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Music is one of the primary ways to evoke human emotions. However,

the feeling of music is subjective, making it difficult to determine which

emotions music triggers in a given individual. In order to correctly identify

emotional problems caused by different types of music, we first created an

electroencephalogram (EEG) data set stimulated by four different types of

music (fear, happiness, calm, and sadness). Secondly, the differential entropy

features of EEG were extracted, and then the emotion recognition model

CNN-SA-BiLSTM was established to extract the temporal features of EEG,

and the recognition performance of the model was improved by using the

global perception ability of the self-attention mechanism. The effectiveness of

the model was further verified by the ablation experiment. The classification

accuracy of this method in the valence and arousal dimensions is 93.45% and

96.36%, respectively. By applying our method to a publicly available EEG dataset

DEAP, we evaluated the generalization and reliability of our method. In addition,

we further investigate the effects of different EEG bands and multi-band

combinations on music emotion recognition, and the results confirm relevant

neuroscience studies. Compared with other representative music emotion

recognition works, this method has better classification performance, and

provides a promising framework for the future research of emotion recognition

system based on brain computer interface.

KEYWORDS

EEG, music emotion recognition, CNN, BiLSTM, self-attention

1 Introduction

Music, recognized as a conduit for emotional expression, possessed a formidable
capacity to evoke a range of affective reactions in its listeners, including but not limited to
joy, exhilaration, and apprehension (Day et al., 2009). In today’s society, music has been
used as the best therapeutic tool (Raglio, 2023). Subsequent research has revealed that
emotions play a pivotal role in shaping individuals’ music selection, while music itself serves
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as a vehicle for the expression of one’s emotional states (Konečni,
2003). Music has been the focus of research across various
disciplines, including musicology, psychology, signal processing,
and more, due to its ability to effectively convey emotions and
elicit emotional reactions from listeners. Neurological studies have
demonstrated that music serves as a valuable tool for evaluating
brain systems (Peretz and Zatorre, 2005).

Based on the findings by Juslin et al. (2008) approximately
64% of musical experiences had an emotional impact on
individuals, evoking feelings of happiness, joy, nostalgia, or
longing. Additionally, a study conducted among young individuals
demonstrated that listening to music is considered one of the most
effective coping strategies for managing stress (Strasser et al., 2022).
Sareen et al. (2020) studied intellectual development disorders by
comparing the electroencephalogram (EEG) signals of the subjects
in the resting state and the music state. Consequently, with the
advent of the Internet era and the proliferation of multimedia
applications, there was a growing emphasis on the significance
of emotion-based music recommendation systems (Lampropoulos
et al., 2012). Computing to estimate, interpret and process human
emotions was an area of machine learning that was also used in
areas as diverse as health, safety and education. In recent years,
emotion recognition based on EEG received extensive attention in
the field of human-computer interaction (Hsu et al., 2018; Nawaz
et al., 2020; Naser and Saha, 2021).

Additionally, the field of human emotions encompasses several
pivotal definitions and theories that provide valuable insights
into this fundamental aspect of human psychology. According to
Yorozu et al. (1987), emotional experience could be understood
as a reaction to physiological alterations that occurred within the
body. Therefore, it is important for emotions to understand the
physiological response of each emotion. Russell (1980) proposed
a common hypothesis that emotions consisted of two arousal
and valence elements. Arousal indicated the level of emotional
activation, while valence indicated positive or negative. This
hypothesis systematically describes emotions and has been widely
used as background knowledge in countless studies. Gong et al.
(2023) used the DEAP dataset to classify valence and arousal
in subjects. The average accuracy of valence and arousal were
82.75% and 84.22%, respectively (Gong et al., 2023). Zhou et al.
(2021) collected EEG data from 40 participants to regulate
negative emotions and calculated the binary predictions of
arousal and valence (high or low) as 78.75% ± 9.48% and
73.98% ± 5.54%, respectively, using machine learning methods.
In the aforementioned studies, valence and arousal are commonly
employed to characterize emotional states. Thus, this study also
employs the classification of valence and arousal states to recognize
music-induced emotional states.

For an effective emotion recognition system, two crucial
conditions must be fulfilled: high recognition accuracy and robust
adaptability to diverse structures. By satisfying conditions, a
dependable emotion recognition system can be formulated. In
recent years, people have done a lot of research on emotion
recognition system, these researches can be generally divided into
three categories. The first type is the analysis of facial expression
or the dialogue of characters, through the change of people’s
facial expression and the content of the dialogue tone to identify
emotions. The second category involves the identification of
peripheral physiological signals associated with various emotional

states, including electrocardiogram, electromyography, respiration,
and pulse. Compared with the analysis of facial expressions
and conversations, the assessment of peripheral physiological
signals offers a more nuanced and informative approach to
predict and recognize emotions by providing additional intricate
details and valuable information (Shu et al., 2018). The third
approach centers on analyzing brain signals generated by the
central nervous system, such as EEG (Tagluk and Isik, 2019).
The high temporal resolution, non-invasive nature, portability,
and relatively low data processing cost make EEG a suitable
option for investigating the neural associations of diverse cognitive
functions, including emotion. In recent years, numerous studies
have utilized EEG for emotion recognition. These studies have
devised diverse computational methods utilizing EEG signals
to facilitate automated observation and analysis of emotion
recognition, which will be further examined in the following
discussion. Traditional EEG emotion classification algorithms
mainly include support vector machine (SVM) (Vapnik, 1963),
K-nearest neighbor (KNN) (Cover and Hart, 1967), Random Forest
(RF) (Breiman, 2001), and so on. However, these algorithms are
unable to extract deeper emotional features, which may result
in lower accuracy of emotion recognition. In recent years, there
has been an increasing trend among researchers to employ deep
learning models for emotion recognition. Numerous studies have
utilized a combination of convolution neural network (CNN) and
long short-term memory (LSTM) models to extract both temporal
and spatial features for improved performance. Salama et al. (2018)
used the CNN model for emotion recognition. The researchers
used the DEAP dataset. Their CNN model reportedly achieved
a final classification accuracy of 87.44% and 88.49% for valence
and arousal, respectively. Keelawat et al. (2019) employed CNN
to extract features from EEG signals for arousal and valence
classification in 12 subjects. A comparison was made between the
CNN and SVM for emotion recognition. The results revealed the
superior performance of CNN over SVM, underscoring CNN’s
efficacy in the field of emotion recognition. Jiang et al. (2021b)
introduced a WT-CNN model that utilized wavelet transform
to decompose EEG signals into multiple frequency bands, each
containing emotional features. Subsequently, the decomposed
signals were fed into a CNN to capture deep characteristics,
achieving an accuracy of 80.65%. Given the temporal nature of
EEG signals, researchers must also understand their temporal
information. LSTM has emerged as a proficient model for
analyzing time series data, making it a suitable choice for handling
EEG signals. Yang et al. (2018) used a hybrid neural network
that combines CNN and recursive neural networks (RNNs) to
automatically recognize emotions from EEG signals. Liang et al.
(2021) integrated CNN, RNN, and GAN networks to conduct
unsupervised emotion recognition in DEAP, MAHNOB-HCI,
and SEED open data sets. Ozdemir et al. (2021) presented a
robust approach utilizing the CNN-LSTM model for emotion
classification. EEG signals were transformed into topologies based
on electrode positions, trained using CNN, and then time features
were extracted from subsequent time Windows using LSTM, the
recognition rate of arousal reached 86.13%, and the recognition rate
of valence reached 90.62%. Despite the advancements made in the
research of hybrid CNN-LSTM models, several challenges remain
to be addressed.
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For example, CNN’s convolution kernel can be perceived
locally, but it may break these relationships. In the process of model
training, one-way LSTM can only learn the past time information,
but cannot obtain the future information of signal. And fully
integrating the past and future information of signals can better
identify emotions. We understand that Transformer (Vaswani et al.,
2017) had a strong global awareness due to its self-attention
mechanism (Devlin et al., 2018). BiLSTM, compared to LSTM,
could effectively integrate both past and future information of the
signal, enabling better handling of long sequences and long-range
dependencies, thereby improving predictive performance (Huang
et al., 2015).

Therefore, we proposed a new emotion recognition model
based on CNN-LSTM, namely CNN-SA-BiLSTM (CSBN) model.
The model utilized the advantages of CNN model in capturing local
features, the advantages of self-attention mechanism in capturing
global features, and the advantages of BiLSTM in extracting
temporal features for emotion recognition. The model realized
the recognition of music-induced emotional states and validated
the effectiveness of the method by comparing it with machine
learning and deep learning models. We also conducted experiments
on DEAP, a widely used public data set. The experimental results
showed that the model not only had a high emotion recognition
accuracy, but also had a good robustness, which provided a design
idea and research model for the design of emotion-based music
recommendation system.

The contribution of this article can be summarized as follows:

1. The EEG database induced by musical stimuli (SWU-M)
is designed, which can be used to classify emotions for
specific topics.

2. Based on the CNN-LSTM model, combined with the
advantages of self-attention mechanism in feature extraction
and the feature recognition ability of BiLSTM, a novel
emotion recognition method based on CSBN was proposed
to classify emotion valence and arousal. The results show that
this model is superior to the existing methods in terms of
valence and arousal classification.

3. The influence of θ, α, β, and γ bands on music emotion
recognition and the influence of multi-band combination on
music emotion recognition were studied. The study showed
that musical stimulation had the most obvious effect on the
alpha band.

The rest of this article is organized as follows. In section “2
Materials and experimental instructions” we describe the Self-
collecting Music Database (SWU-M), a set of EEG data collected
through musical stimuli of four different emotions. Section “3
Proposed method” describes the proposed emotion recognition
model framework, then preprocesses the collected EEG data, and
finally describes the CSBN model architecture in detail. Section
“4 Results” discusses extensive experiments to demonstrate the
validity of the proposed CSBN. Section “5 Discussion” discusses
the segmentation band recognition of EEG signals under music
stimulation, and discusses the influence of music stimulation on
music emotion recognition under different frequency bands and
different frequency band combinations. Finally, the conclusion

FIGURE 1

The valence and arousal value of the selected music material.

and future work are discussed in section “6 Conclusion and
future work.”

2 Materials and experimental
instructions

In this section, we describe the auditory stimulation-based
EEG dataset (SWU-M), and the materials and procedures
required for the experiment. The Ethical Review Committee
of Southwest University approved the study protocol, and all
methods were carried out within the committee guidelines (IRB
No. SEIE2022091101). All participants received payment for their
participation and provided written informed consent.

2.1 Participant

For the recruitment of subjects, we limited the participation
of students majoring in music and psychology, because this study
is about the recognition of emotions stimulated by music. We
also sent questionnaires to recruited subjects to test their musical
perception ability (Seashore, 1923), which is helpful for us to screen
the dyslexia. The musical ability of the subjects was tested from
three aspects: music appreciation ability, music skill, and music
rhythm sense. A total of 91 college students participated in our
experiment. According to the scores of the subjects in these three
aspects, we selected 84 subjects who scored between 21 and 35
points, which indicated that they had certain music appreciation
ability, the overall music level was medium and they had a sense of
rhythm, which met our experimental requirements.

In addition, participants were required to be right-handed, have
no hearing or visual impairments, be in good health, and have no
history of mental illness or bad habits. Prior to the experiment,
all subjects signed written informed consent. Participants were not
allowed to smoke or consume caffeine 24 h before the experiment.
Four subjects were excluded from the final analysis due to a large
number of signal artifacts. Therefore, the results analysis was based
on a sample of 80 subjects, including 35 males and 45 females.
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FIGURE 2

Experimental design process.

FIGURE 3

The overall framework of emotion recognition based on CSBN network.

2.2 Experimental materials

First of all, music materials were selected from four
different emotions (including fear, happiness, calm, and sadness)
downloaded from China’s famous NetEase Cloud music platform,
and the top 15 songs in each emotion were selected, with a
total of 60 songs. These music materials are light music, avoiding
the influence of lyrics and language on the subjects. Next, we
took the shortest playing time as the standard, cut each piece of
material for 20 s, and the sound effect was faded in and out, so
that the subjects could better immerse themselves in the music.
Finally, 20 non-music major college students aged 18–25 were
recruited to score the valence and arousal of the selected music
materials on a scale of 1–9 points according to the SAM scale. The
mean value and standard deviation of these scores were calculated
through statistical analysis. From each emotional stimulus, 10
musical elements that best fit Russell’s two-dimensional emotion
model were selected as the final experimental elements. As shown
in Figure 1, fear (valence: 3.03 ± 0.29, arousal: 7.12 ± 0.28),
happiness (valence: 6.98 ± 0.30, arousal: 7.02 ± 0.28), calm
(valence: 5.85 ± 0.22, arousal: 3.56 ± 0.27), and sad (valence:
3.55± 0.29, arousal: 2.86± 0.45).

2.3 Experimental equipment

The experiment was conducted in a temperature-controlled
laboratory. The equipment used in this experiment was ActiveTwo

125 acquisition system produced by BIOSEMI Company in
Amsterdam, Netherlands, and data acquisition was completed on
LabVIEW software. In this study, 128 electrodes were used to
record EEG signals at a sampling rate of 1,024 Hz. The headphones
used were Sony MDR-EX15LP in-ear headphones, and the volume
was controlled at 40% of the computer volume. Subjects performed
instructions on a 24 inch screen.

2.4 Experimental description

Prior to the study, each subject’s scalp was cleaned as required to
ensure EEG collection. A cap with 128 electrodes was placed on the
subject’s head and the EEG signals were checked and recorded to
avoid interference with EEG collection due to improper electrode
placement. Then, the experiment protocol and the meaning of
the scale used in the experiment were explained to the subjects.
When it was confirmed that all subjects understood, the formal
experiment began. The experimental process is shown in Figure 2.
The experiment consists of three stages:

1. Baseline stage: after subjects understand the experimental
scheme, subjects wear headphones and watch the fixation
points on the screen. Press the “Start” button as instructed
on the screen, then play the music clip of “Forest rain,” and
record EEG signals at the same time. This lasted 2 min and
put the subject’s mood in a neutral state [the origin in Russell’s
model (Russell, 1980)].
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FIGURE 4

The structure diagram based on CSBN network.

2. Musical stimulation and self-evaluation stage: in this stage,
10 pieces of musical stimulation with specific emotions were
played to the subjects, each lasting 18–20 s. Immediately after
each musical stimulus segment, the subjects filled out the SAM
scale based on their true feelings, then rested for 10 s, then
moved on to the next musical stimulus segment, rated it, and
rested until the 10 pieces of music were played. The subjects
then sat quietly for 5 min, waiting for their mood to recover.

3. For the next set of experiments, play another mood specific
music, repeat steps (1) and (2). Music for each specific mood
for a session. The four sessions are played in the order of fear,
happiness, calm, and sadness (Hsu et al., 2017).

Limiting the time for participants to rate the music material
to 30 s is intended to make the participants’ rating based on
their immediate feelings after listening to the music, rather than
overthinking it. The subjects used SAM-9 sub-scale (Zeigler-Hill
and Shackelford, 2020) to score the emotional valence and arousal
after listening to the music. The valence was a measure of how
pleasant or unpleasant the participants felt after listening to the
music, with a score of nine being particularly pleasant and a score
of one being angry or angry. Arousal refers to the degree to which
the subject’s emotions are aroused. The more excited and excited
the subject is, the closer the score is to 9, while the score is close to
1 if the emotion is very calm.

3 Proposed method

In this section, we first introduce our proposed framework for
EEG-based emotion recognition, and then we overview into the
details of our EEG preprocessing techniques. Lastly, we provide
a detailed description of the construction of the proposed CSBN.
SWU-M dataset was used in the experiment.

3.1 Proposed CSBN framework

Generally speaking, the original EEG signal contains a
lot of unnecessary information, such as electromyography,
electrooculogram and environmental noise, which will cause
interference to the subsequent emotion recognition. Therefore, in
most studies, the raw EEG signals were preprocessed first, and
then relevant features were extracted for further analysis. (Li et al.,
2016; Alarcao and Fonseca, 2017). The proposed CSBN is a data-
driven approach that effectively captures both global and temporal
information as emotional features. These features are subsequently
classified using the softmax function. Therefore, the accuracy of
emotion recognition based on EEG is improved (Figure 3). Firstly,
the collected EEG samples are pretreated and their differential
entropy (DE) features are extracted. Then, the extracted samples
are divided into training samples and test samples. Next, we use
training samples to train the proposed CSBN model, carry out
cross entropy loss, and use Adam optimizer to update network
parameters (Kinga and Adam, 2015). In the final step the trained
model is utilized to classify the emotional states of the test
samples, and the accuracy of the classification is considered as the
ultimate result.

3.2 Data preprocessing

During the collection of EEG signals, there are many
unnecessary signals, namely noise, including electrocardiogram,
electroophthalmic, electromyographic, electrocutaneous, and head
movement, which will interfere with subsequent EEG signal
analysis. In this experiment, the EEGLAB toolbox in MATLAB
R2020b was used to process the original EEG signals collected
and remove artifacts, the processing involved artifact removal to
ensure signal stability and preservation of relevant data segments.
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Additionally, a band-pass filter (1–45 Hz) was applied to the
continuous EEG data to eliminate linear trends. Then, the signal
was downsampled, and the sampling frequency of 128 Hz was
realized on the premise of preserving the valid data. For the
processing of electroocular and cephalic artifacts, independent
component analysis (ICA) in EEGLAB was used to decompose
EEG signals into 60 independent components. After artifacts were
processed by an automatic toolbox, artifacts were removed by visual
inspection, and relatively clean EEG data was obtained. In addition,
we chose the first 2 s of stimulation as a time window for baseline
correction. The EEG signal was then segmented using a 2 s non-
overlapping Hanning window, with each segment being 128× 256.
Finally, a Butterworth filter of order 3 and type bandpass was
applied to decompose the EEG into four frequency bands: theta (4–
8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

For label processing, this study considered two classification
strategies, such as LV and HV, LA and HA. Based on subjects’ scores
of 1–9 on the valence and arousal of musical stimulus fragments,
LV/HV and LA/HA class labels were assigned as 0 and 1, and the
threshold was set as 5. That is, for LV/HV and LA/HA classification
tasks, those with scores lower than 5 were assigned as label 0, and
those with scores higher than 5 were assigned as label 1.

After removing the samples inconsistent with the labeled
emotions, there were 9,872 samples of the four emotions, including
2,613 samples of fear emotion, 2,709 samples of happiness
emotion, 2,384 samples of calm emotion, and 2,166 samples of
sadness emotion.

3.3 Construction of proposed CSBN

The proposed structure of CSBN is shown in Figure 4. The
module consists of the following sections:

1. Differential entropy feature extraction module: the processed
EEG signals were segmented into four distinct frequency
bands (theta, alpha, beta, and gamma), each representing
various states of brain activity. This segmentation was
achieved through a third-order Butterworth filter, and
subsequently, DE features were extracted from each band.

2. Deep feature extraction module: extracted the local features
of EEG signals using CNN and outputted a one-dimensional
vector through the last layer of CNN. On this basis,
attention mechanism was added to capture the long-distance
dependence of the signal and extract more distinguishing
global information.

3. Time feature extraction module: the obtained vector was
utilized as input for a Bi-LSTM, enabling the prediction
of emotional states by incorporating both past and future
information within the temporal sequence.

4. Softmax module: softmax classifier mapped all emotion-
related information into class labels to obtain emotion
classification.

3.3.1 DE feature extraction module
Differential entropy was used as a feature in this study.

The concept of DE was equivalent to the concept of entropy
of continuous distribution in Shannon’s (1948) original paper,

TABLE 1 Size of filters and steps recommended for suggested network.

Stage Stage setting Output

Convolution-1 32, strides = ’2,
activation = ’“Relu”

32, 256

Convolution-2 32, strides = ’2,
activation = ’“Relu”

32, 126

Pool_1 2, MaxPool 32, 63

BN_1 BatchNormalization 32, 63

Drop_1 Dropout1D 32, 63

Convolution-3 64, strides = ’2,
activation = ’“Relu”

64, 30

Convolution-4 64, strides = ’2,
activation = ’“Relu”

64, 13

Pool_2 2, AvgPool 64, 6

BN_2 BatchNormalization 64, 6

Drop_2 Dropout1D 64, 6

Convolution-5 128, strides = ’1,
activation = ’“Relu”

128, 4

Convolution-6 128, strides = ’1,
activation = ’“Relu”

128, 3

Pool_3 2, AvgPool 128, 2

BN_3 BatchNormalization 128, 2

Drop_3 Dropout1D 128, 2

Convolution-7 64, strides = ’1,
padding = ’1,
activation = ’“Relu”

64, 2

BN_4 BatchNormalization 64, 2

and DE could be used to measure the complexity of continuous
signals. DE measured relative uncertainty (Michalowicz et al.,
2013), or changes in uncertainty, rather than calculated an absolute
measure of uncertainty. DE features could capture information
comprehensively, and DE features were calculated based on the
probability distribution of EEG signals, which could fully capture
the statistical characteristics of the signal. This provided a more
comprehensive view of the information than other methods such
as power spectral density (PSD) or autoregressive (AR) models,
which focused primarily on frequency or time series properties.
Compared with the original signal, which contained a large number
of noise components and a large number of time series data
points, the difference entropy feature could effectively reduce the
data dimension, reduce the complexity of data processing and
analysis, reduce the impact of noise on feature extraction, and
improve the accuracy of emotion recognition. Duan et al. (2013)
introduced DE as a feature into EEG emotion recognition for the
first time, and the results showed that DE was more suitable for
emotion recognition than the traditional feature energy spectrum
(ES). Research has demonstrated that DE exhibits discriminative
capabilities in discerning between balanced low-frequency and
high-frequency EEG patterns. Moreover, the DE features extracted
from EEG data offer reliable and precise information, contributing
to the stable and accurate classification of emotions (Zheng et al.,
2014). Previous studies have proved that DE feature is the best
feature extraction method in frequency domain deep learning
classification (Song et al., 2018; Liu et al., 2020).
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FIGURE 5

The structure of self-attention mechanism.

FIGURE 6

The structure of LSTM network.

Considering the continuous time random variable X, pX(x) is
the probability density function (PDF) of X, then the DE of X is
defined as the Equation 1:

hX = −
∫
S
pX(x)log(pX(x))dx (1)

Where S =
{
x|pX(x) > 0

}
is the support set of X, since the

random variable conforms to the Gaussian distribution N(µ, σ 2),
the DE calculation formula of this variable X is Equation 2:

p (x) =
1

√
2πσ

e−
x2
+µ2

2σ2 cosh
(

µx
σ2

)
(2)

Then DE can be calculated as Equations 3, 4:

hX =
∫
+∞

−∞

p(x)ln(p(x))dx (3)

hX =
1
2
log2(2πeσ

2)+ L(
µ

σ
) (4)

Where L (·) is a function of µ/σ with values ranging from 0 to 1
(ln2), e is Euler’s constant, and σ is the standard deviation of x.

The DE features are computed for all EEG samples across four
frequency bands, resulting in the formation of a DE feature matrix.
The DE feature matrix can be represented as follows Equation 5:

XP
d = [x

P
d(1),x

P
d(2), ...x

P
d(n)] (5)

Where P is the number of electrode channels, d is the number of
frequency bands, and N is the number of EEG samples.

3.3.2 Deep feature extraction module
Convolution neural network was extensively employed in

various domains such as signal processing, face recognition and
other fields. CNN had three key characteristics: local receptive
fields, weight sharing, and downsampling, which could effectively
improve network performance (Zhang et al., 2020). The high
accuracy of the recognition task is mainly due to its ability to
learn local nonlinear features through convolution and nonlinear
activation functions (LeCun et al., 2015). As shown in Figure 4,
one-dimensional tensors after DE feature extraction are input into
CNN to learn deep features.

Convolution neural network consisted of three main layers,
namely, convolution, pooling, and full connection layer. There were
seven convolution layers in total, one maximum pooling layer and
two average pooling layers. The first layer was the input layer,
which inputted the DE features of the four rhythms after feature
extraction. In this study, maximum and average pooling layers were
used, respectively. The maximum pooling layer selected only the
maximum value in each feature graph, while the average pooling
layer selected the average value in each feature graph. This process
effectively decreased the model’s training parameters and enhanced
the efficiency of the training procedure. A batch normalization layer
(BN) was incorporated after the one-dimensional convolution layer
to accelerate the model’s convergence during training, improve
its stability, and effectively contribute to regularization, thus
mitigating overfitting. Then the spatial Dropout layer was used.
Unlike the Dropout layer, the Spatial Dropout layer randomly
zeroed out some regions, reducing the interdependence between
elements and thus further reducing the risk of overfitting. Thus,
the i-th feature Ci(i = 1, 2, ...N) was obtained from the i-th DE
feature Xi by convolution and activation operations. The model
parameters were shown in Table 1.

In order to improve the expressiveness of the model and
solve the problem of gradient disappearance, residual connections
were added to the CNN network. Different from the general
additive residuals join, the output of the main path was multiplied
with the residuals, passing the information and residuals through
element multiplication, expressed as xl+1 = xl · F (xl,Wl), where
F (xl,Wl) was the residuals part, consisting of two convolution
layers. Because xl and xl+1 dimensions did not match, a 1 ∗ 1
dimension adjustment convolution was required, h (xl) = W

′

l x,
including W

′

l being a 1 ∗ 1 convolution. Finally, it was expressed
as xl+1 = h (xl) · F (xl,Wl). The advantage was that it emphasized
the complementarity between features and allowed the network to
learn the relative weights between features. This connection made
the network more flexible, alleviated the problem of disappearing
gradients, and helped capture nonlinear relationships in EEG.

However, in CNN, convolution operation was limited to local
receptive field, and global dependence could not be directly
captured. By learning the weight relationship between each position
and other positions, the self-attention mechanism could establish
dependencies on a global scale and better capture long-distance
context information. Moreover, the self-attention mechanism had
better adaptability. Self-attention was not limited by the fixed
convolution kernel size and stride length, and could learn the
weight relationship adaptively according to different tasks and
data. This adaptability made the self-attention mechanism more
flexible and generalizing and could perform well on a variety of
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FIGURE 7

The structure of BiLSTM network.

TABLE 2 Ablation experimental model and the average accuracy of the ablation experimental model under the 10-fold cross-validation on valence and
arousal classification tasks.

CNN Self-attention LSTM network Valence Arousal

CNN
√

× × 88.23 89.84

BiLSTM × ×
√

87.29 89.17

CNN-BiLSTM
√

×
√

91.04 91.96

CSBN
√ √ √

93.45 96.36

different types of data and tasks (Ozdemir et al., 2021). Therefore,
we added the self-attention mechanism on the basis of CNN to
improve the ability of the model to extract features. The self-
attention module computed the attention weights by scaling the
dot product attention by generating three linear projections [Key
(K), Value (V), and Query (Q)] on the input sequence, where
Q, K, and V were obtained by linear changes using the inputs
of the self-attention mechanism. The output from the attention
mechanism was calculated using Q, K, V, where Q = XWq,
K = XWk, V = XWv. Wq,Wk,Wv were learnable parameters.
These weights were then mapped to the input sequence. The inputs
to scaling dot product attention included the dk of the query and
key and the dv dimension of the value. In a nutshell, we first
calculated the dot product of the query with all the keys, divided
by
√
dk for normalization, and then used Softmax to normalize

the value to between 0 and 1. The results of the weighted sum
of V and the weight distribution were taken as the output of
the attention mechanism. The difference of weight distribution
directly affected the transmitted information, and the information
transmitted according to different weight models was different,
which was the essence of attention mechanism.

The structure of self-attention is shown in the Figure 5.
Here, the i-th encoded representation after self-attention
is {Ai|Ai = Attention (Ci), i = 1.....n}. Where A is:

A = Attention (Q,K,V) = softmax
(

QKT
√

dk

)
V .

3.3.3 Time feature extraction module
The right side of the structure diagram shows the temporal

feature extraction module (Figure 4). RNN was a recursive neural
network that inputted sequential data and recurred according to
the evolutionary direction of the sequence, and was connected by
chains composed of all recursive units (Graves et al., 2013). LSTM
was a variant of RNN, whose core state was cell state and gate

TABLE 3 The average accuracy of 10-fold cross-validation for different
methods on valence and arousal classification tasks.

Valence Arousal

DT 74.67 78.31

RF 79.48 83.99

RNN 87.77 89.84

ResNet 88.54 91.28

CSBN 93.45 96.36

structure, which could solve the dependence problem that RNN
could not handle long distance.

Long short-term memory was similar to RNN in main
structure. Its main improvement was that three gating structures
were added in hidden layer h, namely forgetting gate, input gate
and output gate. Data flow was controlled by sigmoid and tanh
activation functions. The forget gate discarded some of the past
information, while the input gate remembered certain present
information, and then these pieces of information were combined
and passed through the output gate (Goldstein et al., 2019).
Therefore, LSTM network could extract temporal features. As
shown in Figure 6.

The LSTM cell took three inputs, namely, the current input at
time t, denoted as Xt , the previous output at time t − 1, denoted as
Ct−1, and the previous hidden state at time t − 1, denoted as ht−1.
Then the LSTM unit produced two outputs: the current output at
time t, denoted as Ct , the hidden state at time t was denoted as ht ,
representing the t-th time feature extracted from the LSTM. LSTM
is calculated as Equations 6–10:

ft = σ(Wf ·
[
ht−1, at

]
+ bf ) (6)
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FIGURE 8

Loss and accuracy graph by using CSBN model with 10-fold cross validation.

TABLE 4 The average experimental results of 10-fold cross-validation for
CSBN on valence and arousal classification tasks.

Valence Arousal

Accuracy (Acc) 93.45 96.36

F1-score 92.72 96.61

AUC 95.36 97.81

Precision (Pre) 93.24 96.65

it = σ(Wi ·
[
ht−1, at

]
+ bi) (7)

Ot = σ(Wo ·
[
ht−1, at

]
+ bo) (8)

ct = ft × ct−1 + it × tanh(Wc ·
[
ht−1, at

]
+ bc) (9)

ht = Ot × tanh(ct) (10)

Where At is the output of time feature extraction module at timet,
Wf , Wi, Wo and Wc are respectively the weights of forgetting
gate, input gate, output gate and cell state. bf , bi, bo, bc are
the bias of forgetting gate, input gate, output gate, and cell
state, respectively.

Although LSTM had been improved significantly compared
with RNN, it could solve the problem of gradient vanishing and
gradient explosion to a certain extent. LSTM networks, while
effective in capturing sequential dependencies, had a limitation
in encoding information solely in a forward manner. On the
other hand, Bi-LSTM networks were capable of capturing semantic
dependencies in both forward and backward directions, resulting
in enhanced ability to model bidirectional relationships. The Bi-
LSTM neural network architecture consists of two separate and
independent LSTM layers, as shown in Figure 7, the input sequence
is respectively in positive order and reverse order to the two
LSTM neural networks for feature extraction, the feature vectors
output by the two LSTM are spliced to form a new vector as the
final output vector.

The design of the Bi-LSTM model aimed to enable the feature
data obtained at time t to incorporate both past and future
information simultaneously. The experimental results indicated
that this model architecture outperformed a single LSTM model
in terms of feature extraction for time series data (Graves et al.,
2005). A noteworthy aspect was the independent nature of the
two LSTM neural network parameters within the Bi-LSTM model.
This independence enabled effective collaboration between the
parameters, ensuring the preservation of previous information and
thereby enhancing the model’s capacity to capture valuable insights
from EEG time series data.

The fundamental idea of BiLSTM was to encode each sequence
by employing two independent hidden states. These states were
specifically designed to capture past and future data individually.
The model subsequently interlinked these two distinct hidden
states, thereby creating a comprehensive view of the sequence. The
final output was {Hi|Hi = BiLSTM(Ai), i = 1...n}.

In this study, the output features after the attentional
mechanism layer were input into the BiLSTM layer, which consisted
of three bidirectional BiLSTM layers, with 128 neurons in the first
layer and 64 neurons each in the second and third layers.

3.3.4 Softmax module
In the concluding segment of the proposed CSBN model,

we employed the softmax layer as the classifier, thereby enabling
effective categorization. As shown in Equation 11:

Y = softmax(WH + b) (11)

where Y =
{
y1, y2, ..., yn

}
, yi(i = 1...n) denotes the forecasted

probability of the i-th EEG sample, while W and b represent
the weight and bias parameters of the softmax function,
respectively.

In summary, we designed a framework for extracting temporal
and spatial features from EEG signals and classifying emotions.
DE module was used to extract DE features from EEG signals,
advanced features of EEG signal were extracted by CNN, and then
self-attention mechanism was used to self-allocate different weights
and extract global information. In addition, we used BiLSTM to dig
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TABLE 5 The average experimental results of 10-fold cross-validation for CSBN on single-band valence and arousal classification tasks.

Classification task Rhythm Acc Pre AUC F1-score

Arousal θ 84.38 84.80 83.99 84.51

α 87.50 88.10 87.50 87.45

β 82.81 83.65 82.81 82.7

γ 85.94 86.60 85.73 85.97

Valence θ 81.25 82.59 81.76 81.20

α 85.94 87.38 87.08 86.13

β 81.66 83.14 81.68 81.82

γ 84.38 85.63 84.38 84.25

TABLE 6 The average experimental results of 10-fold cross-validation for CSBN on combined-band valence and arousal classification tasks.

Classification task Rhythm Acc Pre AUC F1-score

Arousal (θ, α) 92.41 93.27 92.42 92.16

(θ, β) 88.94 90.28 90.04 89.12

(θ, γ) 92.18 92.24 92.25 92.19

(α, β) 91.29 92.22 92.19 92.18

(α, γ) 93.75 93.95 93.99 93.76

(β, γ) 92.07 92.62 92.56 92.20

(θ, α, β) 93.63 93.27 93.20 93.61

(θ, α, γ) 95.31 95.71 95.31 95.30

(θ, β, γ) 92.81 92.65 94.60 92.45

(α, β, γ) 95.15 95.22 96.23 94.86

Valence (θ, α) 87.39 87.23 86.94 86.06

(θ, β) 82.50 82.81 82.64 82.79

(θ, γ) 86.04 86.82 85.53 85.85

(α, β) 89.06 89.15 89.04 89.09

(α, γ) 90.63 90.80 90.71 90.63

(β, γ) 89.42 89.68 90.31 88.95

(θ, α, β) 90.67 90.52 91.47 90.59

(θ, α, γ) 92.62 92.36 93.39 92.45

(θ, β, γ) 91.71 91.62 91.60 91.59

(α, β, γ) 91.35 91.18 92.16 92.26

the temporal characteristics from EEG samples, and finally carried
out emotion recognition on the obtained temporal and spatial
characteristics.

4 Results

In this part, we designed an ablation experiment to verify the
effectiveness of the proposed model, and evaluated the classification
performance of the combination of each part of the model through
10-fold cross-validation. At the same time, because most EEG
algorithms focus on the whole band, the information between
single band and frequency band combination is ignored. Therefore,
we discuss the influence of θ, α, β, and γ bands on music emotion
recognition and the influence of multi-band combination on music
emotion recognition.

4.1 Experimental result

To verify the effectiveness of this method, an ablation
experiment was designed on the SWU-M dataset, which included
CNN, BiLSTM, and CNN + BiLSTM models. The details of
these models are shown in Table 2. The ability of emotion
recognition of a single module is verified by CNN and BiLSTM.
CNN + BILSTM is a combination of CNN and BiLSTM module
which is used to verify the ability of baseline model to extract
temporal features. The results of ablation recognition are shown
in Table 2. The experimental results show that CSBN module
has the highest classification accuracy of valence and arousal, and
the recognition accuracy of valence and arousal is 93.45% and
96.36%, respectively, after 10 cross-validations. Compared with
CNN and BiLSTM, the features extracted by CNN and BiLSTM are
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TABLE 7 Analysis of EEG data sets.

Data (year) No. of
subjects

No. of
electrodes

Stimuli
duration(s)

Stimuli No. of
emotions

Emotions

DEAP (2011) 32 32 60 Video 4 High/low valence
High/low arousal

SWU-M (2022) 80 128 20 Music 4 High/low valence
High/low arousal

TABLE 8 Performance comparison of CSBN model on other EEG
datasets under 10-fold cross-validation.

Dataset Valence Arousal

Max Mean Max Mean

DEAP 93.64 92.90 95.31 93.17

SWU-M 94.79 93.45 97.20 96.36

too single, so the recognition effect is not good. However, CNN-
BiLSTM only focuses on local information and cannot directly
capture global dependencies, so it does not have good recognition
performance. CSBN showed good emotion recognition ability
because of its ability to extract temporal features and its ability to
use global information.

In addition, the proposed method is compared with two
deep learning methods, RNN and ResNet. At the same time,
Random Forest Algorithm (RF) and Decision Tree (DT) two
traditional machine learning methods are compared. As shown in
Table 3. All methods underwent the same preprocessing as CSBN.
Experimental results show that compared with the traditional
machine learning method DT, the accuracy of the proposed method
is improved by about 20%. Compared with the RF method, the
accuracy of this method is improved by about 15%. Compared
with the two deep learning methods (RNN and ResNet), the CSBN
method proposed in this study improves by about 5%, showing
superior emotion classification performance.

Figure 8 depicts the loss and accuracy curves obtained from
a 10-fold cross-validation using the CSBN model. Loss refers to
the disparity between the model’s predicted value and the actual
value. The loss function used in our model is the classification
cross entropy. Accuracy is one of the indicators to evaluate the
performance of our model. It is clear from the figure above that
under 10-fold cross validation, the model minimizes the loss to
7.63% at 100 epochs, and our model achieves high accuracy in the
valence and arousal tasks, respectively.

To corroborate the model’s performance more
comprehensively, Table 4 also summarizes the experimental
results of the CSBN model on the valence and arousal labels of
average EEG emotion recognition Accuracy, Precision, F1-score,
and AUC rate, which fully indicate that the proposed model has
good stability and classification performance.

4.2 The influence of single band on
music emotion recognition

CSBN was used to identify musical emotion in each rhythm of
music-induced EEG signals.

As shown in Table 5, the experimental results show that
for the classification of arousal, the Accuracy of CSBN network
for θ-band EEG is 84.38%, the Precision is 84.80%, the AUC
is 83.99%, and the accuracy of F1-score is 84.51%. Similarly,
CSBN network is used to evaluate the accuracy, sensitivity, AUC,
and F1 scores of α, β, and γ bands, and it is found that the
Accuracy, Precision, AUC, and F1 scores of LA and HA emotion
classification methods are all above 80%. Similarly, for valence
classification, the accuracy, sensitivity, AUC, and F1-score of CSBN
network single band are all above 80%. At the same time, it can
also be found that whether it is valence or arousal classification,
the classification accuracy of α band is the highest in single
band emotion recognition, indicating that α band has stronger
emotion perception ability, which verifies previous studies (Iwaki
et al., 1997) that musical stimuli usually cause an increase in α

band activity.

4.3 The influence of multi-band on music
emotion recognition

As shown in Table 6, in the study of the influence of multi-
band combination on music emotion recognition, the experimental
results show that the recognition accuracy of the combination of
α, θ, β, and γ bands, (θ, α), (α, β), and (α, γ) bands is higher
than that of the combination of other bands (θ, β) and (θ, γ),
among which the recognition accuracy of the combination of (α,
γ) band is the highest.

In the combination of three bands, the combination of (α,
β, and γ) has better recognition rate. For the classification of
arousal, the Accuracy, Precision, AUC, and F1-score are 95.31%,
95.71%, 95.31%, and 0.953, respectively. For the classification
of valence, the Accuracy, Precision, AUC, and F1-score are
92.62%, 92.36%, 93.39%, and 0.9245, respectively. At the same
time, the above table can also be found. The recognition rate
of the combination of three frequency bands is better than
that of two frequency bands, because the three frequency bands
contain more complementary information, which is conducive
to emotion classification. Any combination of bands containing
alpha will achieve relatively high accuracy, which is consistent
with neuroscience studies showing that rhythmic stimuli as
well as loud and calm music increase alpha-band activity
(Rogers and Walter, 1981).

5 Discussion

To verify the effectiveness and generalization of the proposed
algorithm, we conducted experiments on a widely used DEAP
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TABLE 9 Performance comparison of different methods under 10-fold cross-validation on DEAP data sets.

Methods Acc Pre AUC F1-score

Valence DT 72.48 71.22 72.31 71.29

RF 75.93 73.79 74.61 73.25

RNN 82.81 83.03 81.49 82.89

ResNet 89.06 89.06 88.82 89.04

CSBN 92.90 92.75 92.90 92.59

Arousal DT 73.72 73.72 72.61 73.41

RF 78.44 76.17 75.53 76.40

RNN 85.94 86.01 84.51 85.78

ResNet 90.63 90.96 90.77 90.70

CSBN 93.17 92.57 92.96 92.73

TABLE 10 Comparison with existing classification methods.

References Datasets Stimuli Inputs Classifier Accuracy

Valence Arousal

Alhagry et al.,
2017

DEAP Audio-visual (music and
video clips)

Raw EEG signals LSTM 85.45% 85.65%

Zhan et al., 2019 DEAP Audio-visual (music and
video clips)

PSD CNN 82.95% 84.07%

Zhong et al.,
2020

DEAP Audio-visual (music and
video clips)

MSE CNN-HMMS 83.09% 79.77%

Gao et al., 2020 DEAP Audio-visual (music and
video clips)

PSD SVM-RBF 62.49% 62.17%

Zhang et al.,
2020

DEAP Audio-visual (music and
video clips)

Raw EEG signals CNN + LSTM 90.12% 94.17%

Du et al., 2020 DEAP Audio-visual (music and
video clips)

DE LSTM + attention 90.91% 90.87%

Liu et al., 2017 Self-acquisition
dataset

Audio-visual (film clips) PSD, ASM SVM-RBF Positive 86.43%
Negative 65.09%

–

Zhou et al., 2021 Self-acquisition
dataset

Audio-visual (music and film
clips)

PSD, DE Random forest (RF) 78.75% 73.98%

Jiang et al., 2021a Self-acquisition
dataset

Audio-visual (music and
video clips)

Normalization
EEG signals

CNN + LSTM Avg 93.13%

Cui et al., 2022 DEAP/SEED Audio-visual (music and
video clips)

DE DE-CNN-BILSTM 94.02% 94.86%

Proposed
method

Self-acquisition
dataset

Audio (music) DE CSBN 93.45% 96.36%

dataset (Koelstra et al., 2011). Then we compared the proposed
method with several published studies.

5.1 Comparison with other datasets

DEAP dataset was a multi-channel physiological dataset used
for studying emotional states. This dataset was publicly available
and free to access.

The dataset consisted of 32 EEG channel signals and 8
peripheral physiological signals recorded by 32 subjects while
watching 40 music videos. In this study, only EEG was used for
emotion recognition, other signals were abandoned. The data were
standardized in this study. First, the EEG signal of 512 Hz was down

sampled to 128 Hz, then band-pass filtering was performed at 1–
45 Hz, and ICA was used to remove the interference of EEG signal.
Each participant in the study watched 40 emotional music videos,
each lasting 60 s. After viewing the videos, the participants rated
valence, arousal, liking, and dominance using a 9-point scale. In
this experiment, only valence and arousal were used as emotional
evaluation criteria, and 5 was taken as the scoring threshold. Labels
with scores higher than 5 were labeled as 1 (positive valence), while
those with scores lower than 5 were labeled as 0 (negative valence).

Table 7 is a comparative analysis of the EEG data sets, including
the number of participants, the number of EEG devices with
different channel numbers, the type and duration of stimulation,
and the categories of emotions awakened. DEAP data was
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processed by the same sliding time window as SWU-M and divided
into 2 s time segments.

As can be seen from Table 8, under 10-fold cross-validation,
the highest accuracy of binary classification based on CSBN model
on DEAP data set is arousal: 95.31%, valence: 93.64%. The average
accuracy is arousal: 93.17%, valence: 92.90%. On the SWU-M
dataset, the highest accuracy of binary classification is arousal:
97.20%, valence: 94.79%. The average accuracy is arousal: 96.36%,
valence: 93.45%.

Furthermore, we compared the CSBN method with two deep
learning approaches, RNN and ResNet, on the DEAP dataset.
Simultaneously, we conducted comparisons with two machine
learning methods (RF and DT). As shown in Table 9, the Accuracy,
Precision, AUC, and F1-score of various methods on the DEAP
data set were calculated respectively. These results showed that the
CSBN model could also achieve better accuracy on other publicly
available benchmark datasets, which validated the validity and
generalizability of our approach.

Compared with the visual and auditory dual stimuli of the
DEAP dataset, our dataset was collected only under auditory
stimuli. As the number of sensory stimuli increased, the subjects’
emotions were also more strongly aroused. However, the results
showed that our model achieved good accuracy even under a single
auditory stimulus, which proved the superiority of our method.

Therefore, we had reason to believe that our classification
results were also reliable on other data sets, which also proved
the generalization of our model. The experimental results showed
that our model achieved better results than other models and also
achieved good results on publicly accessible EEG datasets. These
findings indicated the universality of our approach and its potential
to address complex problems.

5.2 Comparison with existing
classification methods

Finally, we compare the proposed method with several
published studies, as shown in Table 10. Compared with machine
learning algorithm (Liu et al., 2017; Gao et al., 2020; Zhou
et al., 2021), the accuracy has been greatly improved. Compared
with a single CNN or LSTM (Alhagry et al., 2017; Zhan et al.,
2019), the proposed approach in this study represents a significant
improvement. The results demonstrate that global features have a
substantial impact on the accuracy of emotion recognition, and
information about the future and past is also important in the
dynamic characteristics of time, while single information has a
poor influence on the accuracy of emotion recognition. However,
CNN-LSTM and CNN-HMMS (Zhang et al., 2020; Zhong et al.,
2020; Jiang et al., 2021a) do not learn future emotional states in
the EEG time series, so its accuracy is still poor. Although LSTM-
attention (Du et al., 2020) learns the temporal characteristics of
EEG signals, the lack of processing global features results in poor
classification performance. DE-CNN-BiLSTM (Cui et al., 2022)
fully considers the complexity of the brain, but this method do
not consider the use of attention mechanism to redistribute the
weight of key information in EEG signals. CSBN uses CNN to
capture advanced features in EEG, and then uses self-attention
mechanism to reassign the weight of these information. Finally,

BiLSTM is used to fully learn the past and future key emotional
information in EEG signals, so that the network has better
recognition ability.

6 Conclusion and future work

In this study, we proposed a CSBN method, which could
make better use of EEG to classify music-induced emotions, and
fully considered the characteristics of EEG information. Firstly,
the collected original data was preprocessed, its DE features were
extracted, and then input into the CSBN model. On the SWU-M
dataset, the average accuracy of arousal and valence was 96.36%
and 93.45%, respectively. To further verify the validity of this
model, we used the DEAP dataset for experiments. The average
accuracy of valence on the DEAP dataset was 92.90% and the
average accuracy of arousal was 93.17%, indicating that the model
had good robustness and generalization ability. At the same time,
the effects of musical stimulation on different electrical bands of
the brain were also studied, and the study showed that music
increased activity in the alpha band. Compared with other music
emotion recognition work, the methodology proposed in this
study demonstrated superior classification performance. This held
significant implications for future exploration within the field of
emotion recognition systems based on brain-computer interfaces.

This study also has the following deficiencies:

1) Since this study only focused on the classification of
valence and arousal, the model will be optimized in
the future and further applied to the multi-classification
emotion recognition task of multi-channel EEG.

2) Since the training of this model was supervised and
required the collection of a large number of labeled EEG
signals, future work will incorporate transfer learning
technology to decrease reliance on labeled signal data.

3) Since this study classified offline emotions stimulated
by music, future work will focus on online emotion
recognition, quickly processing and analyzing real-time
input data, and more accurately understanding and
interpreting the changing process of emotions according
to the flow of information.
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