1287

C 0.0511 0.043 0.0447 0.1388

CP 0.0456 0.0446 0.0406 0.1308

θ

F 0.0877 0.0795 0.0778 0.245

T 0.0954 0.0804 0.0785 0.2543

P 0.0971 0.083 0.0833 0.2634

O 0.0946 0.0762 0.0794 0.2502

C 0.0945 0.0783 0.0812 0.254

CP 0.0839 0.083 0.0773 0.2442

α

F 0.1146∗ 0.0686 0.0763 0.2595

T 0.1123 0.073 0.078 0.2633

P 0.1138 0.087 0.0845 0.2853

O 0.1233 0.0883∗ 0.0844 0.296

C 0.1182∗ 0.0828∗ 0.0836 0.2846

CP 0.1108 0.0815 0.08 0.2723

β

F 0.1642 0.0989 0.1065 0.3696

T 0.1684 0.0988 0.1183 0.3855

P 0.1894 0.1113 0.1184 0.4191

O 0.1797 0.1072 0.1094 0.3963

C 0.1788∗ 0.0985 0.1207 0.398

CP 0.1696∗ 0.1083 0.1084 0.3863

γ

F 0.1868∗ 0.1228 0.1176∗ 0.4272

T 0.188∗ 0.1226∗ 0.1327 0.4433

P 0.2005 0.1316∗ 0.1264 0.4585

O 0.2011 0.1295 0.1257 0.4563

C 0.1958 0.1178 0.1307 0.4443

CP 0.1783∗ 0.1281 0.1187 0.4251

∗p < 0.05 for > 95% of the subjects. F, frontal; T, temporal; P, parietal; O, occipital; C, central;

CP, central-parietal.

The highest values for Arousal, Valence, and Dominance are marked in bold, in addition to

the highest sum of VAD coefficients for each lobe. Statistically significant linearly correlated

for more than 95% of the subjects (31 out of 32 or 32 out of 32 subjects) are marked with a ∗ .
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4 Results and discussion

4.1 Time window selection

Using the standard OpenBCI channel configuration, PSD was

obtained over various time window lengths, ranging from 1 to

10 seconds. In order to determine the optimal window length,

the performance-to-time ratio was considered, especially since the

intended application was in real-time scenarios (Lozoya-Santos

et al., 2022). The results for time windows of 2, 4, 5, 8, and 10

seconds are presented in Figure 5.

Based on the results, different time windows have different

behaviors on each of the ML models. SVC has the lowest

performance, and the higher window size does not improve its

accuracy significantly. On the other hand, both XGB and kNN

have a steeper increase in accuracy according to the window

size length. Finally, both ET and RF exhibit similar behavior,

as a steep increase in accuracy is shown between 2- and 4-

second windows and follows a gentler increase in accuracy between

5-, 8-, and 10-second windows, thus following an asymptotic

behavior as it approaches perfect accuracy. From the results, the

5-second time window is promising for the final model since it

provided an average accuracy on the top-performing models of

96% at ET and 93% at RF, in addition to having no significant

improvements for the 8-second (98% ET, 96% RF) and 10-second

99% ET, 97% RF) windows. Therefore, given the positive accuracy

and the fast implementation it entails, the 5-second window

was selected.

FIGURE 6

Average GI topoplot for each channel, considering only γ frequency band (30–45 Hz) and fitting a separate RF model on Arousal, Valence, and
Dominance. EII was calculated by averaging GIs across emotion components as described in Equation 8.

TABLE 4 GI for each 32 EEG DAEP channel at their γ bandpower, ordered from highest to lowest importance according to EII.

Channel A V D EII Channel A V D EII

T7 0.0561 0.061 0.0586 0.0586 C4 0.0284 0.0302 0.0289 0.0292

T8 0.0527 0.0611 0.0534 0.0557 CP6 0.0292 0.0271 0.0299 0.0287

Fp1 0.0495 0.0523 0.0539 0.0519 P3 0.0292 0.0301 0.0268 0.0287

F7 0.0439 0.0435 0.0451 0.0442 CP5 0.0248 0.0294 0.0295 0.0279

FC5 0.0425 0.0433 0.0444 0.0434 PO3 0.0291 0.027 0.0256 0.0272

O2 0.0442 0.0429 0.0426 0.0432 C3 0.0311 0.022 0.0271 0.0267

P7 0.0374 0.0419 0.0371 0.0388 FC1 0.0242 0.0239 0.0283 0.0255

FC6 0.0439 0.0364 0.0359 0.0387 Pz 0.0273 0.0195 0.0265 0.0244

P8 0.0389 0.0382 0.0335 0.0369 F4 0.024 0.026 0.0216 0.0239

O1 0.0333 0.0334 0.0385 0.0351 PO4 0.0218 0.0211 0.0256 0.0228

Oz 0.0463 0.0299 0.0285 0.0349 FC2 0.0209 0.0182 0.0166 0.0186

F8 0.0349 0.034 0.0324 0.0338 CP1 0.0159 0.02 0.0188 0.0182

AF3 0.0281 0.0303 0.0377 0.032 P4 0.0154 0.0157 0.0178 0.0163

Fp2 0.0263 0.0417 0.0262 0.0314 Cz 0.0145 0.0184 0.0153 0.0161

AF4 0.0305 0.0255 0.0342 0.0301 CP2 0.0131 0.0135 0.0183 0.015

F3 0.0299 0.0292 0.0286 0.0292 Fz 0.0125 0.0134 0.0129 0.0129

GIs from this table were used in order to create the topoplot at Figure 6.
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4.2 Channel selection

According to the lobe regions defined in Table 2, Sklearn library

from Python was used to obtain the first component for each lobe

and spectral band combination (6 lobes · 5 spectral bands = 30).

This process significantly reduces the number of features analyzed,

in contrast to the initial (32 channels · 5 spectral bands = 160). After

the PCAwas calculated for each subject, the mean absolute Pearson

correlation coefficient was obtained, as stated in Equation 4, which

provided a unique importance value for each combination tested.

Results of the PCA-found features’ correlation are shown in

Table 3. A unique VAD value was calculated for each frequency b

and lobe combination; the summation of the three coefficients was

also calculated to evaluate overall feature importance. The highest

linearly correlated features correspond to the γ frequency band,

as it had the best overall correlation among VAD for each lobe:

Frontal with 0.4272, Temporal with 0.4433, Parietal with 0.4585,

Occipital with 0.4563, Central with 0.4443, Central-Parietal with

0.4251; along with the best correlation coefficients for each emotion

component: γO for Arousal with 0.2011, γP for Valence with 0.1316,

γT for Dominance with 0.1327.

There is a linear correlation between frequency bands and

the sum of Pearson correlation coefficients; when frequency

increases, this coefficient also increases. Considering the overall

sum coefficients for each lobe, on each frequency band: δ has

coefficients between 0.12 and 0.14, θ has coefficients between

0.24 and 0.26, α has coefficients between 0.25 and 0.29, β has

coefficients between 0.36 and 0.41, γ has coefficients between

0.42 and 0.45. Hence, based on those overall coefficients, there

seem to be three clusters: δ, θ , and α, β and γ , with the

lowest frequency bands being the least linearly correlated and

the highest frequency bands being the most linearly correlated.

These results are similar to the reported by other authors (Li

and Lu, 2009; Martini et al., 2012; Yang et al., 2020), who also

determined that γ bandpower in EEG is the most suitable for

emotion classification.

FIGURE 7

OpenBCI channel configurations, (A) Default configuration (FP1, FP2, C3, C4, P7, P8, O1, O2), (B) Optimal channel configuration for emotion
recognition (Fp1, F7, FC5, FC6, T7, T8, P7, O2).

FIGURE 8

VAD classification models evaluation comparison on Accuracy and F1-score using the best features obtained from the channel selection process,
averaged across eight-folds using shift-based cross-validation.

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1319574
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Blanco-Ríos et al. 10.3389/fnhum.2024.1319574

It is important to note that linear correlation does not directly

mean more feature importance, as some features might be non-

linearly correlated and still be critical features for the target

feature prediction. However, for the first assessment and feature

discrimination, the assumption of higher lineal correlation means

higher feature importance is made. Furthermore, an RF regression

model would be fitted on the best frequency band’s channels in

order to gather true feature importance with respect to the GI

criterion, which does not necessarily give importance to linearly

correlated features with the target emotion.

Regarding statistically significant linearly correlated features for

more than 95% of the subjects on at least one of the VAD emotion

components, the higher frequency bands trend is displayed, as 4

features correspond to the γ band, 2 to the β band, and 3 to the

α band. Arousal and Valence have several statistically significant

linearly correlated features (αF , αC , βC , βPC, γF , γT , γPC) and (αO,

αC , γT , γP) respectively, although Dominance only has γF .

In order to assess which are the best 8 channels to use in the

OpenBCI helmet (available for real-time implementation), the best

6 lobes with the highest sum of VAD coefficients were considered

(γF , γT , γP, γO, γC , γPC). Hence, all the lobes on the γ frequency

band would be a good choice, so each channel c would have

an assigned importance value (higher is better), calculated based

on Equation 6, described in Section 3.4.1. In order to visually

understand the importance of each channel, a topoplot was created,

illustrating a spatial map of the obtained GI values. The topoplot is

shown in Figure 6.

Overall, Arousal, Valence, and Dominance topoplots are

similar, as the channels at the center of the brain are not as

important as the ones at the exterior part of the brain; this pattern

is also shared on EII, which displays the average patterns found

on each of other three emotion component’s plot. Focusing on

EII’s topoplot better generalizes overall feature importance on

determining which channel is more related to VAD values, and thus

it is more useful when identifying emotions.

TABLE 5 Accuracy comparison of VAD predictive models using di�erent

number of features.

Number
of
features

Valence Arousal Dominance Average

25 0.945 0.925 0.948 0.939

26 0.945 0.925 0.948 0.939

27 0.946 0.927 0.950 0.940

28 0.947 0.927 0.950 0.941

29 0.947 0.930 0.951 0.942

30 0.947 0.933 0.951 0.943

31 0.948 0.933 0.951 0.944

32 0.948 0.935 0.951 0.944

33 0.949 0.935 0.952 0.945

34 0.949 0.936 0.952 0.946

35 0.949 0.936 0.952 0.946

Bold values represent the best performance for each model.

The coefficients are also presented in Table 4. Both T7 and T8

have the highest GI importance according to EII (0.0586, 0.0557),

which are the only channels from the temporal lobe, following

Fp1 (0.0519), and F7 (0.0442) from the frontal lobe. These results

are similar to the reported by Zhang et al. (2016) and Wang

et al. (2019), where temporal and frontal regions had the highest

importance for emotion recognition.

Next important channels are FC5 (0.0434), O2 (0.0432), P7

(0.0388), and FC6 (0.0387). Which are from emotion component

regions such as the middle left and right hemispheres, as well as

frontal and parietal lobes (Wang et al., 2019). Other authors have

also used these channels, such as F7, F8, and T7–FC2 (Javidan et al.,

2021); FP1, T7 and T8 on γ , FC6 on β (Guo et al., 2022); O2, T8,

FC5, and P7 (Dura and Wosiak, 2021); FP1–F7 (Taran and Bajaj,

2019); F7, FC5, FC6, O2, and P7 (Wang et al., 2019).

In this sense, the proposed set of eight channels consists of

four frontal channels (Fp1, F7, FC5, FC6), two temporal channels

TABLE 6 Top 34 features for Valence, Arousal, and Dominance.

Value Powerband Channel

Valence γ F7, P7, Fp1, FC5, T8, T7,

O2, FC5

β Fp1, FC6, T8, F7, T7, P7,

O2

α FC6, F7, T7, Fp1, FC5,

T8, P7

θ FC6, F7, Fp1, T8, FC5,

T7, P7

δ O2

Engagement FC5

Fatigue P7

Excitement P7

Arousal γ O2, Fp1, T8, F7, FC5, T7,

P7, FC6

β FC5, Fp1, T7, F7, P7,

FC6, T8, O2

α P7, FC6, FC5, T7, F7, T8,

Fp1, O2

θ FC6, Fp1, F7, T8, P7, T7,

FC5, O2

δ O2

Engagement O2

Dominance γ FC6, Fp1, T8, T7, FC5,

P7, F7, O2

β FC5, T8, T7, Fp1, FC6,

P7, F7, O2

α FC6, FC5, T8, T7, Fp1

θ FC6, F7, P7, FC5, T7,

Fp1, T8

Engagement FC5, Fp1, FC6

Fatigue P7

Excitement FC5, FC6
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(T7, T8), one parietal channel (P7), and one occipital channel

(O2); which correspond to five channels from the left hemisphere

and three channels from the right hemisphere, and not including

any channels from the previously established central and central-

parietal lobes. These results suggest that this set of eight EEG

channels would allow us to obtain an optimized version of the

model in future iterations. Since the OpenBCI system allows

channel reconfiguration, it could be easily implemented to measure

EEG signals from such electrodes. So instead of the default

OpenBCI channel configuration shown in Figure 7A), the proposed

set of channels would be used as in Figure 7B).

4.3 Model selection

After the channel selection analysis described in Section 4.2

was performed, five different classifier models were trained using

these eight channels and their respective PSDs; their results on

both accuracy and F1-score are shown in Figure 8. The Extra-Trees

model achieves the best accuracy and F1-score, as it performed

better than the rest of the models (x̄ = 94.35% accuracy, x̄ = 94.34

F1-score) on all VAD components, with only the Random Forest

model following behind. Even though RF performed similarly to

ET, it performed slightly worse (x̄ = 91.35% accuracy, x̄ = 91.32

F1-score) on all VAD components separately; thus, ET was selected

as it got closer to 95% on both accuracy and F1-score. In order to

avoid doing an expensive computation, these models were trained

using an extract of the training data, taking into account every 16

steps; this led to a reduction in the time needed for model selection.

In constructing the Extra-Trees model, decision trees are

generated from the entire dataset. Unlike traditional tree

algorithms where the best split among all possible splits is chosen,

in the Extra Trees methodology, splits are randomly selected for

each candidate feature, and the best of these randomly generated

splits is used. When combined with ensemble techniques where

multiple trees are built and averaged, this randomness often

produces a model that is less prone to overfitting. Additionally,

this random selection eliminates the need for bootstrapping in

sampling, meaning the whole sample is used in constructing each

tree (Géron, 2019).

4.4 Feature selection

In order to determine the optimal number of features, the

Extra-Trees’ GI was applied on all the 8-channel’s PSD and index

features. Furthermore, a series of Extra-Trees models were fitted

using the best 25–35 features. Results of the accuracy of scores

on Valence, Arousal, and Dominance prediction with different

numbers of features with these models are shown in Table 5.

Highlighted results show the best number of features for each

label and the best overall average. The average accuracy of the best

number of features for each channel was calculated; there can be a

decrease in average accuracy using the best 34 features than the best

35 features, so 34 features were selected as the optimal number of

features to be used in the final model. In this sense, a final Extra-

Trees model was fitted using the best 34 features for each VAD

component.

Table 6 shows the final chosen features for each of the VAD-

trained models. There are a total of 34 features for each VAD

classification model. Powerbands are ordered according to their

most prevalent powerband in descending order. It can be seen that

in the three models (VAD), the most predominant features were

from θ , γ , β , and α, as delta only had 1 feature on Valence and 1

feature on Arousal. Furthermore, θ , β , and γ had the most number

of channels, with 23, 24, and 24 channels, respectively, following

α with 17 channels. It is quite interesting that the γ bandpower

is still prevalent, as shown in the channel selection analysis on

Section 4.2, and that the higher frequency features are the most

related to emotions, as also suggested in the same section at Table 3.

The hybrid feature selection method implemented, which used

Pearson’s linear correlation coefficient and Extra-Trees’ non-linear

GI, led to better generalization across the dataset, thus gathering

essential insights that lead to optimized performance on 8-channel

emotion recognition while including additional index features.

The best model’s performance (extra-trees with 34 features)

achieved an accuracy of 0.946 for Valence, 0.932 for Arousal, and

0.950 for Dominance, with an average accuracy of 0.942. The

respective confusion matrices are shown in Figure 9. It can be seen

that, overall, the accuracy for each of the quadrants is > 0.90,

and there is not a clear sign of miss-classification of each of the

true and predicted labels, thus showing that residuals are randomly

distributed and that high accuracy is balanced among classes of

each of the models. However, there seems to be low prediction

power when predicting low label on each of the VAD components,

and it appears to be increasing at the high label, with peaking

accuracy at the mid label, which might be due to human bias when

selecting their VAD component level, due to generally pick the

middle number thus stating average emotion.

5 Conclusions

After all previous analyses were performed, a final model was

trained. The chosen model was an Extremely Randomized Trees

Classifier (Extra-Trees), as it showed significantly higher precision

than the rest of the chosen models. The final features are shown in

Table 6, calculated with 5-second timewindows, using the proposed

channels for the optimal OpenBCI Ultracortex IV configuration at

Figure 7B).

The current model is based on PSD estimations only. However,

different types of features could add higher complexity, such as

neural connectivity metrics. Functional connectivity metrics could

be added to the model, for instance, between each channel opposite

pair FC5-FC6, T7-T8, as well as other types of bipolar connections

such as FP1–F7 (Taran and Bajaj, 2019), in addition to T7-P7 and

T7-FP1 (Meyers et al., 2021), that have been reported previously as

efficient neural markers.

It is also important to note that the model can be expanded to

include variables other than EEG. Integrating other physiological

measures, such as Electro-oculography (EOG), Electromyography

(EMG), and Electrocardiography (ECG), can bolster the robustness

and accuracy of our emotion prediction. These complementary
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FIGURE 9

In confusion matrices for each VAD component model, the highest accuracy is expected to be in the diagonal element in each matrix, as it
represents a correct classification of a predicted label according to the true label.

measures provide a multifaceted view of the human emotional

response, ensuring a more comprehensive analysis (Koelstra et al.,

2012). A future iteration of this algorithm will include such

variables, into account, aiming to increase the complexity and

accuracy of the model.

The study presents certain limitations that need to be addressed

in the near future. Firstly, the choice of the OpenBCI Ultracortex

Mark IV for the real-time application, which only contains eight

available channels for data collection, presents constraints on the

granularity and amount of data that can be captured. It would be

valuable to explore options such as incorporating a Daisy extension

to expand the helmet to 16 channels or exploring alternative EEG

devices with larger electrode arrays to extend these data acquisition

capabilities further.

Moreover, relying on a dataset derived from a relatively

small sample size of 32 participants is another limitation worth

considering. While this sample size was sufficient for this study,

it may not adequately represent a broader population. This

limitation could impact the generalizability of the overall model

on a more comprehensive range of individuals and scenarios.

Future researchers may benefit from including a more diverse and

extensive dataset to mitigate this limitation to ensure robustness in

the model’s generalization capabilities.

Future steps of this work will also include the implementation

of the real-time algorithm into experimental tests of the users

while interacting with the immersive platform, and the generated

emotions will be compared to the ones experienced by users in a

(non-immersive) control group. Moreover, the inclusion of more

biometric signals will offer more insights into the interactions

experienced by test subjects when presented with these different

scenarios.

Despite the technical limitations this work faced, it is important

to remark the high accuracy of the models, as well as the real-time

nature of the proposed framework, which opens a window for a

broad repertoire of applications. Given that the creation of this

algorithm will be applied into the context of NeuroHumanities,

several implementations can be explored in the future. One

application of our work is the development of assistance

systems for educators, that provide a behavioral evaluation of

emotional components in different teaching approaches and study

plans (Bachler et al., 2023). Another application which can be

explored with this work is in the NeuroArts field (Cebral-Loureda

et al., 2023); for instance, an exploration of how the brains (of artists

and audiences) react during the recreation of specific emotions

while performing, and an evaluation of the effectiveness in the

process of conveying emotions. A third possible implementation

is in the (recently in boom) field of Human Fluorishing (Manuel

Cebral-Loureda, 2022). In this sense, the proposed framework can

be used to look for strategies that promote the appearance of

positive emotions in different types of activities (e.g., wellness, daily

life, work-related).

Only three applications were exemplified previously,

however, the exploration of emotional components can also

be implemented in the fields of Entertainment, Healthcare,

Industry, Marketing, among others, in order to assess how

different users (emotionally) react to services or products, and

the evaluation of the obtained results might be used to provide

better solutions and to generate more positive experiences to the

final users.
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