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Visual working memory (WM) engages several nodes of a large-scale network

that includes frontal, parietal, and visual regions; however, little is understood

about how these regions interact to support WM behavior. In particular, it is

unclear whether network dynamics during WMmaintenance primarily represent

feedforward or feedback connections. This question has important implications

for current debates about the relative roles of frontoparietal and visual regions

in WM maintenance. In the current study, we investigated the network activity

supporting WM using MEG data acquired while healthy subjects performed

a multi-item delayed estimation WM task. We used computational modeling

of behavior to discriminate correct responses (high accuracy trials) from two

di�erent types of incorrect responses (low accuracy and swap trials), and

dynamic causal modeling of MEG data to measure e�ective connectivity.

We observed behaviorally dependent changes in e�ective connectivity in a

brain network comprising frontoparietal and early visual areas. In comparison

with high accuracy trials, frontoparietal and frontooccipital networks showed

disrupted signals depending on type of behavioral error. Low accuracy trials

showed disrupted feedback signals during early portions of WM maintenance

and disrupted feedforward signals during later portions of maintenance delay,

while swap errors showed disrupted feedback signals during the whole delay

period. These results support a distributed model of WM that emphasizes the

role of visual regions in WM storage and where changes in large scale network

configurations can have important consequences for memory-guided behavior.

KEYWORDS

dynamic causal model (DCM), working memory, magnetoencephalography (MEG),

e�ective connectivity, binding problem

Introduction

Neural activity supporting working memory (WM) is distributed throughout the brain

(Christophel et al., 2017; Sreenivasan and D’Esposito, 2019; Mejías and Wang, 2022),

motivating the view that WMmay be better understood as a distributed network function,

rather than being localized to specific brain regions (Lorenc and Sreenivasan, 2021; Rezayat

et al., 2022), as suggested by evidence of task-dependent reorganization of large-scale brain

networks during WM (e.g., Cohen and D’Esposito, 2016). This “new” perspective of WM

was anticipated by Patricia Goldman-Rakic, who pioneer the study of the neurobiological

underpinnings of WM (Goldman-Rakic, 1995). Goldman-Rakic and colleagues focused

on the role of prefrontal cortex in higher cognitive functions, particularly dorsolateral

prefrontal cortex (dlPFC) inWM, but their work also demonstrated that dlPFCwas densely
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connected with posterior parietal cortex, both within- and between-

hemispheres (Schwartz and Goldman-Rakic, 1984; Cavada and

Goldman-Rakic, 1989). Remarkably, these two regions were

also connected with a widespread and distributed network

of cortical and subcortical regions supporting spatially guided

behavior (Selemon and Goldman-Rakic, 1988). Despite this early

evidence, the majority of subsequent investigations into WM

networks, particularly in human brain imaging, have focused

on interactions between prefrontal and parietal cortex based

on findings that (i) these regions consistently coactivate during

WM tasks (Rottschy et al., 2012, 2013; Daniel et al., 2016),

(ii) modulation of frontoparietal activity by TMS/tACS impacts

behavioral performance (Kessels et al., 2000; Postle et al., 2006;

Polanía et al., 2012; Violante et al., 2017; Tseng et al., 2018;

Biel et al., 2022), and (iii) that communication between distinct

frontal and parietal sites are task-dependent and content-specific

(Salazar et al., 2012; Ratcliffe et al., 2022), are modulated by WM

load (Crespo-Garcia et al., 2013; Syrjälä et al., 2021), and predict

individual behavioral capacity in visual WM (Palva et al., 2010).

Taken together, these findings strongly support the early evidence

of Goldman-Rakic and colleagues that network activity involving

frontal and parietal cortices may be key for understanding

WM function.

There remain several unanswered questions about how

network activity supports WM. First, the majority of studies about

WM network function do not investigate effective connectivity

between brain regions, limiting inferences about how interregional

communication supports WM. Effective connectivity refers to

the directed causal influence that one neural system or region

exerts over another, underscoring the dynamic and experiment-

dependent nature of these interactions (Friston, 2011). This

concept encapsulates the notion that the strength and direction of

influence between distinct brain regions can vary based on specific

experimental conditions or tasks. In human imaging data, effective

connectivity can be addressed using dynamic causal modeling

(DCM), a Bayesian framework designed to infer, from brain activity

measurements, hidden neuronal states with a neurobiological

meaning, such as the context-dependent modulation of network

dynamics and the differential contribution of feedforward (bottom-

up) and feedback (top-down) signals (David and Friston, 2003;

Stephan et al., 2010; Friston et al., 2019). Previous DCM studies

using fMRI with an n-back WM task reported an association

between memory load and enhanced effective connectivity in

frontoparietal feedforward (Dima et al., 2014; Jung et al., 2018) and

feedback signals (Heinzel et al., 2017). A DCM study of local field

potentials in non-human primates during a change detection task

(Pinotsis et al., 2019) also reported load-dependent modulations of

effective connectivity in the frontoparietal network. Furthermore,

disturbances in feedback coupling were observed when the number

of items surpassed cognitive capacity, underscoring the behavioral

significance of large-scale effective connectivity.

Second, network studies largely focused on dorsolateral

prefrontal and posterior parietal regions while ignoring the

contributions of medial prefrontal regions, despite the robust

activation of superior frontal areas during the delay period (Li

et al., 2022), its association with spatial WM (Courtney et al.,

1998; Rottschy et al., 2012, 2013) and the pattern of structural

connectivity of the superior frontal with other WM nodes in the

frontoparietal networks (Briggs et al., 2020). The contributions of

sensory regions have also been ignored, particularly during WM

maintenance, when sensory stimulation is absent. Understanding

how these regions interact with frontoparietal circuits has

the potential to shed light on the debate about the role of

sensory regions in WM (Xu, 2020; Lorenc and Sreenivasan,

2021), adjudicating between the sensory recruitment hypothesis

(Pasternak and Greenlee, 2005; D’Esposito, 2007), which is

supported by findings from human neuroimaging studies that

demonstrate that visual WM contents can be decoded from visual

areas (Sreenivasan et al., 2014a; Curtis and Sprague, 2021), and the

countervailing view that early sensory activity during WM reflects

feedback signals from parietal or frontal regions (Leavitt et al.,

2017; Xu, 2020). The study of effective connectivity, particularly

the contribution of feedforward/feedback signals from/to early

visual areas during the delay period has the potential to make an

important contribution to this debate.

Third, the behavioral relevance of WM network activity is

underspecified. Behavioral relevance is often inferred from changes

in network activity as a function of WM load. However, load-

dependent modulations may be due to progressive deployment

of neural resources in response to cognitive demands rather than

WM computations per se (Palva et al., 2010). Even studies that

do not rely on WM load differences do not discriminate between

different types of behavioral errors that might emerge from distinct

neural sources. Behavioral and computational evidence suggest

that, when the integration or binding of visual features is required,

behavioral errors consist a mixture of low accuracy errors (guess

responses) and swap errors. The former arise from disrupted neural

representations of individual features, while the latter appears

as a disruption in the integration between features (Bays, 2016;

Schneegans and Bays, 2017, 2019). Indeed, binding errors are

associated with lesions in frontoparietal networks (Lugtmeijer

et al., 2021), and feature binding has been associated with

intraparietal sulcus activity, relatively independent from cognitive

load (Gosseries et al., 2018) or stimulus identity (Cai et al.,

2020). In an fMRI study with a delayed continuous report task

(Mallett et al., 2022), successfully reconstructed location-specific

representations from early visual cortex and intraparietal area in

target trials. Interestingly, in swap trials, target location could

not be reconstructed, but both areas successfully reconstructed

the non-target stimulus on the location of subsequent swapped

report, indicating that swap errors arise from incorrect responses

being maintained in WM. While this evidence indicates that swap

and low accuracy trials may have distinct origins at the meso-

circuit scale, here we examine how large-scale network properties

contribute to behavioral outcomes in WM.

In the current study, we examined how WM performance

depends on network activity using a combination of data-driven

approaches to identify key nodes in a brain-wide WM network

and model-driven approaches to infer directional influences and

distinguish between different types of behavioral errors. We

analyzed MEG data acquired while healthy subjects performed

a delayed estimation task for location, and found that this task

engaged nodes in lateral and medial frontal cortex, as well as

parietal and occipital cortices. We used DCM to measure effective
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connectivity between these nodes and found that a key element

of this network was feedforward connections between visual and

frontoparietal regions. Finally, discriminating between trials with

high accuracy responses, low accuracy responses, and swap errors

allowed us to describe how differential configurations of this

network are associated with different types of behavioral errors.

Methods

Sample

We invited 30 healthy adults from the NYUAD community

to participate in this study, recruited from a larger pool who had

previously participated in a separate behavioral study with the

same task. In order to ensure that we had sufficient error trials for

our analyses, we only invited subjects who had symmetric swaps

(see below) on at least 5% of trials in the behavioral study. The

final sample included in our analyses was 26 subjects [age: 24.33

± 4.57, range (19–37); four females, 22 males], after discarding

three subjects due to poor performance (fewer than 15 correct

responses in one or more conditions of interest), and another

due to technical challenges transforming MEG data from sensor

space to source space. All subjects were right-handed with normal

or corrected-to-normal vision, and provided informed written

consent in accordance with procedures approved by NYUAD’s IRB.

Task design

Stimuli displays, timing, and responses were controlled and

recorded using the Psychophysics Toolbox (Brainard, 1997) in

MATLAB (The MathWorks, Inc., Natick MA, USA). We assessed

WM behavior using a delayed continuous report task (Figure 1A).

A fixation cross of 0.2 degrees of visual angle (DoV) was presented

in the center of the screen during baseline, stimulus presentation,

andmemory delays. Each trial began with a 1 s fixation period, after

which subjects saw three colored discs (each 0.55 DoV, presented at

an eccentricity of 4.5 DoV) for 0.2 s. Subjects were asked to hold

the colors and locations of all three discs over a blank 2 s memory

delay. At the end of the memory delay, instead of asking subjects

to report one of the items, we cued subjects to report the location

of each of the three items sequentially (in a random order) by

presenting a disc at fixation whose color indicated the color of the

item subjects were to report. Subjects adjusted the position of a

white circle of the same size and of the same eccentricity as the disc

using an MEG-compatible response dial and locked in their report

using a button box (Current Designs, Philadelphia PA, USA). Each

location report was self-paced. Following all three reports, subjects

were shown a 1 s feedback screen that indicated the presented and

reported locations on that trial. The trial concluded with a self-

paced intertrial interval (ITI)—that is, the next trial began when

subjects pressed a button. Subjects completed 500 ± 75 (400–

720) trials, divided into blocks of 80 trials (seven subjects) or 100

trials (19 subjects). Two subjects completed the experiment in two

sessions 1 and 4 days apart; the remaining subjects completed the

experiment in a single session.

The memory items were always presented in one hemifield in

a given block of trials, and left and right hemifield blocks were

presented in a random order. The color of the memory items on

each trial were chosen from 180 color equally spaced segments

drawn from a circle in CIELAB color space (radius 59◦, centered

at L = 54, a = 18, and b = −8) (CIE, 2004), with a minimum

gap of 15 color segments between memory items on a given trial

to avoid errors due to the color similarity of the memory items.

Memory locations were randomly sampled from an isoeccentric

(semi)circular space (depending on the hemifield block) with a

minimum gap of 15◦ of polar angle. We additionally excluded

locations that were 10◦ of polar angle away from the vertical

meridian to avoid well-documented oblique effects (Furmanski and

Engel, 2000).

Stimulus displays were projected onto a screen 85 cm away

from the subject’s head. Subjects were instructed to remain still

during the MEG recordings and to avoid blinking or moving their

eyes during the cue and delay screens. Subjects were free to move

their eyes during the response screens and were encouraged to use

the ITI as well as breaks between blocks to blink.

Behavioral analysis

To label trials based on subjects’ behavioral performance, we fit

a probabilistic mixture model with three components (target, non-

target, and guess responses) to the distribution of errors using the

C016_fit function (currently called mixtureFit, bayslab.com) (Bays

et al., 2009; Schneegans and Bays, 2016):

p
(

θ̂

)

= (1− β − γ ) φσ
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)
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1

2π
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m
∑
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∗

i

)

,

where θ is the target location (in radians), θ̂ is the reported location,

γ is the probability of random guess, β is the probability of swap,

θ∗i are the locations of non-targets with i = 1, . . . , m and m = 2,

and φσ is the circular normal distribution (Von Mises) with zero

mean and σ standard deviation. Maximum likelihood estimates of

parameters σ , γ , and β were obtained at subject level. Then, trial-

wise posterior probabilities that responses were drawn from each

of the three mixture components were used to define trial types

(see Figure 1C in Bays et al., 2009 and Figure 2 in Schneegans and

Bays, 2016). High accuracy (correct) responses were trials with a

target probability above 90% in all 3 reports, swaps errors were

trials with a probability of non-target response above 70% in at least

one report, and low accuracy trials comprised the remaining trials.

The more lenient cut-off criterion for swap trials was motivated

by the tendency of the model to underestimate swap frequency,

while the conservative cut-off in correct trials in all three reports

minimized the likelihood that correct trials contain lucky random

guesses. Note that the label “low accuracy” does not mean that all

three reports were inaccurate or guess responses; it simply indicates

that subjects did not report all three items with a high degree

of accuracy.
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FIGURE 1

Task design and model architecture. (A) Delayed continuous report task. Subjects retained the colors and locations of three items over a memory

delay and then responded indicating the location of each of the cued color items. (B) The location of sources used for the DCM analyses, as shown

on an MNI template brain. (C) Schematic representation of model architecture with between-source excitatory connections. Feedforward

connections (posterior-to-anterior) project from superficial pyramidal to spiny stellate cells; feedback connections (anterior-to-posterior) project

from deep pyramidal to inhibitory interneurons and superficial pyramidal cells; lateral connections comprises both feedforward and feedback

projections. EVC, early visual cortex; IPS, intraparietal sulcus; MFG, middle frontal gyrus; SFG, superior frontal gyrus.

MEG and MRI acquisition and
preprocessing

BeforeMEG acquisition, each subject’s head shape was digitized

using a Polhemus dual source handheld FastSCAN-II. MEG data

was recorded continuously using a 208-channel axial gradiometer

Yokogawa system (Kanazawa Institute of Technology, Kanazawa,

Japan) with a sampling rate of 1,000Hz and an online low-

pass filter of 200Hz. The continuous MEG data was first noise-

reduced using eight magnetometer reference channels located

away from the participant’s head and using the Time Shifted

Principle Component Analysis (TSPCA, block width of 5,000

and 30 shifts) as implemented in MEG160 software (Yokogawa

Electric Corporation and Eagle Technology Corporation, Tokyo,

Japan). To remove eye blink and heartbeat artifacts, an independent

component analysis was performed with fast ICAmethod in MNE-

Python (Ablin et al., 2018). All subsequent preprocessing steps

were performed using FieldTrip (Oostenveld et al., 2011). Data

was epoched from 1 s pre-stimulus onset to 2.7 s post-stimulus

onset (including baseline, stimulus presentation, memory delay,

and the first 0.5 s of response), demeaned, and low pass filtered

at 140Hz. In order to clean the data, we automatically rejected

trials and channels with high variance using ft_artifact_zvalue.m

function with the following settings: jumps artifacts threshold z =

20, muscle artifacts threshold z = 5 and blink artifacts threshold

z = 10. Additionally, we manually inspected individual epochs

to remove trials that were contaminated with jump, muscle, and

eye blink artifacts. Rejected channels were reconstructed using the

average of all neighbors. Preprocessing resulted in an average of

54 ± 37 (13–200) removed trials [accounting for the 11 ± 6% of

total trials (2–29)], and 2 ± 1 (1–10) rejected channels (out of 208)

per participant. The average number of trials available for analysis

was 446 ± 69 (357–707): 106 ± 94 (19–439) (23 ± 17%) high

accuracy trials, 213 ± 53 (80–328) (48 ± 11%) low accuracy trials,

and 126 ± 46 (46–250) (29 ± 10%) swap trials. The experimental

setup included trials with stimuli presented in either the left or right

hemifield. To analyze all trials without canceling out lateralized

neural signals, we took the following approach. For trials with left

hemifield presentation, we mirrored (reflected) the MEG sensors

across the midline, ensuring that MEG sensors on the left (right)

side aligned with the hemisphere contralateral (ipsilateral) to the

stimulus presentation (as depicted in Figure 2).

In a subset of eight subjects [age: 23.16 ± 3.54, range (20–

31); two females, six males], we used a high-resolution anatomical
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FIGURE 2

PEB results of trial type contrast between (A) high accuracy trials vs. low accuracy trials, (B) high accuracy vs. swap trials, and (C) low accuracy vs.

swap trials, on the baseline corrected estimates of e�ective connectivity during early delay (top) and late delay (bottom). Red connections indicate

trial-type1 > trial-type2, while blue indicate trial-type1 < trial-type2. All connections showed have posterior probability > 0.95 and out-of-sample

predictive accuracy of puncorrected < 0.05. Left side corresponds to the contralateral hemisphere, anterior (frontal) brain areas are shown on top.

MRI volume collected during a separate session to constrain

the transformation from sensor to source space. The anatomical

scan was acquired on a Siemens Magnetom Prisma 3T MRI

scanner using a 6.5min MPRAGE-3D T1-weighted, gradient-echo

acquisition sequence (TR: 2,400ms, TE = 2.22ms, flip angle: 8

degrees, voxel size: 0.8 mm3, 208 slices, FOV: 256 mm).

Selection of sources of interest

In order to study effective connectivity, we performed a time-

frequency analysis in source space to identify the network of neural

sources actively involved in WM, comprising frontal, parietal,

and occipital regions. First, we localized oscillatory sources using

the beamformer technique (Jaiswal et al., 2020; Westner et al.,

2022). The head model template in MNI space (“standard_bem”)

(Oostenveld et al., 2003) was transformed into a subject-specific

head shape to compute the volume conduction model using a

realistically shaped single shell approximation from FieldTrip’s

ft_prepare_headmodel.m function (Nolte, 2003). Next, we used

ft_prepare_sourcemodel.m function to create a source model with

a 1.25 cm isotropic 3D grid and with 1,499 sources within the

head model. Finally, source and head models were used to create

a forward model (ft_prepare_leadfield.m). For the subset of eight

subjects with MRI data, the head model was computed using

the structural T1 image, and the source model in standard space

was spatially normalized into subject-specific structural image

with a non-linear transformation (warp). As a result of this

transformation, forward model positions were equivalent across

subjects in normalized space. To compute the inverse solution,

the cross-spectral density (CSD) matrix was calculated using

discrete prolate spheroidal sequences (“dpss” taper in “mtmfft”

method in ft_freqanalysis.m function) with all valid trials using

baseline (−0.75 to −0.25 s) and delay period (0.2–2.2 s) epochs.

The resulting spatial filter was used to localize sources in the

frequency domain (computing power) using a beamformer dipole

analysis with dynamic imaging of coherent sources (“dics” method

in ft_sourceanalysis.m function) for frequencies from 2 to 100Hz in

steps of 2Hz, with a smoothing of ± 2Hz, and a 5% regularization.

For each trial type, source activity (power) during the delay period

was computed in 31 time windows of 0.5 s, in steps of 0.05 s, and

baseline-corrected (relative change method) with the trial-averaged

baseline epoch of 0.5 s (−0.75 to −0.25 s, equally spaced from

the beginning and end of the 1 s baseline). Finally, to normalize
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spatial maps across subjects, we transformed subject-specific maps

of power from the head coordinate system to the MNI coordinate

system using the inverse of the transformation matrix that was

computed when generating the forward model.

Sources of interest for the DCM analysis were selected using

a combined theory- and data-driven approach. Based on previous

literature (Sreenivasan and D’Esposito, 2019), we predefined

regions-of-interest (ROI) using the Brainnetome Atlas (Fan et al.,

2016): superior frontal gyrus (SFG, areas 1–14), middle frontal

gyrus (MFG, 15–26), intraparietal sulcus (IPS, 127–142), and early

visual cortex (EVC, 203–206). Then, we used the time frequency

matrices of power (31 time windows by 50 frequency bins) to

select the sources of interest within each ROI. For each source,

we performed a massive univariate one-way analysis of variance

(ANOVA)with trial type as a factor with three levels (high accuracy,

low accuracy, and swap trials), getting as output a time frequency

matrix of F-statistics. Then, for each source, we summed the

resulting uncorrected F-statistics over time and frequency, and

selected the source with highest collapsed F-statistic within each

ROI. All ROIs were considered separately for contralateral and

ipsilateral hemispheres, except in SFG. There, given the proximity

of the sources to themidline, we selected the source with the highest

F-statistic bilaterally. Sources coordinates were (Figure 1B): SFG

[Fcollapsed = 3,576; MNI: (8, 18, 68)], MFG [contralateral: Fcollapsed
= 3,399, (−43, 30, 30); ipsilateral: Fcollapsed = 3,760, (45, 30, 30)],

IPS [contralateral: Fcollapsed = 5,487, (−43, −58, 43); ipsilateral:

Fcollapsed = 4,129, (58, −33, 55)] and EVC [contralateral: Fcollapsed
= 3,108, (−18, −95, 5); ipsilateral: Fcollapsed = 3,161, (20, −95,

−8)]. Frontal and parietal nodes fall inside of a recent meta-

analysis of fMRI studies about delay activity in WM (Li et al.,

2022), while visual nodes fall in the occipital pole, from where

previous studies decoded memory contents during delay period

(Serences et al., 2009). Timecourses of selected sources of interest

were reconstructed using a linear constrained minimum variance

beamformer (“lcmv” method in FieldTrip) (Veen et al., 1997) with

a fixed orientation projected along the first PCA axis.

DCM model

We used a DCM with cross-spectral density as data

feature (range 2–100Hz in steps of 1Hz), as implemented in

SPM12 (Friston et al., 2012; Moran et al., 2013), with the

canonical microcircuit model (CMM) based on the 4-population

conductance-based neural mass model (Moran et al., 2011; Bastos

et al., 2012). The model comprises two components: the neuronal

model characterizes the dynamics of hidden neural states,

ẋ = f (x, u, θ) + Ŵx

and the observation model describes how neural activity gives rise

to observed data,

y = h (C, x) + ǫ

where x is the hidden neural state, u is the inputs to the neuronal

population, θ are the model parameters, Ŵx are the stochastic noise

terms in neuronal model, y is the observed MEG data, h is the

function mapping neural states to observed data, involving a lead

matrixC, and ǫ are stochastic noise terms in the observationmodel.

In the conductance-based model used in the current study,

neural dynamics are parametrized as the summed active and

passive currents across the membrane (Pereira et al., 2021).

Each neuronal population was modeled based on the Morris-

Lecar model,

CV̇ =
∑

k

gk (VK − V) + u+ ŴV

where C is the membrane capacitance, V is the membrane

potential, gk is the conductance of channel k, VK is the reversal

potential for channel k, u is the applied input current, ŴV is the

stochastic term modeling Gaussian noise. k comprises passive leak

current, and active currents of excitatory (Na+) and inhibitory

(Cl−) ion flow mediated by fast AMPA and GABAA receptors,

depending on the type of neuronal population. Hence, membrane

potential V and conductance of channels gk comprise the hidden

states x of the model in each neuronal population. Please refer

to Pereira et al. (2021) for a full description of the mathematics

of conductance based models, and see Moran et al. (2013) for a

broad overview of neural mass models. Within each source (brain

region), four neuronal populations are modeled: spiny stellate

cells, superficial pyramidal cells, inhibitory interneurons, and deep

pyramidal cells (Bastos et al., 2012). Neuronal populations within

each source were connected as follows: (i) excitatory connections

between excitatory spiny stellate and superficial pyramidal cells and

from superficial pyramidal to deep pyramidal cells, (ii) recurrent

connections between excitatory populations and the interlaminar

population of inhibitory interneurons, and (iii) inhibitory self-

connections of each population, modeling synaptic gain (Friston

et al., 2019).

The connectivity between sources, the seven brain regions

described above, was modeled through the matrices A =

[A {1} , A {2}], the intrinsic connectivity matrices representing the

strength of feedforward A {1} and feedback A {2} connections

between different neural sources (see model architecture below).

Types of connections were defined based on the specific

populations they projected to. Feedforward connections originated

from superficial pyramidal in the projecting source to spiny stellate

in the target source, feedback connections originated from deep

pyramidal in the projecting source to both inhibitory interneurons

and superficial pyramidal cells in the target source, and lateral

(interhemispheric) connection comprised both feedforward and

feedback connections. Since our focus of interest was not the

comparison between different model architectures of extrinsic

connectivity (inference on model architecture), but rather the

performance-dependent modulation of effective connectivity

(inference on model parameters), we defined a model architecture

with the canonical functional hierarchy. Building upon research on

the functional organization of brain networks (Bastos et al., 2015;

Michalareas et al., 2016; Nee and D’Esposito, 2016; Gratton C. et al.,

2018; Gratton G. et al., 2018; Marek and Dosenbach, 2018) and

previous DCM studies about WM (Dima et al., 2014; Heinzel et al.,

2017), prefrontal cortex was placed at the top and visual cortex

at the bottom of the hierarchy, designating posterior-to-anterior

connections as feedforward, anterior-to-posterior connections as
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feedback, and interhemispheric connections between regions at

the same level of the hierarchy as lateral connections (Figure 1C).

Finally, the experimental effects of interests, the baseline corrected

estimates of effective connectivity during delay period, were

modeled with the matrix B, comprising all the connections

defined in matrices A: 12 feedforward, 12 feedback, and six lateral

connections (Figure 1C). Note that there is no circularity in using

the same data to define ROIs and to study their interactions with

DCM, since the purpose of DCM is to test hypothesis about the

mechanisms underlying the experimental effects observed with

conventional analysis (Stephan et al., 2010). Massive univariate

statistical analyses (e.g., statistical parametric maps) to define ROIS

are standard practice in several DCM studies (Moran et al., 2011;

Dima et al., 2014; Auksztulewicz and Friston, 2015; Heinzel et al.,

2017; Jung et al., 2018; Friston et al., 2019; Adams et al., 2021).

Model inversion and comparison

For each subject, we inverted two DCMs for each trial

type (high accuracy trials, low accuracy trials, and swap trials),

encoding the baseline corrected estimates of effective connectivity

(matrix B) during early and late delay. All time intervals had a

length of 800ms [baseline (−900 to −100ms), early delay (400–

1,200ms), and late delay (1,200–2,000ms)], and were separated

from stimulus presentation (0 to 200ms) or report (from 2,200ms)

by at least 100ms. The separation of delay period in early and

late time windows was motivated by previous studies in non-

human primates showing that the dynamic properties of WM

coding were stronger during the initial portions of the memory

delay (Murray et al., 2017), and the modulation of memory

load showed distinct spectral profiles during the early and late

portions of the memory delay (Buschman et al., 2011) as well

as differences in effective connectivity in frontoparietal networks

(Pinotsis et al., 2019). Models were inverted to fit the cross-spectral

density through the optimization of variational free energy under

Laplace approximation (Friston et al., 2007) to optimize log scaling

parameters around default priors (spm_fx_cmm.m). Please see

Zeidman et al. (2023) for a comprehensive technical review of the

Bayesian inference scheme employed to fit DCMmodels.

Statistics over DCM parameters

We performed statistical inference on the parameters of

the optimized DCM model using PEB (Friston et al., 2015;

Zeidman et al., 2019). Compared to standard statistical inference,

PEB has the advantage of taking into account the estimated

uncertainty (variance) about model parameters, downweighing

the contribution of less certain parameter estimates on group

effects. The PEB approach is also advantageous in the context

of model inversion and comparison, since the inversion of the

same “full” DCM per subject/condition avoids the issue of fitting

multiple models and performing Bayesian model comparison over

models, which can lead to different DCMs falling into distinct

local optima. PEB is a Bayesian hierarchical model over parameters

with individual DCMs as a first level, and group effects on DCM

parameters as a second level (see Zeidman et al., 2019 for details).

Yi = Ŵi

(

θ
(1)
i

)

+ ε
(1)
i (1)

θ (1) = Xθ (2) + ε
(2)
i (2)

The first level (Equation 1) represents the observed MEG data

Y of the i-th subject modeled with the dynamic causal modelŴ with

parameters θ
(1)
i and noise term ε

(1)
i . The second level (Equation 2)

shows that parameters of interest from first level θ (1) are modeled

at group level through a GLM with design matrix X and group-

level parameters θ
(2)
i , with zero-mean noise to account for between-

subject variability as random effects ε
(2)
i . In our study, parameters

of interest in PEB analysis (within-subjects design matrix) were the

baseline corrected estimates of extrinsic (between-source) effective

connectivity (matrix B). We performed pairwise comparisons

between trial types with a group-level design matrix with an

intercept (column of 1’s) encoding commonalities, and a regressor

of interest encoding the pairwise contrast between trial types

(e.g., high accuracy vs. low accuracy). We report PEB parameters

with strong evidence (posterior probability, Pp > 0.95) (Kass and

Raftery, 1995), and a large effect size, assessed through its predictive

accuracy in a leave-one-out cross-validation (spm_dcm_loo.m). In

this procedure, a PEB model was constructed with all subjects

but one, predicting the excluded subject’s covariates, and iterated

through each participant serving as the left-out subject. The

predictive accuracy was quantified as Pearson’s correlation between

PEB covariates and cross-validation predictions. We applied a

statistical threshold of p= 0.05, uncorrected.

Data and code availability

All scripts to invert DCMs and perform PEB analysis are

available online: https://github.com/asantoangles/dcm_working_

memory. Source timecourses used as input for DCM, in

addition to inverted DCMs and PEB results, are available

on Open Science Framework: https://osf.io/hbgu2/?view_only=

8bc743e2068d47f0889f7b556beb2068.

Results

Behavioral results

Absolute mean error was 24.4◦ ± 5.17◦ (14.2◦, 34.5◦) for all

trials, indicating that subjects were successfully able to complete the

task. As expected by the definition of trial types, performance in

high accuracy trials [11.2◦ ± 1.9◦ (7.4◦, 16◦)] was better than low

accuracy trials [21.5◦ ± 4.9◦ [(14.3◦, 33.8◦); two-sample Wilcoxon

test:W = 354, z=−6.12, p< 0.0001, effect size r= 0.85], and swap

trials [51.6◦ ± 5.2◦ (43.4◦, 68◦); W = 351, z = −6.17, p < 0.0001,

r = 0.85]. Performance in low accuracy trials was significantly

better than swap trials (W = 351, z = −6.17, p < 0.0001, r

= 0.85). Additionally, we observed no significant differences in

absolute mean error between trials with left vs. right hemifield

stimulus presentation [W = 734, p = 0.8; left: 25.2◦ ± 5.7◦ (13.2◦,

36.5◦), right: 23.7◦ ± 4.9◦ (13.9◦, 32.5◦)] and no difference in the

proportion of left/right trials observed in distinct trial types (high
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accuracy trials: 0.49/0.51, low accuracy trials: 0.5/0.5, swap trials:

0.51/0.49; all pairwise comparisons between trials with a Chi-square

test with Yates continuity yielded p-values > 0.8). The similar

performance across hemifields helped justify our decision to flip

sensors across the midline for MEG analysis (see Methods).

DCM model fit

Correlation between empirical and predicted amplitude

(modulus) was excellent (r = 0.9907 ± 0.004). Model predictions

of within-ROI power spectral density (PSD) matched empirical

data in all frequencies. Between-ROIs cross-spectral density (CSD)

predictions were below the empirical values, although empirical

CSD differences between trial types were generally reproduced

by model predictions (Supplementary Figure S1B). Coefficient of

determination also showed a good model fit [R2 = 0.97 ± 0.01

(0.46–0.99)]. PEB results summarized below describe the effects

with strong evidence (Pp > 0.95) an out-of-sample predictive

accuracy with p < 0.05, uncorrected (see Supplementary material

for a detailed description of PEB results).

PEB results

Low accuracy trials, in comparison with high accuracy trials

(Figure 2A), during early delay, showed reduced feedback signals

in ipsilateral frontooccipital and medial to superior frontal

connections, and increased interhemispheric connections between

parietal and frontal areas. During late delay, low accuracy trials

showed reduced feedforward signals in ipsilateral frontoparietal

and frontooccipital connections, and reduced lateral connections

between early visual areas. Swap trials, in comparison with high

accuracy trials (Figure 2B), during early delay, showed reduced

feedback connectivity in ipsilateral frontooccipital and increased

superior frontal to ipsilateral parietal. Feedback connectivity was

also reduced in superior frontal to contralateral early visual

cortex during the whole delay period. Low accuracy trials, in

comparison with swap trials (Figure 2C), during early delay,

showed reduced feedback ipsilateral frontoparietal connectivity

and reduced feedforward connectivity in ipsilateral early visual

cortex to superior frontal. During late delay, low accuracy trials

showed increased feedback connectivity in several frontooccipital

connections: ipsilateral middle frontal to early visual cortex, and

superior frontal to ipsilateral and contralateral visual areas.

Discussion

In the current study, we report evidence that WM involves

changes in effective connectivity across a network involving frontal,

parietal, and visual areas; and demonstrated that these changes

were performance-dependent. In comparison with high accuracy

trials, low accuracy and swap error trials showed distinct patterns

of effective connectivity. In early delay, both types of error

trials showed reduced feedback connections in frontooccipital

connections, but in late delay the pattern was qualitatively distinct:

swap errors kept showing reduced frontooccipital connectivity,

while low accuracy trials showed reduced feedforward connections

emerging from early visual cortex and parietal to frontal

areas. Taken together, our findings suggest that WM recruits

a broad network of regions for optimal performance, and that

errors in performance are associated with distinct systems-

level reconfigurations of these networks, in agreement with the

distributed view of WM (Lorenc and Sreenivasan, 2021; Mejías and

Wang, 2022).

Cognitive functions emerge from a flexible reconfiguration

of large-scale brain functional networks in response to task

contingencies (Cohen and D’Esposito, 2016), with the integration

of frontoparietal and visual networks (Spadone et al., 2015; Hearne

et al., 2017). Here, we expand these previous studies by showing that

large-scale network reconfigurations are performance dependent

and actively involve early visual areas during WM maintenance.

Our finding of reduced prefrontal feedback connectivity in error

trials, both low accuracy and swaps, agrees with a DCM study

of local field potentials in non-human primates during a change

detection task (Pinotsis et al., 2019), where the authors reported

an association between impaired behavioral performance and

the break-down of prefrontal prediction signals in a network

comprising prefrontal, frontal eyes field and lateral intraparietal

area. We also observed reduced feedback connections between

frontal nodes (middle to superior frontal in high vs. low accuracy),

but most of the disrupted prefrontal feedback signals propagated

to early visual cortex. Moreover, the specific connections involved

depended on the type of error trials. While both low accuracy

and swap error trials showed reduced feedback connections from

middle frontal areas, feedback connections from superior frontal

were also reduced in swap errors, but not in low accuracy errors.

This pattern of performance-dependent disruption of feedback

signals is consistent with the view that visual cortical engagement

during WM at least partially reflects feedback signals from

frontoparietal brain regions (Leavitt et al., 2017; Xu, 2020). At

the same time, our observation of reduced feedforward signals in

frontooccipital connections in low accuracy trials suggest that the

role of visual cortex during the delay period is not solely that of

a passive recipient of feedback signals, consistent with the sensory

recruitment hypothesis of WM (Pasternak and Greenlee, 2005;

D’Esposito, 2007; Scimeca et al., 2018).

Our findings revealed that network activity supporting WM

maintenance conveys both feedforward and feedback signals

involving not only frontoparietal networks (Dima et al., 2014;

Heinzel et al., 2017; Jung et al., 2018), but also frontooccipital

networks. Moreover, feedforward/feedback frontooccipital

connections discriminated between types of errors. Swap error

trials showed disrupted feedback connections to early visual

areas, while low accuracy errors deployed a time-dependent

pattern of effective connectivity changes of disrupted feedback

(feedforward) signals in early (late) delay. This time-dependent

disruption of effective connectivity in frontooccipital networks

aligns with previous studies showing that the dynamic and spectral

properties of WM coding differ between the early and late delay

period (Buschman et al., 2011; Murray et al., 2017; Pinotsis et al.,

2019). Moreover, it underscores the dynamic interplay between

feedforward and feedback signals between early sensory areas
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and prefrontal regions, suggesting that WM is not a static storage

system but a dynamically competitive interplay between sensory

and cognitive control processes during different phases of WM

maintenance. Interestingly, most of these connections involve

(medial) superior frontal, a region previously associated in spatial

WM (Courtney et al., 1998; Rottschy et al., 2012, 2013). Indeed,

our results also suggest an alternative interpretation for previous

findings of functional coupling of frontomedial theta (and alpha)

with posterior brain regions during WM maintenance (Payne

and Kounios, 2009; Hsieh and Ranganath, 2014; Johnson et al.,

2017; Riddle et al., 2020; Parto Dezfouli et al., 2021; Ratcliffe

et al., 2022). Although most studies have used correlational

methods, this frontomedial activation during WM has been largely

interpreted as control signals to posterior brain regions where

information is stored (D’Esposito and Postle, 2015). Nevertheless,

we found that the direction of effective connectivity involving

medial prefrontal regions during WM depends on behavioral

performance: medial PFC was the source of disrupted feedback

signals in swap errors, but the target of disrupted feedforward

signals in low accuracy errors.

Another distinction between types of errors was observed in

the interhemispheric connectivity. Low accuracy trials showed

increased lateral connectivity between frontal and parietal

areas, which might be interpreted as system-level compensatory

responses displayed in response to the absence of appropriate

communication between occipital and frontal areas. Indeed,

previous studies have shown that the experimental manipulation

of interparietal communication affects WM performance (Tseng

et al., 2018; Grover et al., 2022). Alternatively, it is plausible

that an excessive level of interhemispheric communication has

detrimental effects in WM performance (Koshy et al., 2020).

On the contrary, swap errors showed no disruptions in lateral

connections, consistent with the notion that swaps are genuine

transposition errors arising from binding issues (Schneegans

and Bays, 2017, 2019) and not merely educated guesses (Pratte,

2019; Huang, 2020). Otherwise, we would not see differences

between types of error trials. Moreover, the absence of disrupted

frontooccipital feedforward signals in swap trials aligns with the

notion that transposition errors arise from incorrect responses

being confidently held in WM (Schneegans and Bays, 2019).

Memory contents can be decoded from early visual cortex in

correct trials (Sreenivasan et al., 2014b; Curtis and Sprague,

2021; Lorenc and Sreenivasan, 2021), as well as in swap trials

(Mallett et al., 2022). However, in swap trials the decoded

information corresponds to the swapped location, not the cued

location, suggesting the maintenance of incorrect memory items

(Mallett et al., 2022). If we assume that feedforward signals

propagating from early visual cortex during delay period distribute

memory contents throughout the network, the non-disruption

of feedforward signals in swaps might suggest that the incorrect

information hold in early visual areas are propagated through the

WM network in a similar way than in correct trials.

Empirical cross-spectral density revealed that coherence

between sources accounted for most differences between trial

types (Supplementary Figure S1A), despite the fact that sources

were selected based on local power, supporting the behavioral

relevance of large-scale communication through synchronization

(Roux et al., 2012; Lisman and Jensen, 2013). Although trial

type differences in coherence for some connections spanned

the whole range of analyzed frequencies (2–100Hz), the most

striking differences were concentrated in low frequency bands,

particularly around theta (6–8Hz) and alpha (8–12Hz), where we

observed peaks in coherence (Supplementary Figure S1). These

findings agrees with recent evidence that theta frequency

synchronous tACS applied across frontoparietal network

improves working memory performance, possibly by enhancing

coherence between distant nodes of the network (Polanía

et al., 2012; Violante et al., 2017; Biel et al., 2022; Grover et al.,

2022).

Here, we acknowledge and address several potential limitations

in our study. First, our definition of error trials was not entirely

consistent with subjects’ behavior, as low accuracy or swap trials

were not exclusively determined by all three responses being

misplaced or involving transposed reports, suggesting that not all

memory contents was maintained poorly. Nevertheless, despite this

limitation, we observed robust differences in effective connectivity

between trial types, underscoring the robustness and validity of

our findings. Second, the scope of our results is confined by our

deliberate decision to limit the model architecture to frontoparietal

and frontooccipital networks. Future investigations may consider

incorporating nodes such as frontotemporal regions (Braun et al.,

2015; Alenazi et al., 2022), salience and cinguloopercular regions

(Cai et al., 2021), and exploring their interactions with the

basal ganglia (McNab and Klingberg, 2008; Voytek and Knight,

2010). Third, our source reconstruction was performed without

high-resolution structural images in a subset of subjects, thereby

constraining our ability to make precise claims about the spatial

location of sources. To address this spatial uncertainty, we

employed predefined regions of interest and subsequently selected

sources of interest within these regions that exhibited the most

substantial main effect of trial type. To ensure the robustness of our

source selection, we performed a supplementary analysis. Source

reconstruction was carried out without structural images for all

subjects, and euclidean distances between selected sources with

and without a subset of participants with structural images were

computed. The resulting distances of 11.2 ± 8.1 (0–18.4) (mm)

were deemed negligible, given the spatial resolution of source-

reconstructed MEG signals. Forth, an important consideration

in our study is the observed imbalance in the number of trials

between different trial types. However, the implementation of

the parametric empirical Bayes (PEB) approach plays a pivotal

role in mitigating the potential influence of this trial number

asymmetry on our results. Unlike direct comparisons of effective

connectivity estimates between trial types, our approach involved

contrasting baseline-corrected estimates (matrix B). By focusing

on these baseline-corrected values, our intention was to minimize

the impact of trial number imbalances. This method emphasizes

relative changes in connectivity patterns rather than absolute

values, thereby contributing to the robustness of our findings.

Fifth, the study utilized data from 26 subjects, comprising four

women and 22 men. This gender mismatch presents a limitation

in our investigation. Despite studies that have shown small (but

significant) gender differences in WM performance, with the

male/female advantage depending on domain and task (Voyer
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et al., 2017, 2021), there is no strong a priori reason to assume

that similar behavioral performance should be supported by

either the same or distinct underlying neural processes. However,

gender differences in the functional dynamics supporting cognition

are understudied. Preliminary evidence from task-based MEG

studies in children and adolescents indicates potential sex-specific

developmental effects during various cognitive tasks (Embury et al.,

2019; Killanin et al., 2020, 2022; Taylor et al., 2020; Fung et al.,

2021). MEG studies in adults have also shown gender differences

neural responses during spatial navigation (Pu et al., 2020),

face processing (Proverbio, 2021), and resting-state networks

throughout the lifespan (Rempe et al., 2023; Stier et al., 2023).

However, little is known about gender differences in effective

connectivity, a gap we were unable to address with our current

sample size. Future research should intentionally incorporate a

more balanced representation of gender to elucidate potential

gender-related effects on effective connectivity.

In conclusion, our study reveals performance-dependent

reconfigurations in a large-scale brain network supporting WM.

The network activity related to maintenance during the delay

period conveys both feedforward and feedback signals, not

confined solely to frontoparietal networks as depicted in the early

work of Goldman-Rakic and colleagues. Instead, our findings

extend this understanding to encompass frontooccipital networks,

thereby emphasizing the crucial involvement of sensory areas in

the dynamic processes of WM. Moreover, the disruption of these

dynamics give rise to distinct types of behavioral errors. Low

accuracy trials showed disrupted feedback (feedforward) signals

during early (late) delay, while swap errors showed disrupted

feedback signals during the whole delay period, aligning with the

distributed view of WM.
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