
TYPE Original Research

PUBLISHED 12 March 2024

DOI 10.3389/fnhum.2024.1335212

OPEN ACCESS

EDITED BY

George Alexandrakis,

University of Texas at Arlington, United States

REVIEWED BY

Joonas Iivanainen,

Aalto University, Finland

Seppo P. Ahlfors,

Massachusetts General Hospital and Harvard

Medical School, United States

*CORRESPONDENCE

Johannes Vorwerk

johannes.vorwerk@umit-tirol.at

RECEIVED 08 November 2023

ACCEPTED 22 January 2024

PUBLISHED 12 March 2024

CITATION

Vorwerk J, Wolters CH and Baumgarten D

(2024) Global sensitivity of EEG source

analysis to tissue conductivity uncertainties.

Front. Hum. Neurosci. 18:1335212.

doi: 10.3389/fnhum.2024.1335212

COPYRIGHT

© 2024 Vorwerk, Wolters and Baumgarten.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Global sensitivity of EEG source
analysis to tissue conductivity
uncertainties

Johannes Vorwerk1*, Carsten H. Wolters2,3 and

Daniel Baumgarten1

1Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences

and Health Technology, Hall in Tirol, Austria, 2Institute for Biomagnetism and Biosignalanalysis,

University of Münster, Münster, Germany, 3Otto Creutzfeldt Center for Cognitive and Behavioral

Neuroscience, University of Münster, Münster, Germany

Introduction: To reliably solve the EEG inverse problem, accurate EEG forward

solutions based on a detailed, individual volume conductor model of the head

are essential. A crucial—but often neglected—aspect in generating a volume

conductor model is the choice of the tissue conductivities, as these may vary

from subject to subject. In this study, we investigate the sensitivity of EEG forward

and inverse solutions to tissue conductivity uncertainties for sources distributed

over the whole cortex surface.

Methods: We employ a detailed five-compartment head model distinguishing

skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider

uncertainties of skin, skull, gray matter, and white matter conductivities. We

use the finite element method (FEM) to calculate EEG forward solutions and

goal function scans (GFS) as inverse approach. To be able to generate the large

number of EEG forward solutions, we employ generalized polynomial chaos

(gPC) expansions.

Results: For sources up to a depth of 4 cm, we find the strongest influence

on the signal topography of EEG forward solutions for the skull conductivity

and a notable e�ect for the skin conductivity. For even deeper sources, e.g.,

located deep in the longitudinal fissure, we find an increasing influence of the

white matter conductivity. The conductivity variations translate to varying source

localizations particularly for quasi-tangential sources on sulcal walls, whereas

source localizations of quasi-radial sources on the top of gyri are less a�ected.

We find a strong correlation between skull conductivity and the variation of

source localizations and especially the depth of the reconstructed source for

quasi-tangential sources. We furthermore find a clear but weaker correlation

between depth of the reconstructed source and the skin conductivity.

Discussion: Our results clearly show the influence of tissue conductivity

uncertainties on EEG source analysis. We find a particularly strong influence of

skull and skin conductivity uncertainties.

KEYWORDS

EEG, forward modeling, finite element method, source analysis, sensitivity analysis,

uncertainty quantification

1 Introduction

Electroencephalography (EEG) is a frequently used tool for functional brain imaging

in both research and clinical care (Brette and Destexhe, 2012). A huge advantage of

EEG over, e.g., functional magnetic resonance imaging (fMRI), is its time resolution

in the millisecond range. To localize the brain activity underlying a measured signal

it is necessary to solve the EEG inverse problem (Knösche and Haueisen, 2022). As

a prerequisite for solving the EEG inverse problem, it is necessary to model the

propagation of the electric fields evoked by brain activity through the head tissues,
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which are measured as the EEG signal at the head surface

(EEG forward problem). Accurately solving the EEG forward

problem is one important factor to reliably solve the EEG

inverse problem (others are, e.g., the choice of an adequate

inverse method).

The EEG forward problem is commonly solved using numerical

methods, such as the boundary element method (BEM; Kybic

et al. 2005) or the finite element method (FEM; Yan et al. 1991;

Buchner et al. 1997), and, therefore, requires a discretized volume

conductor model of the head, i.e., a 3d representation of the

head distinguishing the different conductive tissues. It was shown

that the use of accurate, individual head models distinguishing

five or more tissues (skin, skull, cerebrospinal fluid/CSF, gray

matter, white matter) is important to obtain accurate EEG forward

solutions (Vorwerk et al., 2014; Nielsen et al., 2023), which, in

consequence, are essential for accurate EEG inverse solutions

(Ramon et al., 2006; Cho et al., 2015; Neugebauer et al., 2017;

Asadzadeh et al., 2020; Azizollahi et al., 2020). However, besides

the geometrical accuracy of the head model, also the values chosen

for the tissue’s electrical conductivities influence the obtained

EEG forward solution. Neglecting interindividual variations of

these conductivities in the computation of the EEG forward

solution may therefore lead to inaccurate EEG inverse solutions

(Vanrumste et al., 2000; Chen et al., 2010; Akalin Acar and

Makeig, 2013; Aydin et al., 2014; Vorwerk et al., 2019a). Such

interindividual variations may, e.g., occur due to age or disease

state (Akhtari et al., 2002; McCann et al., 2019; Antonakakis

et al., 2020). Conductivity calibration based on electrical impedance

tomography (EIT), EEG, or combined EEG/MEG has been

proposed as a means to alleviate the influence of conductivity

uncertainties (Huang et al., 2007; Acar et al., 2016; Fernández-

Corazza et al., 2017). Most of these studies focused on fitting the

skull conductivity, but it is unclear whether the dependency on

the skull conductivity is similarly strong for all source positions

and whether fitting the skull conductivity is thus always the

optimal choice.

Sensitivity studies allow estimating to what extent variations

of the tissue conductivities influence the results of EEG

forward solutions. So far, studies found that variations of

skin and skull conductivities have the strongest influence

for the EEG (Gençer and Acar, 2004; Vallaghé and Clerc,

2008; Vorwerk et al., 2019a). However, to the best of our

knowledge, existing EEG sensitivity studies only investigated

a few source positions that were assumed to be representative.

Especially in highly-detailed head volume conductor models,

as they are more and more frequently used nowadays (Buzzell

et al., 2017; Piai et al., 2017; Staljanssens et al., 2017; Gao

et al., 2019; Zaky et al., 2023), the choice of the source

positions might have a strong influence on the results of the

sensitivity analysis.

In this study, we investigate the sensitivity of EEG
forward solutions to conductivity variations for sources
distributed over the whole cortex surface. Furthermore,
we investigate the sensitivity of EEG inverse solutions
to the same conductivity variations, and determine to
what extent changes of the EEG inverse solution correlate

with the sensitivity of the EEG forward solutions to tissue

conductivity variations.

2 Materials and methods

2.1 Head model

We generated a head model based on the segmentations

provided for the New York Head (https://www.parralab.org/

nyhead/). The segmentations of brain and non-brain tissues are

based on the symmetric ICBM-152 v2009 and the symmetric

ICBM-152 v6 average atlases, respectively (https://nist.mni.mcgill.

ca/atlases/), whereas the lower parts of the head are from a

separate segmentation (Huang et al., 2016). We slightly modified

the segmentations to ensure a minimal thickness of the gray

matter of 2.5 mm. Furthermore, we reduced the number of tissue

compartments to five (white matter, gray matter, CSF, skull, skin).

We used SimNIBS 4 (https://simnibs.github.io/simnibs/; Puonti

et al. 2020) for head mesh generation and to obtain gray matter,

white matter, and central cortex surfaces for both hemispheres that

will be used for source space construction and visualization. We

chose to generate an especially fine mesh structure in the gray

and white matter volumes; the resulting tetrahedral head mesh

consisted of 3,473,632 nodes and 20,703,247 elements (see Figure 1,

left). We used the electrode positions provided with the New York

Head to create a realistic sensor configuration corresponding to a

10-10 layout, resulting in 80 electrode positions.

2.2 Source spaces and EEG forward
simulations

We created the source space for this study based on the

central surface of the cortex obtained from SimNIBS, which is

the estimated surface in the middle of gray matter/CSF and

gray/white matter boundaries. It has to be observed that this central

surface represents a closed surface for each hemisphere, i.e., the

hemispheres are split at the corpus callosum. Furthermore, these

surfaces also cover some deep brain regions that could be attributed

to subcortical brain structures such as the thalamus or the basal

ganglia, whereas brainstem and cerebellum are excluded. Due to

the symmetry of the underlying segmentation, we only considered

the left hemisphere. For reasons of computational efficiency, we

downsampled the surface to 34,997 vertices.

To achieve high numerical accuracy in our forward simulations,

we ensured that for all source positions the closest node of the

head mesh is fully contained in the gray matter compartment, i.e.,

all mesh elements this node is part of have to belong to the gray

matter compartment (Vorwerk et al., 2019b). Source positions for

which this was initially not the case were shifted toward the closest

node fully contained in the gray matter compartment until this

condition was fulfilled. For each source position, we calculated the

surface normal as a physiologically plausible source direction at

this position. We refer to this source space as sources_cortex. For

visualization purposes, we created an inflated version of the central

cortex surface underlying this source space.

To avoid an inverse crime when evaluating the sensitivity

of EEG source analysis to conductivity uncertainties, we created

a second source space based on the dual mesh of the source

space sources_cortex. This means that the source positions for this
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FIGURE 1

Visualization of the FEM head model showing electrode positions (red) and (from outside to inside) skin, skull, CSF, gray matter, and white matter

surfaces (left). Lateral and medial view of source depth (distance to inner skull surface) visualized on inflated left cortex surface (right).

second source space are the triangle centers of the cortex surface

on which the original source space sources_cortex is based. The

resulting source space consists of 69,990 vertices; we refer to this

source space as sources_cortex∗. sources_cortex∗ is used for all

inverse calculations, whereas sources_cortex is used for the forward

simulations. Again, we ensured that the closest node of the volume

conductor model for all source positions of sources_cortex∗ is

fully contained in the gray matter compartment. On average, the

distance between a node of sources_cortex∗ and the closest node in

sources_cortex is 0.8 mm, which is the average minimal localization

error, accordingly.

We used the FEM multipole approach for all forward

simulations, as it was shown to achieve high numerical accuracy

with a high computational efficiency (Vorwerk et al., 2019b). The

multipole approach was implemented based on the FieldTrip-

SimBio pipeline (Vorwerk et al., 2018).

2.3 EEG forward problem sensitivity
analysis

We mostly rely on Monte Carlo approaches for our

sensitivity analysis. To handle the large number of forward

simulations for different conductivity values necessary for the

sensitivity/uncertainty analysis, we employ generalized polynomial

chaos (gPC) expansions (Vorwerk et al., 2019a). Based on

predefined probability distributions and precomputed forward

solutions generated for corresponding sets of conductivities,

gPC expansions allow to rapidly approximate accurate forward

simulations for arbitrary conductivity values. We used UQLab

2.0 to perform the gPC calculations in this study (https://www.

uqlab.com/; Marelli and Sudret 2014). The details of the used gPC

approach are described in Vorwerk et al. (2019a).

As in Vorwerk et al. (2019a), we chose uniform distributions

for all tissue conductivities considered uncertain. The uniform

distribution represents minimal knowledge about the distribution

of these conductivities. The intervals within which each

conductivity could vary are shown in Table 1; the CSF conductivity

was not considered uncertain as it was shown to have a negligible

inter-individual variation (Baumann et al., 1997).

With four tissue conductivities varying uniformly within the

ranges indicated in Table 1, it is of interest to estimate the

contribution of each of the four uncertain tissue conductivities to

the overall variation of the EEG forward solution. Therefore, we

use Sobol indices (Sobol, 2001). These are defined as

Si1 ,...,is =
V(i1, . . . , is)

V
, (1)

i.e., the Sobol index Si1 ,...,is is defined as the ratio between the

variance caused by the interaction of the subset of input parameters

{i1, . . . , is} ⊂ {1, . . . , n} and the overall variance. It is important

to note that V(i1, . . . , is) only includes the variance caused by

the interaction of the subset of indices i1, . . . , is but not the

contributions that can be attributed to a single variable or a smaller

subset of these variables. For example, for a second-order Sobol

index Si,j, the variance V(i, j) does not include the variances V(i)

and V(j) that can be attributed to either i or j individually.

In this study, we focus on first- and second-order Sobol indices,

i.e., the share of variance caused by the uncertainty of a single

uncertain tissue conductivity or the share of variance caused by

the uncertainty of two conductivities that cannot be attributed to

the uncertainties of a single conductivity, respectively. We further

consider total-effect or full Sobol indices, STi , for which all Sobol

indices involving a certain input parameter i are summed up:

STi = Si +
∑

i6=j

Si,j +
∑

i6=j,k
j<k

Si,j,k + . . . . (2)

The Sobol indices were computed with UQLab using a Monte

Carlo approach with 50,000 samples per parameter. We found

that this number of samples guaranteed a more than sufficient

convergence of the Sobol indices for the requirements of this

study. To calculate the Sobol indices, the Janon estimator was used

(Janon et al., 2014, Equation 2.6), which has optimal asymptotic

variance and is robust against model perturbations. Further details

regarding the calculation of the Sobol indices are provided as
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TABLE 1 Tissue conductivity intervals (mS/m).

Tissue Min. σmin Max. σmax Standard σst References

Skin 280.0 870.0 430.0 Haueisen et al., 1997; Ramon et al., 2004

Skull 1.6 33.0 10.0 Akhtari et al., 2002; Hoekema et al., 2003; Dannhauer et al.,
2011

CSF 1,769.6 1,810.4 1,790.0 Baumann et al., 1997

GM 220.0 670.0 330.0 Haueisen et al., 1997; Ramon et al., 2004

WM 90.0 290.0 140.0 Haueisen et al., 1997; Ramon et al., 2004

Supplementary material. Furthermore, we would like to refer the

interested reader to the original publication of Janon et al. (2014)

or the UQLab User Manual (https://uqftp.ethz.ch/uqlab_doc_pdf/

2.0.0/UserManual_Sensitivity.pdf) for additional information.

In the sensitivity analysis of EEG forward simulations, we have

the challenge that we do not have a single output parameter, but

each computed electrode potential is a separate output parameter.

To allow for a comprehensible and easily interpretable evaluation

of the Sobol indices, we introduce the relative difference measure

(RDM) and the magnitude error (MAG) (Meijs et al., 1989).

Computing these error measures in comparison to a reference

solution, it is possible to express the topography and magnitude

change of the set of electrode potentials through a single parameter

for each source position. Interpreting RDM and MAG as functions

of the conductivities, we can then compute the Sobol indices

for the changes of RDM and MAG, expressing the influence

of changes in each tissue conductivity on signal topography

and magnitude. A similar approach was previously used by

Vallaghé and Clerc (2008). As a reference solution, we use the

forward solution for the standard conductivity values indicated

in Table 1.

RDM and MAG are defined as follows:

RDM(utest , uref ) =

∥

∥

∥

∥

∥

utest

‖utest‖2
−

uref

‖uref ‖2

∥

∥

∥

∥

∥

2

,

MAG(utest , uref ) =
‖utest‖2

‖uref ‖2
,

(3)

where utest corresponds to the vector of electrode potentials for

varied conductivities and uref corresponds to the vector of electrode

potentials for standard conductivities.

The RDM represents the change in signal topography in

comparison to the reference solution, which was shown to be

linked to source localization accuracy, whereas the MAG defines

the change in signal magnitude. In most applications of EEG source

analysis, only the change of signal topography is of relevance,

whereas there are only a few cases where the exact source

magnitude is of interest. Thus, we mainly focus on the RDM

evaluations in this study.

2.4 EEG source analysis sensitivity analysis

To evaluate the influence of conductivity uncertainties on EEG

inverse solutions, we performed forward simulations for 1,000

randomly drawn sets of conductivities. Following, for each source

position, we calculate inverse solutions using the source space

sources_cortex∗ and a leadfield matrix obtained with standard

conductivity values. This scenario corresponds to the common

problem of EEG source analysis that the actual tissue conductivities

that influence the measurement result are unknown, while the

EEG source analysis is performed using conductivity values from

the literature. The resulting 1,000 source localizations per source

position can then be evaluated to investigate the sensitivity of the

EEG inverse solution to conductivity variations.

As an inverse method, we used goal function scans (GFS) with a

free source orientation, i.e., the source position i in the source space

for which

GoF = 1−

(

‖umeas − LiL
+
i umeas‖2

‖umeas‖2

)2

(4)

is maximal is selected as the reconstructed source location. Here,

umeas is the (simulated) measurement result, ‖ · ‖2 is the Euclidian

norm, Li = L(xi) is the #sensors× 3 leadfield matrix for position xi,

i.e., a matrix containing the forward simulation results for dipoles

with moments oriented in each of the three cartesian directions at

the source position, and L+i its Moore-Penrose inverse. In a single

dipole scenario, as it is given in our simulation study, the GFS

reliably finds the source position that optimally explains the data

(Knösche, 1997; Fuchs et al., 1998).

To evaluate the influence of the conductivity uncertainties

on the source localization, we calculate and visualize the average

localization error, i.e., the distance between source localization and

original source position, for the 1,000 sets of conductivities at

each source position. This allows to understand how much the

conductivity variations affect the accuracy of the source localization

for each source position.We further calculate and visualize the ratio

between the difference in source depth and the localization error

and again take the average over all sets of conductivities to analyze

to what extent the localization error can be explained by a change in

source depth. Here, “change in source depth” denotes the absolute

value of the difference between the source depth of the original

source and the source depth of the reconstructed source.

To understand the influence of the variation of each tissue

conductivity on the source localization, we calculate and visualize

the correlation between deviations of each conductivity from the

average conductivity and distance of the source reconstruction

to the center of the point cloud of source localizations, and

the correlation between each conductivity and the source depth.

Again, these measures are calculated for each source position in

sources_cortex.
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The Sobol indices computed as described in Section 2.3

only indicate which tissue conductivities contribute most to the

variation of an output parameter, but not how strongly this output

parameter varies overall. To understand the dependency between

RDM and source analysis accuracy, we calculate the RDM for all

source positions and all 1,000 considered sets of conductivities,

and visualize the average RDM and the correlation between

localization error and RDM for each position in source space

sources_cortex.

2.5 Evaluation

We employ two kinds of evaluation in this study. On the

one hand, we visualize the results directly on an inflated cortex

surface. This allows to visually identify the most affected brain

areas. On the other hand, we plot the median Sobol indices and the

corresponding 50% confidence interval, i.e., the interval between

upper and lower quartile, as a function of the source depth. In

this case, the source depth is calculated as the distance from the

source position to the inner skull surface. These plots allow to

identify in how far the source depth affects the sensitivity of the

forward solution toward the different conductivities. Similar plots

are also created for the correlation between the tissue conductivities

and source localization error/source depth as a function of the

source depth.

Figure 1 (right) allows to understand the distribution of source

depths, which is necessary to interpret these plots. Unlike in

spherical models, there is no unique definition of source depth in

realistically shaped head models. In this study, we chose to define

source depth as the distance of a source position to the inner skull

surface. We chose this definition over the also frequently used

distance to the outer skin surface, as it led to better interpretable

results when plotting effect measures as a function of source depth.

In result, some source positions that would usually be considered

as “deep”, e.g., in the medial temporal lobe, are classified as rather

superficial in our study, as they are close to the base of the skull.

Furthermore, Figure 1 (right) shows that source depths smaller

than 5 mm correspond to sources on top of gyri, which can be

assumed to mostly have a quasi-radial orientation. An exception

are sources at the inferior surfaces of frontal and temporal lobe,

which have a rather quasi-tangential orientation. Sources up to

a depth of 30 mm correspond to sources inside of sulci, which

are assumed to be mostly located on sulcal walls and have a

quasi-tangential orientation in consequence. However, for source

depths of about 15–30 mm this also includes sources at the

bottom of sulci, which again have a rather quasi-radial orientation.

Sources at depths of 30 mm and deeper mostly correspond

to source positions in the insula, the longitudinal fissure and

subcortical regions.

As our plots are based on the median and upper and lower

quartile, the results should be stable against outliers and especially

the median should represent the results for the dominant type

of sources at each source depth well. This would correspond

to quasi-radial sources for source depths smaller than 5 mm,

quasi-tangential sources for source depths of about 5–30 mm,

and sources in the insula and the longitudinal fissure for larger

source depths.

3 Results

3.1 EEG forward problem

3.1.1 Signal topography
In this section, we analyze the sensitivity of the topography

of EEG forward solutions toward tissue conductivity variations.

Therefore, we calculated the Sobol indices of the RDM in

comparison to a reference solution (see Equation 3). Figure 2 shows

that the skull conductivity clearly has the strongest influence on

the signal topography for nearly all source depths. Looking at

the first-order and the second-order skin-skull interaction Sobol

indices (Figure 2, left), we find a median skull conductivity Sobol

index of about 60% for source positions with a depth of up to

35 mm, which includes basically all source positions except those

deep in the longitudinal fissure and in subcortical regions (see

Figure 1, right). Besides, we also find a strong influence of the

skin-skull interaction for rather superficial sources. The median

of this second-order Sobol index is at about 20% for the most

superficial sources and gradually decreases for deeper sources. All

other Sobol indices are below 10% for superficial and medium-

deep sources. For sources deeper than 35 mm, e.g., sources deep

in the longitudinal fissure, the sensitivity toward the white matter

conductivity clearly increases, whereas the skull and skin-skull

Sobol indices decrease.

The full Sobol indices (Figure 2, right), i.e., the sum of all

variations attributed to one parameter (see Equation 2), underline

the dominant influence of the skull conductivity for all sources that

are not very deep even more. The median full skull conductivity

Sobol index is higher than 80% for source depths smaller than

30 mm. As a result of the skin-skull conductivity interaction,

also the full skin conductivity Sobol index is significant at a

value of 30% for the most superficial sources. For deep sources,

again, the sensitivity toward the white matter conductivity clearly

increases.

The visualization of first- and second-order Sobol indices on

the cortex surface underlines the influence of the skull conductivity

(Figure 3). For large parts of the cortex surface, the Sobol index

for the skull conductivity is clearly above 60% (Figure 3, second

row). Lower Sobol indices are mainly found on top of gyri and

at the bottom of sulci where the Sobol index drops to about 40%.

Due to the choice of source orientations normal to the cortex

surface, these source positions correspond to quasi-radial sources.

Furthermore, the medial view shows small Sobol indices for source

positions deep in the longitudinal fissure. For the skin-skull second-

order Sobol index, we find sensitivities of about 30% for very

superficial sources, whereas the sensitivity gradually decreases for

deeper sources. For the skin conductivity, we find generally rather

low Sobol indices of around 10% and lower. Here, lower values

are especially found for deeper sources at the bottom of sulci

and in some areas on top of gyri; higher values are consistently

found on sulcal walls. For gray and white matter conductivities, the

Sobol indices are almost zero for large parts of the cortex surface.

However, strong outliers are found especially on gyral crowns and

at sulci bottoms, where these Sobol indices are clearly increased.

This corresponds to the positions for which the skull conductivity

Sobol index was decreased and where we assume quasi-radial

sources. Furthermore, we find increased Sobol indices for gray and
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FIGURE 2

Median and 50% confidence interval of first-order and skin-skull second-order (left) and full (right) Sobol indices for signal topography/RDM plotted

as a function of source depth.

white matter conductivities deep in the longitudinal fissure and in

subcortical regions as can be seen in the medial view.

Visualizing the full Sobol indices (Figure 4), the predominance

of the sensitivity toward the skull conductivity gets evenmore clear.

Only for a few areas this sensitivity drops below 75%. Due to the

addition of the skin-skull Sobol index, also the full skin Sobol index

has a value of around 50% for large parts of the cortex surface.

We especially find a notable decrease in the sensitivity to the skin

conductivity on top of gyri and at the bottom of sulci. Gray and

white matter conductivities again only show a significant sensitivity

in a few areas, such as some gyral crowns and sulci bottoms.

3.1.2 Signal magnitude
To evaluate the influence of conductivity uncertainties on the

signal magnitude, we calculated the Sobol indices for the MAG

(see Equation 3). Figure 5 shows the strongest influence for skull

and gray matter conductivities. Furthermore, we observe that first-

order and full Sobol indices are almost identical, as the higher-order

interactions are negligible for the signal magnitude. Therefore, we

only discuss the full Sobol indices here and also only provide the

cortex plots for the full Sobol indices.

For the most superficial sources, we find the strongest influence

for the skull conductivity with a Sobol index of about 50%. For

the influence of the gray matter conductivity, we find a Sobol

index of about 25% and for the skin conductivity of about 20%.

The influence of the white matter conductivity is negligible and

stays below 10% at all source depths. For slightly deeper sources

of about 5 mm depth, the influence of skin and skull conductivity

slightly increases, whereas that of gray matter slightly drops.

With increasing source depth, the influence of the gray matter

conductivity gradually increases up to a Sobol index of about 40%

for sources with a depth of 20 mm and more, whereas the influence

of skull and skin conductivities drops to Sobol indices below 40 and

20%, respectively, for sources with a depth of 20 mm and more.

The visualization on the cortex surface (Figure 6) shows

the strongest influence of the skull conductivity on the signal

magnitude for sources on top of gyri with Sobol indices above 50%.

This influence gradually decreases to values around 35% for sources

deeper inside the sulci. For the gray matter conductivity, we see

the exact opposite with the weakest influence and Sobol indices of

about 20–25% on top of gyri and a gradual increase toward values of

up to 50% at the bottom of sulci and deep in the longitudinal fissure.

For the skin conductivity, we find the same decrease from the top

of gyri to the bottom of sulci as for the skull conductivity, just at a

clearly reduced level with Sobol indices of about 25% and lower. For

the white matter conductivity, we do not find a significant influence

except for some deep brain regions visible in the medial view.

3.2 EEG inverse problem

Analyzing the influence of conductivity variations on EEG

source analysis, we first focus on the general localization

errors caused by simultaneous variations of all four tissue

conductivities considered uncertain and analyze the direction

of these localization errors, i.e., in how far these can be

explained by an incorrect depth of the reconstructed source

position. To understand the relationship between the results

obtained in the forward simulation study, we further compare

the distribution of the average localization error and the average

RDM as well as the correlation between RDM and localization

error at each source position. Subsequently, we analyze the

correlation between localization errors and conductivity variations

to understand which conductivities have the strongest influence on

the localization errors.

Figure 7 (top) shows that source positions inside the sulci are

clearly more sensitive to localization errors due to conductivity

uncertainties than superficial source positions on top of the gyri.

We find average localization errors of up to 10 mm for sources

deep inside of sulci, whereas the average localization errors remain

below 5 mm for superficial sources. For rather superficial sources

in the longitudinal fissure we find large localization errors as

well, whereas the localization errors for deep brain regions that
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FIGURE 3

First-order and skin-skull second-order Sobol indices for signal topography visualized on inflated cortex surface; (fronto-)lateral (left column) and

medial (right column) view. Please observe the di�erent scalings of the colorbar.
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FIGURE 4

Full Sobol indices for signal topography visualized on inflated cortex surface; (fronto-)lateral view.

FIGURE 5

Median and 50% confidence interval of first-order (left) and full (right) Sobol indices for signal magnitude/MAG plotted as a function of source depth.

could be attributed to subcortical structures are small. Visualizing

the ratio between change in source depth, i.e., the absolute value

of the difference between depth of the original source position

and depth of the reconstructed source position, and localization

error, i.e., the distance between the original source position and

the reconstructed source position, Figure 7 (bottom) shows that

for the quasi-tangential sources on the sulcal walls and for

sources in the longitudinal fissure the localization error is nearly

completely caused by changes in source depth, whereas this is

slightly less distinct for the quasi-radial sources at the bottoms of

the sulci. For the quasi-radial sources on top of gyri, only a small

fraction of the localization error can be explained by changes in

source depth.

Comparing the average localization error (Figure 7, top) and

the average RDM for each source position (Figure 8, top) there

seems to be no direct relation between the size of the topography
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FIGURE 6

Full Sobol indices for signal magnitude visualized on inflated cortex surface; (fronto-)lateral (left column) and medial (right column) view.

errors at a source position due to conductivity variations and the

resulting average localization error. The largest average RDMs are

found on top of gyri, which are the source positions at which

the average localization error is minimal. However, analyzing

the correlation between RDM and localization error at each

source position (Figure 8, bottom), we find a clear, positive

correlation for the source positions for which we also find

large localization errors (compare Figure 8, bottom, and Figure 7,

top). For sources that are less affected by localization errors in

general, we only find a weaker correlation between RDM and

localization errors.

To understand which tissue conductivities drive the overall

localization errors and the changes in source depth, we calculated

two different correlation coefficients. For the localization error, we

calculated correlation coefficients between the absolute value of

the deviation of a tissue conductivity from the mean conductivity
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FIGURE 7

Average localization error (top) and the average ratio between the change in source depth and localization error (bottom) visualized on inflated

cortex surface; (fronto-)lateral (left column) and medial (right column) view.

for this tissue, |σi − (σmax − σmin)/2|, and the distance of the

source localization from the center of the point cloud of source

localizations for each source position, ‖xi −
1
n

∑

j xj‖2 (Figure 9,

left). Taking the absolute value of the deviation was necessary here

to be able to properly calculate a correlation, as the localization

error can only be measured as a distance to a reference position

(in our case the center of the point cloud of source localizations),

i.e., the distance is always positive, regardless of whether the

conductivity was increased or decreased. For the source depth,

it was directly possible to calculate the correlation coefficients

between tissue conductivities and depth of the corresponding

reconstructed sources (Figure 9, right).

We find that changes in the skull conductivity have the by

far strongest influence on localization errors, with a correlation

coefficient of around 0.6 for all source depths. All other correlation

coefficients have small values below 0.1 with the skin conductivity

having the second highest correlation especially for sources deeper

than 1 cm (Figure 9, top). We find a strong negative correlation

between skull conductivity and source depth, especially for sources

deeper than 1 cm. At the same time, we find a positive correlation

of up to 0.3 between changes in skin conductivity and source depth.

This means that using a higher skull conductivity for the simulated

source leads to a more superficial source localization based on

standard conductivities, whereas a higher skin conductivity leads to

a deeper source localization. As shown in previous studies, changes

in skin and skull conductivities have opposite effects and the effect

of the skull conductivity is stronger.

We find an increasing variation in the correlation of

skull conductivity and source depth for sources 20 mm and

deeper. This is presumably caused by sources already being

located relatively deep in sulci, for which a further increase

in source depth within the sulci upon a decrease of the

skull conductivity is not possible. These sources might then

be mislocalized in a different brain structure but at a similar

source depth, e.g., in a neighboring sulci, resulting in a reduced

correlation coefficient.

Visualizing the correlation coefficients of skin and skull

conductivities and source depth shows the strongest correlations

for sources inside the sulci and especially on sulcal walls

(Figure 10). This correlates to the source positions for which

the localization error was mainly driven by an incorrect

depth of the reconstructed sources (see Figure 7, bottom).

The still relatively high correlation coefficients for sources

on top of gyri can be of less relevance, since these source

positions were previously found to be more robust against

localization errors (see Figure 7, top), so the correlations were

probably caused by rather small variations of the source

localizations. For deep brain areas the medial view shows inverted

correlation coefficients for both skin and skull conductivity.

However, due to the generally small average localization errors

in these areas (Figure 7, top) and the small influence of skin

and skull conductivity on the signal topography for these

sources (Figure 3) they presumably have only little influence

in practice.
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FIGURE 8

Average RDM (top) and correlation between RDM and localization error, i.e., distance between reconstructed and original source position, (bottom)

visualized on inflated cortex surface; (fronto-)lateral (left column) and medial (right column) view.

FIGURE 9

Median and 50% confidence interval of the correlation coe�cient between deviation of tissue conductivities from mean, |σi − (σmax − σmin)/2|, and

distance to average source localization (left) and correlation coe�cient between tissue conductivity and depth of localized source (right) plotted as

a function of source depth.

4 Discussion

4.1 EEG forward problem

In this study, we investigated the sensitivity of EEG forward

and inverse solutions to conductivity uncertainties. Making use of

Sobol indices, we found that variations of the skull conductivity

have the by far strongest influence on the topography of EEG

forward solutions (Figures 2–4). Furthermore, we found a notable

influence of skin conductivity variations, especially through the

second-order skin-skull interaction. For very deep sources (source

depth of more than 40 mm), which corresponds to sources deep in
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FIGURE 10

Correlation coe�cient between tissue conductivity and depth of source localization for skin (top) and skull conductivity (bottom) visualized on

inflated cortex surface; (fronto-)lateral (left column) and medial (right column) view.

the longitudinal fissure and in subcortical structures, the sensitivity

to white and gray matter conductivity variations increases clearly.

For the signal magnitude, we find a strong sensitivity to variations

of skull and gray matter conductivities, with an especially strong

influence of the skull conductivity for superficial, quasi-radial

sources (Figures 5, 6). Furthermore, we find a notable influence of

the skin conductivity which is almost constant for all source depths.

These results confirm the results of prior sensitivity studies

(Gençer and Acar, 2004; Vallaghé and Clerc, 2008; Vorwerk et al.,

2019a). Using realistic three- and four-layer models, Vallaghé

and Clerc (2008) found the strongest sensitivity for the skin-

skull interaction, whereas we found the strongest sensitivity for

variations of the skull conductivity in our study with a clearly lower

sensitivity to the skin-skull interaction. However, for EEG source

analysis, the variations of skin and skull conductivity were shown

to have almost identical effects on localization errors but with

opposing directions, and the influence of the skull conductivity was

found to be stronger than that of the skin conductivity (Figure 10,

Vorwerk et al. 2019a). Thus, it is hard to distinguish between the

first-order effects of variations of skin and skull conductivity and

the second-order skin-skull sensitivity in a sensitivity study, but the

practical implications are the same.

Whereas prior studies investigated the sensitivity of the EEG

forward solution toward conductivity variations only for a few

sources, we present results for sources positioned on the whole

cortex surface and variations of four tissue conductivity in our

study. Vallaghé and Clerc (2008) and Vorwerk et al. (2019a) both

analyzed a source in the postcentral gyrus, for which it is not

directly clear in how far the results are representative for general

source positions. Our study shows that the results for such a source

can indeed be generalized for most sources on sulcal walls, whereas

we find a slightly different sensitivity distribution for sources on

top of gyri and at the bottom of sulci. For such sources, the

sensitivity toward skin and skull conductivity may be reduced and

a higher sensitivity toward variations of gray and white matter

conductivities can be found. This corresponds to the results of

Gençer and Acar (2004), who found a strong dependency of the

sensitivity values on the dipole direction.

4.2 EEG inverse problem

We find the strongest influence of conductivity variations

for sources inside of sulci, especially on sulcal walls, and in

the longitudinal fissure on EEG source localizations. For these

sources, we observe a strong change of the depth of the source

reconstruction as a result of conductivity variations (Figure 7). We

find average localization errors of up to 1 cm, which corresponds

to an extent of the point cloud of source localizations of up to

2 cm. A large amount of these localization errors is caused by

incorrect reconstructions of the source depth, i.e., the sources

are localized more superficial or deeper on the sulcal wall than

the original source position, which makes these mislocalizations

relatively predictable. The localization of sources on top of gyri,

which mostly have a quasi-radial or partially quasi-radial source

orientation, is clearly less affected by conductivity variations.

However, only a small amount of these localization errors is caused

by an incorrect reconstruction of the source depth, and thus has

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1335212
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Vorwerk et al. 10.3389/fnhum.2024.1335212

to be mainly caused by mislocalizations in a direction tangential

to the inner skull surface, which could be a mislocalization

of the source position along the top of the gyri or to the

top of a neighboring gyri. In consequence, this makes these

mislocalizations—if they occur—potentially harder to predict than

those for quasi-tangential sources.

At all source depths except for very deep brain areas, we

find a strong correlation between the localization error and

the change in skull conductivity (Figure 10). Investigating the

correlation between tissue conductivity variations and the change

in source depth, we find a strong negative correlation with the skull

conductivity and a positive correlation with the skin conductivity.

This means that underestimating the skull conductivity leads to

a too shallow source reconstruction and overestimating to a too

deep source reconstruction. The opposite effect is found for the

skin conductivity. Changes in gray and white matter conductivity

neither affected the general localization error nor the source depth.

Our results are in line and expand upon prior studies

investigating the influence of tissue conductivity variations on

EEG source localizations (Vanrumste et al., 2000; Chen et al.,

2010; Akalin Acar and Makeig, 2013; Aydin et al., 2014; Vorwerk

et al., 2019a; McCann and Beltrachini, 2022). These studies mostly

focused on the effect of variations of the skull conductivity or

only investigated single source positions. Our study shows that

the effects of skin conductivity variations on the depth of source

reconstructions found in Vanrumste et al. (2000) and Aydin et al.

(2014) can be generalized for almost all source positions with

limitations for very superficial sources. Furthermore, our study

confirmed the opposing effects of variations of skin and skull

conductivity and confirmed the effect of the skin conductivity on

the depth of the reconstructed source found in Vorwerk et al.

(2019a) for general source positions. Finally, we also found that the

effects of gray and white matter conductivity variations on source

localizations remain negligible even for very deep cortical sources,

e.g., in the insula.

4.3 Limitations

To obtain results that are universally applicable, we made

use of a head model based on an averaged MRI template in

this study. Therefore, any effects due to individual anatomical

variations should be excluded. The stability of our results over

the whole cortex suggests that these can largely be transferred to

individual head models, of course, except in cases with significant

variations of the anatomy such as skull openings, brain resections,

or lesions (Oostenveld andOostendorp, 2002; Brodbeck et al., 2009;

Rullmann et al., 2009; Lanfer et al., 2012).

The headmodel used in this study has twomajor simplifications

compared to six-layer state-of-the-art headmodels with anisotropic

white matter conductivity. We did not include white matter

anisotropy in our study, as no such data are available for the New

York Head. Given the small influence of variations of the white

matter conductivity found for nearly all source positions in this

study, it can be assumed that this simplification did not have any

significant effect on the outcome of our study. Furthermore, we did

not include the distinction between skull compacta and spongiosa,

but modeled a homogeneous skull compartment instead. Prior

studies have shown that neglecting this distinction can especially

affect the accuracy of the EEG forward solution in temporal regions

(Vorwerk et al., 2014; Nielsen et al., 2023), below suture lines

(McCann and Beltrachini, 2022), or at the skull base (Montes-

Restrepo et al., 2014). Since we did not consider this distinction in

both the forward and inverse calculations, there should be no direct

impact on the results of this study. However, considering variations

of skull compacta and spongiosa conductivities separately would

add another layer of complexity and might be of interest in future

studies. To keep the computational complexity within bounds one

might neglect variations of gray and white matter conductivities in

turn, which were found to have only a minor influence in our study.

Both in the forward and inverse studies, we focused on single

dipole scenarios, i.e., extended sourcemodels were not investigated.

In general, the results of our inverse study should translate for

all inverse methods that allow for an accurate localization of

single dipoles. This includes not only dipole scans and dipole fits,

but also beamforming methods (Sekihara and Nagarajan, 2008;

Westner et al., 2022) and some current-density reconstruction

methods, e.g., Bayesian methods (Lucka et al., 2012; Costa et al.,

2017; Rezaei et al., 2020), minimum norm estimates (MNE)

with depth weighting (Fuchs et al., 1999), or LORETA variations

(Pascual-Marqui et al., 2002). Contrary to this, Stenroos and

Hauk (2013) have shown that classical MNEs are robust against

skull conductivity errors. However, this comes at the cost of an

increased localization error for sources that are not superficial

(Stenroos and Hauk, 2013, Figure A1), since MNE suffers from

depth-bias, i.e., the peak of the reconstructed current density is

generally localized too superficial for deep sources (Fuchs et al.,

1999; Lucka et al., 2012). Thus, MNEs are not a suitable inverse

approach in scenarios where deeper sources are assumed. In other

scenarios, e.g., group studies in which widespread brain activation

is reconstructed and compared between subjects, the benefit of the

robustness against skull conductivity variations might outweigh the

disadvantage of the depth-bias. In general, the effect of conductivity

variations on the reconstruction of extended sources was not

investigated in this study. However, it can be assumed that our

results can be generalized to such cases as long as the source is still

predominantly dipolar.

Finally, it has to be noted that our choice of the intervals within

which the tissue conductivities may vary (Table 1) represents a

worst-case scenario. Not only were these intervals chosen rather

widely, but it can also be assumed that the real distribution of
the conductivities is not uniform but more focused around the

literature value (McCann et al., 2019). In practice, the tissue
conductivity uncertainties could potentially be more realistically
modeled through, e.g., β- or Normal distributions (Gutiérrez et al.,

2004; Saturnino et al., 2019). However, these distributions require

additional parameters, which, again, are not known a priori and

need to be estimated based on the literature.

5 Conclusion

In this study, we found that the topography of EEG forward

solutions for source positions on the whole cortex surface is

mostly sensitive to variations of skull and skin conductivity. The

magnitude of EEG forward solutions is also very sensitive to the
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skull conductivity, but almost similarly sensitive to the gray matter

conductivity and to a smaller degree also to the skin conductivity.

Analyzing the EEG inverse problem, we find that these changes

in the EEG forward solutions translate to localization errors

particularly for sources inside of sulci, with the strongest effect on

sources on the sulcal walls. For these sources, the localization errors

clearly correlate with variations in skull and skin conductivity

resulting in changes in the source depth of the reconstructed

sources. Sources on top of gyri showed the strongest topography

changes for varying tissue conductivities, but these changes resulted

in smaller source reconstruction errors than for sources inside of

sulci. We are convinced that these results help to better estimate the

uncertainty inherent to EEG source localizations. Furthermore, our

study shows the additional value of skull conductivity calibration,

as the inter-individual variation of the skull conductivity is one

of the main sources of EEG source analysis uncertainties affecting

almost all cortex areas.
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