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In the realm of motor rehabilitation, Brain-Computer Interface Neurofeedback 
Training (BCI-NFT) emerges as a promising strategy. This aims to utilize 
an individual’s brain activity to stimulate or assist movement, thereby 
strengthening sensorimotor pathways and promoting motor recovery. 
Employing various methodologies, BCI-NFT has been shown to be  effective 
for enhancing motor function primarily of the upper limb in stroke, with very 
few studies reported in cerebral palsy (CP). Our main objective was to develop 
an electroencephalography (EEG)-based BCI-NFT system, employing an 
associative learning paradigm, to improve selective control of ankle dorsiflexion 
in CP and potentially other neurological populations. First, in a cohort of eight 
healthy volunteers, we  successfully implemented a BCI-NFT system based 
on detection of slow movement-related cortical potentials (MRCP) from EEG 
generated by attempted dorsiflexion to simultaneously activate Neuromuscular 
Electrical Stimulation which assisted movement and served to enhance sensory 
feedback to the sensorimotor cortex. Participants also viewed a computer 
display that provided real-time visual feedback of ankle range of motion with 
an individualized target region displayed to encourage maximal effort. After 
evaluating several potential strategies, we employed a Long short-term memory 
(LSTM) neural network, a deep learning algorithm, to detect the motor intent 
prior to movement onset. We then evaluated the system in a 10-session ankle 
dorsiflexion training protocol on a child with CP. By employing transfer learning 
across sessions, we could significantly reduce the number of calibration trials 
from 50 to 20 without compromising detection accuracy, which was 80.8% 
on average. The participant was able to complete the required calibration 
trials and the 100 training trials per session for all 10 sessions and post-training 
demonstrated increased ankle dorsiflexion velocity, walking speed and step 
length. Based on exceptional system performance, feasibility and preliminary 
effectiveness in a child with CP, we are now pursuing a clinical trial in a larger 
cohort of children with CP.

OPEN ACCESS

EDITED BY

Jessica Rose,  
Stanford University, United States

REVIEWED BY

Vacius Jusas,  
Kaunas University of Technology, Lithuania
Markey Cierra Olson,  
Barrow Neurological Institute (BNI),  
United States

*CORRESPONDENCE

Diane L. Damiano  
 damianod@cc.nih.gov

RECEIVED 28 November 2023
ACCEPTED 22 March 2024
PUBLISHED 03 April 2024

CITATION

Behboodi A, Kline J, Gravunder A, Phillips C, 
Parker SM and Damiano DL (2024) 
Development and evaluation of a 
BCI-neurofeedback system with real-time 
EEG detection and electrical stimulation 
assistance during motor attempt for 
neurorehabilitation of children with cerebral 
palsy.
Front. Hum. Neurosci. 18:1346050.
doi: 10.3389/fnhum.2024.1346050

COPYRIGHT

© 2024 Behboodi, Kline, Gravunder, Phillips, 
Parker and Damiano. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Methods
PUBLISHED 03 April 2024
DOI 10.3389/fnhum.2024.1346050

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1346050﻿&domain=pdf&date_stamp=2024-04-03
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1346050/full
mailto:damianod@cc.nih.gov
https://doi.org/10.3389/fnhum.2024.1346050
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1346050


Behboodi et al. 10.3389/fnhum.2024.1346050

Frontiers in Human Neuroscience 02 frontiersin.org

KEYWORDS

associative learning, pediatric, NMES, transfer learning, motor training

1 Introduction

Brain-Computer Interface (BCI) mediated neurofeedback 
training (BCI-NFT) involves using an individual’s brain signals during 
a motor task to trigger a robotic device or neuromuscular electrical 
stimulation (NMES), providing real-time sensory feedback and motor 
assistance. Thereby, BCI-NFT aims to fortify sensorimotor pathways, 
potentially fostering motor learning and neuroplasticity (Behboodi 
et  al., 2022). BCI-NFT has been used effectively for motor 
rehabilitation in those with neurological disorders, especially 
individuals with stroke, as demonstrated in multiple systematic 
reviews (Monge-Pereira et al., 2017; Cervera et al., 2018; Bai et al., 
2020; Kruse et al., 2020; Penev et al., 2023; Qu et al., 2024).

BCI-NFT systems typically utilize cortical activity associated with 
Motor Imagery (MI) or Motor Attempt (MA), as recorded by 
electroencephalography (EEG), to activate an external device. This 
device in turn induces stimulation or movement in the targeted body 
part, with or without additional visual feedback. MI involves mentally 
rehearsing movements without physical execution, and its neural 
substrates exhibit substantial overlap with the motor execution 
network (Bai et al., 2020). MI has been employed effectively as the 
method of choice in most BCI-NFT systems. In a randomized 
controlled trial (RCT), Ang et al. utilized an MI-based BCI with the 
MIT-Manus robot to train reaching tasks in 24 individuals post-stroke 
(Ang et al., 2010), while Frolov et al. employed a hand exoskeleton to 
train grasping in 74 individuals post-stroke (Frolov et al., 2017). Both 
studies revealed significant improvements in Upper Extremity (UE) 
Fugl Meyer Assessment (FMA) scores.

Despite disruptions in the sensorimotor loop in persons with 
neurological disorders, some motor planning or movement 
capabilities may be preserved. Thus, these individuals can employ MA, 
instead of MI, to activate an external device via BCI through attempted 
movements, even in cases of complete paralysis (Bai et al., 2020). In a 
controlled trial, Biasiucci et al. deployed an MA-based BCI-NFT to 
train wrist and finger extension of 27 participants post-stroke using 
NMES. They demonstrated significant improvements in UE-FMA 
scores, which notably lasted 9 months post-intervention (Biasiucci 
et al., 2018).

In MI-based rehabilitation, the central nervous system may need 
to actively suppress limb movement while the participant is visualizing 
the intended action, which requires learning and sustained 
concentration (Behboodi et  al., 2022). Additionally, MI may 
be  particularly challenging for young or cognitively challenged 
individuals (Bobrov et  al., 2020). Even among healthy adults, 
mastering BCI systems through MI requires practice (Vidaurre and 
Blankertz, 2010; Zhang et al., 2020). Most participants have difficulty 
controlling the system initially and many, but not all, are able to 
gradually improve their BCI accuracy (Bai et al., 2020). Conversely, 
MA is considered more natural and verifiable. In neurofeedback 
training aimed at promoting or restoring motor functioning, choosing 
MA may improve outcomes by maximizing parallels between the 
brain-state used for control and the actual task, addressing concerns 

of task specificity that arise in MI paradigms, where maintaining 
consistent focus on the motor task is not assured (Behboodi et al., 
2022). In a recent review, Bai et al. demonstrated that MI may be less 
effective for motor rehabilitation compared with MA (Bai et al., 2020).

Regardless of the brain state utilized (MI or MA), BCI-NFT 
systems typically employ classifiers to establish a mapping between 
brain activity and activation of external sensory stimuli, in real-time. 
Brain-state dependent simulation is another type of system for motor 
rehabilitation that uses data collected during a calibration phase to 
estimate the mean timing of the peak negative deflection prior to 
movement execution and employs that value to activate electrical 
stimulation or robotic assistance during motor training. While 
effective, these systems cannot be strictly considered BCI-NFT since 
the brain state, usually MA, is not detected in real-time, i.e., there is 
not an interface between the brain and the external device during 
motor training (Mrachacz-Kersting et al., 2019, 2021). In two RCTs 
utilizing brain-state dependent stimulation, including 22 (Mrachacz-
Kersting et  al., 2016) and 24 (Mrachacz-Kersting et  al., 2019) 
participants with stroke, Mrachacz-Kersting et al. showed significant 
improvements in Lower Extremity (LE) motor function as measured 
by the LE-FMA, 6-meter Walk Test, and 10-meter Walk Test. The 
timing estimation was based on the peak negativity (PN), a prominent 
deflection of low-frequency movement-related cortical potentials 
(MRCP) (Mrachacz-Kersting et  al., 2016) calculated during 
calibration, and was used to trigger the NMES system during training 
in a feedforward manner. PN is associated with motor intent and is 
usually detectable within a window of 500 ms prior to movement 
execution (Mrachacz-Kersting et al., 2021).

The selection of an external device, normally NMES or a robot, 
may also impact rehabilitation outcomes in BCI-NFT. Bai et al., in a 
subgroup meta-analysis, demonstrated the statistical superiority of 
BCI-driven NMES over BCI-driven robots for rehabilitation (Bai 
et al., 2020). Behboodi et al., however, did not observe a difference in 
effectiveness between the two devices in a MA-based BCI-NFT review 
in neurological populations (Behboodi et al., 2022). NMES is thought 
to be effective in fortifying the sensorimotor loop during BCI training 
through a more robust engagement of proprioceptive components, 
such as muscle spindles, in comparison to robotic devices; thereby 
increasing movement awareness during motor training and enhancing 
corticospinal excitability (Hu et al., 2015).

To induce motor learning, BCI-NFT studies deploy operant 
conditioning and associative learning paradigms. Operant 
conditioning is the most prevalent learning paradigm in BCI-NFT. It 
centers on inducing alterations in brain activity patterns, providing 
users with meaningful feedback to modulate their neural responses 
and maximize a reward (desired movement), thereby learning new 
motor skills. For instance, in the RCT by Ramos-Murguialdy et al. on 
30 participants post-stroke, the experimental group received NMES if 
their Mu (8–13 Hz) band power was maintained below a predefined 
threshold (Ramos-Murguialday et  al., 2019). In associative 
rehabilitative NFT paradigms, an endogenous task-specific brain state 
is temporally linked to sensory feedback, in accordance with the 
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principle of Hebbian association which states that when two neurons 
repeatedly activate synchronously, they become more likely to fire 
together over time. The main advantages of this paradigm are its 
intuitive nature, which requires minimal or no training for learning 
how to control the system, and its potential to reduce the physical 
training dose required for meaningful motor improvements 
(Mrachacz-Kersting et  al., 2021), as evidenced by the reported 
enhancements in lower limb functionality after just 20 min (30 
pairings of brain-state and sensory stimuli) (Mrachacz-Kersting et al., 
2016). To create the requisite association for neuroplasticity, it is 
imperative that the sensory feedback coincides with the peak cortical 
activation during MA. Positive correlations between induced plasticity 
and detection accuracy as demonstrated by Niazi et  al. (2012), 
underscore the importance of classification algorithms that can detect 
the target EEG features quickly and accurately.

Training a classifier involves an extensive calibration period, and 
not all systems can achieve sufficient accuracy. The lower the accuracy, 
the more likely it is that subjects will not achieve the desired result 
consistently, or they will receive inappropriate feedback even when 
performing the task correctly (Irimia et al., 2018). BCI performance, 
as quantified by classification accuracy (number of correct 
classifications/total detection attempts), and the prevalence of false 
positives, significantly influences operant conditioning and associative 
learning. False negatives impede reward strategies crucial for patient 
motivation, while false positives can reinforce unintended actions, 
potentially leading to incorrect and mal-adaptive associations. The 
selection of source localization techniques, EEG features, EEG 
channels, and classification algorithms profoundly impacts detection 
accuracy. In operant conditioning, simple thresholding algorithms 
(Kim and Lee, 2016), similar to that used by Ramos-Murguialday et al. 
(2019), or machine learning classifiers like support vector machines 
(SVM) and linear discriminant analysis (LDA) are used to detect 
event-related desynchronization (ERD) in the EEG sensorimotor 
frequency band (~8–30 Hz), with accuracy ranging from 70 to 85%. 
Notably, a commercially available MI-based BCI-NFT system, 
RecoveriX, utilizes a Common Spatial Filter (CSP) and an LDA 
classifier achieving a mean accuracy of 87.4% across sessions in 
distinguishing left from right hand MI in stroke (Irimia et al., 2018).

Most BCI-NFT systems utilizing associative learning rely on 
Movement-related cortical potentials (MRCP) as their primary EEG 
feature. MRCP are low frequency EEG signals that demonstrate a 
negative shift that starts approximately 1.5–2 s before movement onset 
and thus enable one to detect motor intent before muscle activation. 
The peak in this negative deflection typically occurs within 500 msec 
of movement onset as described in a recent review (Shakeel et al., 
2015). This makes detection of MRCP particularly applicable to BCI 
applications as well as rehabilitation ones because these facilitate a 
more timely (nearly real-time) response from a robotic, prosthetic or 
electrical stimulation device that will control or assist a movement. 
These have also been used often for neurofeedback applications 
because the detection of motor intent before an imagined or attempted 
movement can be  used to assist the limb movement and provide 
enhanced sensory input to the motor cortex at the time that the brain 
is most active. The inherent assumption is that the closer this input 
occurs to the motor imagery or voluntary attempt, the stronger the 
facilitation of neuroplastic changes.

Depending on whether the motor task is cued as was done here 
(i.e., participants are warned that they will soon be given the cue to 

move, and when that is given, they should move as quickly as possible) 
or self-paced (participant is given an auditory or visual signal letting 
them know that they can perform the task whenever they want after 
an at least 2 s pause), the timing of the start of the negative deflection 
may vary given the two paradigms and this pre-movement negative 
signal may be  referred to as Contingent Negative Variation, 
Bereitschafts or Readiness Potential or the Peak Negativity (Shakeel 
et al., 2015; Mrachacz-Kersting et al., 2019).

To address the temporal variability of MRCP both within and 
across subjects which limits its predictability, efforts have been made 
to detect MRCP features like PN in real-time. Niazi et al. introduced 
a supervised detection method utilizing a matched filter (Niazi et al., 
2013); however, the time-variable and uncertain nature of the EEG 
signals reduces the effectiveness of matched filters (Ren et al., 2014). 
Thus, Niazi et al. then proposed an optimal spatial filter and achieved 
a detection accuracy of 82.5% in healthy individuals (Niazi et al., 
2013). Xu et al. implemented a manifold learning algorithm followed 
by LDA, achieving over 80% detection accuracy (Ren et al., 2014). 
Bhagat et al. used SVM and demonstrated 79 ± 18% accuracy and a 
23 ± 20% false positive rate (Bhagat et al., 2020). Recent endeavors 
have explored the use of Deep Learning models like Multilayer 
Perceptron Neural Networks (MLP-NN) (Behboodi et al., 2022) and 
Convolutional Neural Networks (CNN) (Lawhern et  al., 2018) in 
detecting MRCP features in healthy individuals. These models 
typically employ a larger number of electrodes (21 and 64, respectively) 
and require minimal pre-processing and spatial filtering to identify 
EEG features.

The encouraging outcomes of BCI-NFT for restoring motor 
function in stroke provide the impetus for extending this paradigm to 
other neurological disorders like cerebral palsy (CP). CP is the most 
commonly diagnosed child-onset motor disability, characterized by 
compromised selective motor control. The efficacy of BCI-NFT in 
individuals with CP remains understudied with only a few studies 
utilizing various paradigms. For instance, Bobrov et al. employed a MI 
BCI-driven hand exoskeleton for feedback, conducting training 
sessions with 14 children diagnosed with CP (Bobrov et al., 2020). 
Remarkable enhancements in hand function, as measured by FMA, 
were induced after 7–10 weeks of training. This BCI system also 
demonstrated effectiveness in stroke (Kotov et al., 2014; Frolov et al., 
2017). Kim et al. conducted an RCT involving 18 children with CP, 
revealing that MI BCI-driven NMES for hand extension training 
might evoke a more bilateral sensorimotor rhythm in frontopolar 
regions compared to NMES alone, after 30 half-hour training sessions 
(Kim and Lee, 2016). However, this study did not report specific 
motor outcomes. In another study (Olsen et al., 2021), participants 
with CP showed enhanced performance of the non-dominant hand 
on a serial reaction time task following classic neurofeedback training 
which involved attempts to modulate alpha power, facilitated with 
visual feedback. There is a specific need for the integration of MA and 
associative learning without the necessity of consistent imagination of 
specific movements or attempts to up- or down-regulate a motor-
related EEG frequency band. MA significantly enhances the feasibility 
and accessibility of BCI-NFT for young children or individuals with 
cognitive impairments.

Our goal here was to develop and implement a real-time EEG 
BCI-NFT device that could be  utilized in CP and other 
neurorehabilitation populations. Based on our scoping review of 
existing BCI-NFT methodologies (Behboodi et al., 2022), we focused 
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on two major technological challenges when designing our system. 
First, we  aimed to match or ideally improve detection accuracy 
beyond what was reported in the literature to reduce the amount of 
inappropriate feedback delivered during training. Second, we aimed 
to optimize the timing of EEG detection of motor intent in relation 
to the activation of sensory feedback delivered via NMES, so that the 
stimulation assisted the movement and was delivered when the 
sensorimotor cortex was the most active during the motor task. Here 
we describe these and other key components of our system, with a 
summary of the rationale behind the design decisions for each. 
Finally, to validate that the system performed as intended for a child 
with CP and to provide preliminary data on its potential 
effectiveness, we present data for our first clinical study participant. 
Although the system can be adapted for a range of motor tasks, ours 
was customized to train ankle dorsiflexion active range and joint 
angular velocity in those with CP who demonstrated reduced 
selective ankle control.

2 Methods

We developed a BCI-NFT system based on an associative learning 
paradigm which aims to establish a Hebbian association between task-
specific neural activity, during attempts to dorsiflex the ankle, and 
sensory feedback induced via application of NMES.

2.1 Description of our BCI-NFT system

Our BCI-NFT system utilized MRCP of the EEG signal 
(0.05–10 Hz) to detect the participant’s motor intent within a window 
of 500 ms prior to movement onset. The chosen frequency band was 
based on the MRCP range utilized by Mrachacz-Kersting et al. (2016) 
and Mrachacz-Kersting et al. (2019); however, other researchers may 
utilize an even more truncated frequency range for MRCP (Olsen 
et al., 2021). The participant was tasked to dorsiflex the ankle at a 
specific time, cued by a graphic user interface (GUI), which also 
provided visual feedback of the participant’s ankle angle in real-time. 
Once the BCI system detected the participant’s intention to dorsiflex, 
the NMES component was activated to stimulate the tibialis anterior 
(TA) muscle (Figure 1).

2.1.1 Hardware

2.1.1.1 Joint angle
To monitor ankle angle in real-time, we  used two Inertial 

Measurement Units (IMUs), LPMS B2 series (Life performance 
Research, Tokyo, Japan). These IMUs facilitated the continuous 
streaming of joint angle data to the visual feedback GUI. The real-time 
calculation of joint angle was accomplished through a Unity interface 
developed by the IMU manufacturer.

2.1.1.2 EEG acquisition
EEG data were recorded using a 64-channel active EEG system 

(Brain Products, Munich, Germany) at a sampling frequency of 
500 Hz. EEG data were streamed wirelessly to the BCI-NFT 
software using the BrainAmp amplifier (Brain Products, Munich, 
Germany).

2.1.1.3 Stimulation delivery
Upon detection of motor intent from EEG, the BCI-NFT system 

triggered a stimulator, via serial communication, to apply assistive 
sensory feedback (NMES to the tibialis anterior muscle of the more 
affected limb). The stimulator was a modified version of a Food & 
Drug Administration (FDA)-approved four-channel LG-8TM Elite 
Electrical Muscle Stimulator (LG Med Supply).

2.1.2 Software
The software consisted of three primary components:

 1. Visual feedback GUI in Unity (Unity Software Inc., San 
Francisco, CA): This component was responsible for providing 
task cues and real-time visual feedback of the participant’s 
ankle angle.

 2. Operating GUI in MATLAB (MathWorks, Natick, MA): The 
MATLAB-based interface was used for configuring detection 
parameters and real-time execution of the BCI.

 3. LabStreamingLayer (LSL): LSL (Kothe et al., 2024) was utilized 
to synchronize data streams, including joint angle data, triggers 
from the visual feedback GUI, and EEG signals.

Figure 2 is a visual representation of the data flow within the 
software. The visual feedback GUI transmitted trigger values 
associated with various task events (provided as visual cues to the 
participant) and ankle angle data to LSL. EEG was directly streamed 
into LSL in real-time using an LSL plugin provided by Brain Products 
(Munich, Germany), the EEG system manufacturer. LSL played a 
crucial role in synchronization and timestamping all data streams, i.e., 
EEG, ankle angle, and triggers. Subsequently, it transmitted the EEG 
and trigger streams to the BCI system.

Certain events during the task triggered the visual feedback GUI 
to send specific values to the operating GUI, through LSL, to trigger 
different components of the real-time BCI structure. Notably, trigger 
value 8 signaled the beginning of each trial, trigger value 6 indicated 
the initiation of the movement preparation period (as described in 
section 2.2.2), and trigger value 7 marked the conclusion of each 
training block (set of five trials). Furthermore, the visual feedback 
GUI communicated trial-specific information, including the trial 
name and number, directly to the operating GUI using a Transmission 
Control Protocol/Internet Protocol (TCPIP) connection.

2.1.2.1 BCI structure
The BCI structure encompassed three primary processes:

 1. Initialization: Upon initiation of data collection, an 
initialization function established four essential 
communication channels, illustrated in Figure  2. These 
channels included: (1) a link between BrainVision and LSL for 
real-time EEG streaming, (2) a pathway from Unity (visual 
feedback) to LSL for reception of trigger values and ankle angle 
in real-time, (3) a connection from LSL to MATLAB for the 
streaming of EEG and trigger values to the operating GUI, and 
(4) a direct link from Unity to MATLAB for transmission of 
trial information, such as the trial name. Following setup of 
these communication channels, LSL commenced recording 
and time stamping of EEG, trigger values, and ankle angle 
streams. Subsequently, a timer was initiated in MATLAB to 
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execute the real-time BCI function every 50 ms, which 
retrieved the most recent trigger value and the latest 50 ms of 
the EEG stream from LSL.

 2. Real-time BCI: During the neurofeedback training sessions, 
following the receipt of trigger 6, real time detection of Peak 
Negativity (PN) was initiated: the start of the prep bar (Unity 
trigger 6) was considered time 0. At 1,000 ms, we  received 
inputs consisting of 64 channel × 25 (100 ms) packets of 50 
EEG samples each. We  then classified each sample, so our 
model outputted a series of 50 “0”s (rest) or “1”s (motor intent). 

If the detection model reached the number of 1 s as defined by 
a threshold value in any packet, it would trigger the 
NMES. EEG was epoched from 1,000 to 4,000 ms for training 
the LSTM model. The process started with packets 1–5, 500 ms 
after the start of the epoch (from time 1,000–1,500 ms). The 
actual detection started after packet 5 was received, at 1,500 ms 
after the prep bar started to move. The time between the receipt 
of packets 5–14 (1500–2,500 ms) should be designated by the 
detection process as rest. The participant is instructed to 
dorsiflex 3,000 ms after the start of the prep bar. As the PN 

FIGURE 1

Diagram of our Brain-computer interface neurofeedback training (BCI-NFT) system which utilizes MRCP of the EEG signal to detect participant motor 
intent. The participant was tasked to dorsiflex the ankle at a specific time, cued by a graphic user interface (GUI), which also provided visual feedback of 
the ankle angle in real-time. EEG data were recorded using a 64-channel EEG system and streamed wirelessly to the BCI-NFT software using 
Stimulation Delivery. Upon detection of motor intent from EEG, the BCI-NFT system triggered a stimulator to apply assistive sensory feedback (NMES 
of the tibialis anterior muscle). To monitor ankle angle in real-time, two Inertial Measurement Units (IMUs) continuously streamed joint angle data to 
the visual feedback GUI in Unity.

FIGURE 2

Information flow of the BC-NFT software. The visual feedback GUI transmitted trigger values associated with various task events (provided as visual 
cues to the participant) and ankle angle data to LSL. EEG was directly streamed into the Lab Streaming Layer (LSL) in real-time. LSL played a crucial role 
in synchronization and timestamping all data streams, i.e., EEG, ankle angle, and triggers. Subsequently, it transmitted the EEG and trigger streams to 
the BCI system in MATLAB.
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detection window was considered 500 ms around this time 
(2,500–3,500 ms), packets 15–25 are associated with the PN 
detection window. If PN was detected and NMES triggered in 
packets 5–14, it was triggered during rest and was a false 
positive (FESfp variable); if PN was detected and NMES 
triggered within packets 15–25 (2,500–3,500 ms), it was 
triggered during motor planning and was a true positive. At 
that point (3,500 ms), we had an automatic NMES trigger if PN 
had not been detected and detection was therefore ended. 
We utilized the offline code to calculate false negatives which 
were defined as the failure to find at least one packet between 
numbers 15–25 with a total of 50 samples indicating motor 
intent. This process continued until trigger 7 (end of 5th trial 
in block) was received. Subsequently, the finalization function 
was triggered.

 3. Finalization: This function halted the LSL recording and 
converted the recorded EEG data from the entire training block 
into EEGLAB’s preferred set format to facilitate post-hoc EEG 
analysis and generation of Event-Related Spectral Perturbation 
(ERSP) plots via the MATLAB-compatible EEGLAB toolbox 
(Delorme and Makeig, 2004) during data collection.

2.2 Data collection protocol

2.2.1 Setup
The participant was seated in front of a monitor in a long sitting 

position on an examination table with the hip flexed approximately 
30°, the knee supported in a small amount of flexion for comfort, and 
the ankle elevated slightly off the mat to enable unencumbered 
movement. For real-time tracking of ankle angle, the IMUs were 
placed on the top of the midfoot directly over the metatarsals and on 
the lateral side of the shank. The 64 EEG electrodes were positioned 
using the 5% 10–20 international system and actiCap (Brain Products) 
with FCz designated as the reference point. Conductive gel was 
inserted between the electrodes and scalp until the acceptable signal 
quality was achieved, which was indicated by a green LED on the 
electrodes. When the impedance between the electrode and the scalp 
was less than 20 kilo ohms, the LED on the EEG electrodes 
turned green.

2.2.2 Training task and the visual feedback GUI
Each training block consisted of five trials of 10 s duration. At the 

beginning of each trial, the GUI prompted the participant to relax; this 
cue lasted 3 s. Subsequently, a horizontal red preparation bar (as 
illustrated in Figure 1) appeared on the screen to cue the subject to 
prepare to dorsiflex. The red bar was filled from left to right with a 
green bar which took 3 s. The participant was instructed to dorsiflex 
“as fast and far as possible” immediately after the green color reached 
the end of the bar. Once the movement execution phase began, the 
participant received real-time feedback of their ankle angle, 
represented as a vertical bar (angle bar). The participant was instructed 
to reach and attempt to surpass the target region at the top of the angle 
bar, which indicated 80 + % of their maximum dorsiflexion from the 
previous trial. The participant maintained the dorsiflexed position for 
3 s until cued to relax again.

2.3 Motor intent detection

To identify an optimal detection method for our protocol 
we evaluated the performance of four different algorithms in detecting 
the motor preparation phase: (1) Thresholding, where a trial-specific 
threshold value was set in real-time using the mean of the Cz channel’s 
Event-Related Potentials (ERP) during the rest period of each trial; (2) 
Average PN, in which the mean timing of PN was determined during 
the calibration trials and then implemented during training 
(Mrachacz-Kersting et  al., 2019) (not real-time); and two deep 
learning models both enabling real-time detection of brain activity; 
(3) a Multi-layer perceptron neural network (MLP-NN) (Behboodi 
et  al., 2022), and (4) a Long-short term memory (LSTM) neural 
network. Machine Learning (ML) is a type of Artificial Intelligence 
(AI) that enables the analysis and synthesis of very large datasets, 
while Deep Learning (DL), a ML methodology, is a type of recurrent 
neural network especially proficient at extracting meaningful patterns 
from datasets and which is increasingly being utilized in healthcare 
settings (Aminizadeh et al., 2024). The proposed benefit of LSTM is 
to appreciably reduce calibration time when used repeatedly across 
sessions in an individual participant by utilizing and learning from 
their previous data over time, a feature which could be particularly 
advantageous when working with a pediatric population.

The parameters of each of these methods were adjusted during a 
calibration period. All of these algorithms utilized preprocessed EEG 
signals as input both during the calibration phase and for real-time 
BCI with the exception of Average PN.

2.3.1 EEG preprocessing
The 64-channel EEG signals were band pass filtered to retain the 

MRCP frequency band (0.05 and 10 Hz). The signals were then 
spatially filtered to localize the prominent sources of brain activity and 
20 channels situated over the sensorimotor cortex (FC5, FC3, FC1, 
FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, 
CP4, CP6), involved with motor planning and execution, were 
extracted as the inputs for our movement intention 
detection algorithms.

2.3.2 MRCP
MRCP (Mrachacz-Kersting et al., 2019) have been recognized 

previously as reliable signals for predicting movement intention 
(Mrachacz-Kersting et  al., 2021). PN, a distinct feature of MRCP 
which typically occurs within 500 ms before movement onset, has 
been associated with the neurophysiological processes of motor 
planning and execution (Mrachacz-Kersting et al., 2016).

2.3.3 Calibration
In each session, the initial five blocks of training, comprising 25 

trials, were allocated for calibration of the detection model. For each 
trial, the preprocessed EEG data were segmented, or “epoched,” from 
3 s before the participant’s cue to dorsiflex (initiation of preparation 
phase) until 1 s after the cue. To pinpoint the timing of PN for each 
trial, the minimum (maximum negative) values were computed 
during the movement preparation period, which extended from 
500 ms prior to the cue to dorsiflex to 500 ms after the cue. This 
extended period was chosen because it allowed for potential variations 
in the onset of movement execution during the period when the PN 
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is most likely to occur. Finally, all of the epochs from each channel 
were consolidated and averaged to generate the calibration ERP or 
MRCP signal.

2.3.4 Real-time detection/BCI

2.3.4.1 Threshold algorithm

2.3.4.1.1 Calibration
The threshold for PN detection was computed using the mean and 

standard deviation for the first second of the rest portion of the 
calibration ERP from the central Cz electrode, characterized by a low 
likelihood of Peak Negativity occurrence. The ERP was then graphed 
alongside three threshold values represented as horizontal lines. These 
lines corresponded to 1, 2, and 3 standard deviations above the mean 
of the rest period. The appropriate standard deviation (Std) multiplier 
(Monge-Pereira et al., 2017; Kruse et al., 2020; Behboodi et al., 2022) 
for use during real-time BCI processing was visually identified.

2.3.4.1.2 BCI
During neurofeedback training, preprocessed EEG data were fed 

into the algorithm every 50 ms (as detailed in section 2.1.2.1). If the 
mean of the Cz signal exceeded the threshold value chosen during the 
calibration phase, NMES was triggered. This algorithm used a 
Laplacian spatial filter.

2.3.4.2 Average PN
In this algorithm, the average PN timing calculated during the 

calibration trials was utilized to trigger the NMES. During each trial, 
once the elapsed time calculated by the BCI timer reached the average 
PN timing, NMES was triggered (i.e., no real-time detection of PN). 
This open loop algorithm employed a Laplacian spatial filter as in the 
brain state stimulation system utilized by Mrachacz-Kersting et al. 
(2016) and Mrachacz-Kersting et al. (2019).

2.3.4.3 Long-short term memory neural network
LSTM is a prominent type of recurrent neural network (RNN) 

renowned for its capability to learn both short and long-term temporal 
dependencies within time series data. Consequently, LSTM has 
extensive applications in sequence prediction scenarios. To discern 
minute temporal alterations within our preprocessed EEG data (our 
feature space) for the classification of participants’ intention to move, 
a solution that can memorize and subsequently accumulate these 
transitions is required. This demands the utilization of the inherent 
long and short-term memories in this deep learning model (Zhang 
et al., 2020).

2.3.4.3.1 Calibration
First, the preprocessed EEG were epoched into two classes, rest 

and motor intent (Figure 3). These epochs were labeled and used for 
the supervised training of our LSTM classifier. The classifier was 
constructed using the MATLAB Deep Learning toolbox and 
comprised four layers: an input layer with 21 nodes, each 
corresponding to one of the 20 EEG channels over the sensorimotor 
cortex; a bilateral LSTM layer consisting of 100 nodes (neurons) 
responsible for memorizing long and short term dependencies in the 
feature space; a fully connected layer (dense layer), a typical neural 

network layer; and a SoftMax layer serving as the output layer, 
responsible for generating probability distributions of our two classes 
(as illustrated in Figure 2B). The training process spanned 100 epochs 
and utilized the Adam optimizer.

2.3.4.3.2 BCI
During the neurofeedback training, at each iteration of the BCI 

timer every 50 ms, a preprocessed EEG matrix, 64 (number of 
channels) by 25 (number of samples), was fed into the trained LSTM 
model. The model labeled each sample and generated an array of 25 
binary elements, where 0 signified the “rest” class and 1 indicated the 
“motor intent” class. The sum of the elements within this array was 
then compared to a predetermined threshold, which in this case was 
set at 80% of the number of elements. If the sum surpassed this 
threshold, the EEG data sample was labeled “motor intent” and this 
triggered the NMES feedback.

2.3.4.4 Multi-layer perceptron neural network
The MLP calibration and BCI procedure are similar to that of the 

LSTM; its structure, however, is different. Our proposed MLP 
consisted of two hidden layers, with a dimension of 20 at each layer 
(20 nodes); each node had ReLu activation function (Djamal et al., 
2020). Unlike LSTM, the MLP was trained with the Stochastic 
Gradient Descent (SGD) optimizer (Craik et al., 2019) and a learning 
rate of 1. The preliminary results from the evaluation of this model are 
presented in Behboodi et al. (2022). The MLP structure was developed 
through a grid search approach. The number of batches, indicating the 
number of training time points (rows of the datasets) used per 
optimization step, and the number of hidden layers had minimal 
impact on the accuracy. Instead the accuracy was notably influenced 
by the layer dimensions, with a dimension of 20 for each hidden layer 
being identified as optimal. Additionally, a comparison of the Adam 
and SGD optimizer revealed a marginal effect on the accuracy. The 
learning rate of the optimizers, on the other hand, had a significant 
influence, with lr = 0.001 and lr = 0.01 performing optimally for Adam 
and SGD, respectively. Our final model utilized three hidden layers 
with 20 dimensions, a batch size of 8, a learning rate of 0.01, and the 
SGD optimizer.

2.4 Participants

As a first step, the overall system performance was evaluated on 
eight healthy adults. Additionally, the detection algorithms were tested 
using the EEG data collected from this group. Based on the evaluation 
results, we  selected the best performing algorithm for use in our 
clinical study in children with cerebral palsy (CP).

Subsequently, we  present here a case report from the first 
participant with CP utilizing the finalized BCI-NFT system in a 
10-session protocol designed to train better selective control of ankle 
dorsiflexion, to demonstrate the system’s performance and the 
feasibility of our study protocol and to present some preliminary 
results in our target population.

Our protocol for both testing and implementing the system was 
approved by the NIH Institutional Review Board (#13-CC-0110), and 
all adult participants provided informed consent, with parent consent 
and child assent given for our participant with CP.
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2.4.1 Healthy adult cohort
Eight healthy subjects (6 females; age: 27.3 ± 7.1 years, [22.7–39.9]) 

with no history of neurological disease were enrolled in this study. 
This group participated in a single session of an ankle dorsiflexion 
training protocol using the BCI-NFT system to ensure that it 
functioned as intended and also to accumulate an EEG dataset for 
algorithm evaluation. At this developmental stage, NMES feedback 
was administered to the operator’s forearm rather than to the 
participant’s TA muscle which allowed the operator to assess whether 
the feedback activation occurred approximately at the intended time.

2.4.1.1 Development of the detection algorithm
While the Average PN algorithm had shown promise in previous 

clinical trials (Mrachacz-Kersting et  al., 2016, 2019), it was not 
considered a BCI system (Mrachacz-Kersting et  al., 2021), as it 
employed a predetermined timing in an open-loop manner to trigger 
stimulation during the neurofeedback sessions rather than real-time 
detection. Our aim, however, was to develop a real-time detection 
algorithm capable of handling the individual and trial-by-trial 
variability in PN timing. Nonetheless, the Average PN algorithm was 
utilized as a reference for evaluating the performance of two deep 
learning algorithms, MLP-NN and LSTM models. The detection 
accuracy of the MLP-NN and LSTM were first compared to each other 
and then the chosen algorithm was compared to the Average PN 
algorithm. For each deep learning model a fivefold evaluation was 
conducted using the first 50% of the trials for training the model and 
the rest for testing the accuracy.

Finally, to optimize the detection of our deep learning model, 
we conducted two analyses:

 1. Data labeling analysis: To train our deep learning model, it was 
necessary to label each calibration trial as “rest” or “motor 
intent.” We employed two different data labeling approaches: 
time-based and PN-based. Time-based labeling used the 
dorsiflexion cue, specifically the time when the preparation bar 
became fully green, as the reference point for labeling. One 
second around this reference point was designated as the 
“motor intent” class, while the second preceding it was marked 
as “rest.” PN-based labeling utilized the timing of PN in each 

trial as the reference point for data labeling. One second 
around the trial-specific PN time was assigned as the “motor 
intent” class, and the second preceding it was categorized 
as “rest.”

 2. Spatial filtering analysis: We conducted an analysis to assess the 
impact of commonly used spatial filters for source localization, 
including Independent Component Analysis (ICA) and 
Laplacian on the accuracy of the deep learning models.

2.4.1.2 Outcome measures for the healthy adult cohort
Accuracy is commonly defined as the ratio of correctly labeled 

EEG data samples to the total number of detections within the PN 
detection window, reported as a percentage. The commonly used 
accuracy metric for quantifying the performance of the real-time 
models, as defined here, is not relevant for the Average PN algorithm. 
Thus, to assess and compare the chosen real-time model’s performance 
against the well-established Average PN, we utilized a detection error 
analysis. Error was computed as the temporal difference between the 
PN of each trial, representing the desired stimulation time, and the 
instant at which the chosen real-time model activated the NMES 
(Figure 4). Trial PN was defined as the absolute minimum of the 
preprocessed EEG within the detection window, i.e., 500 ms before the 
cue to move and up to 500 ms after the cue, in a virtual Cz channel 
(VCz). The VCz channel was generated by averaging EEG channels 
C1, C3, and Cz, located medially and centrally above the motor cortex. 
The detection error was presented as the mean ± Std and root mean 
squared error (RMSE). Furthermore, accuracy of the selected real-
time algorithm was optimized under two conditions: data labeling and 
spatial filtering. To evaluate the statistical significance of the observed 
differences in the detection performance of the models, a two-sample 
t-test was performed, comparing the mean accuracies of the selected 
real-time LSTM model with the established Average PN approach, 
employing a significance level of p < 0.05.

2.4.2 Participant with cerebral palsy
The goal of our BCI-NF training study is to improve selective 

control of ankle dorsiflexion in children with CP. This is a common 
impairment in those with either unilateral or bilateral CP. The protocol 
was to train the most affected ankle for each participant. Our first 

FIGURE 3

EEG preprocessing and LSTM training workflow (A) and LSTM structure (B).
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participant enrolled and completed the study in the summer of 2023, 
and we report the results here to demonstrate the robustness of our 
system as designed, illustrate the feasibility of the protocol for children 
with CP, and provide preliminary data on each of the functional and 
neural outcome measures for this participant.

The first participant was a 11.5-year-old boy with right unilateral 
cerebral palsy, classified as Gross Motor Function Classification 
System (GMFCS) level I. The etiology of his brain injury is not certain. 
His MRI indicated that he  had diffuse white matter injury in the 
periventricular region typically consistent with preterm birth, even 
though he was born without complications at 38 weeks plus 5 days, 
and interestingly showed a focal injury in the right frontal region. 
However, his motor symptoms are mild and primarily isolated to his 
left upper and lower limbs. His main functional complaint relevant to 
this study was that it was difficult for him to run quickly because 
he  tended to drag his right toes/forefoot. He  was playing in a 
community baseball league and wanted to be  able to run the 
bases faster.

2.4.2.1 Training protocol
He participated in a 10-session training regimen (Figure 5) during 

which he  performed a minimum of 20 blocks of 5 dorsiflexion 
attempts, or 100 dorsiflexion trials, per session.

Because our selected deep learning model hinges on an adequate 
amount of training data, the initial calibration session required data 
from 50 trials, or 10 blocks of 5 repetitions each. Subsequently, the 
model was trained with data from the 50 calibration trials from the 
initial calibration or 100 trials from the previous training session, and 
an additional 25 trials from each day’s training session.

The task performed during each training session closely resembled 
the one described in section 2.2.2. with the notable additions that the 
participant received a performance score, in addition to ankle angle 
visual feedback during each trial and would receive electrical 
stimulation to the right TA activated by the EEG PN prior to each 
movement’s onset. For the training, we set a target goal of at least 80% 

of his mean maximum active ankle dorsiflexion angle during the 
calibration trials and asked the participant to try to exceed that on 
each trial. A vertical bar provided real-time feedback on ankle 
dorsiflexion angle recorded from the IMUs with the target range 
indicated and participant performance presented in real-time. The 
stimulation electrodes were positioned on the participant’s TA, and 
the stimulation intensity was adjusted in accordance with his comfort 
and tolerance levels. The stimulation pulse width and frequency 
remained constant at 150 μs and 40 Hz, respectively. However, 
we modulated the stimulation amplitude from 0 and incrementally 
increased it until reaching the maximum level that the subject found 
comfortable. Once determined, this amplitude was kept constant for 
the remainder of the session. This process was repeated for each 
session. The chosen frequency range and the pulse width fall within 
the standard parameters used in NMES research targeting the lower 
limb muscles of children with CP (Kim and Lee, 2016; Mooney and 
Rose, 2019).

2.4.2.2 Assessment sessions
We conducted two assessment sessions, pre- and post-training. 

For these assessments, reflective markers were attached to anatomical 
landmarks on the participant’s lower limbs using a modified Helen 
Hayes marker set. Active ankle dorsiflexion range of motion when 
seated as well as over ground gait kinematics when walking at freely-
selected and fast speeds were recorded using a 12 camera 3D motion 
capture system (Vicon, Denver CO). The goal was to assess whether 
any potential improvements in ankle motion from the training would 
transfer to improvements in ankle motion during gait. While the 
motion capture markers were used to record ankle angle, the visual 
feedback for the ankle joint angle was based on IMU recordings.

2.4.2.3 Outcome measures
The primary motor outcome measures were ankle dorsiflexion 

angle and joint angular velocity during task execution and during over 
ground free and fast speed walking. We also computed temporal–
spatial gait measures (velocity, cadence and step length). Additionally, 
system detection accuracy for EEG PN was assessed for the 10 training 
sessions to compare performance in CP to that of healthy adults. The 
primary neural outcome measure was the magnitude of event-related 
desynchronization (ERD) in the alpha (8–12 Hz) and beta (13–30 Hz) 
bands in comparable motor-related brain regions before and after 
training. We also assessed a laterality index for brain regions with ICs 
in both hemispheres for both timepoints. This was calculated as: (ERD 
on hemisphere contralateral to trained side – ERD on ipsilateral side)/ 
(ERD on hemisphere contralateral to trained side + ERD on 
ipsilateral side).

2.4.2.4 Transfer learning
To enhance user compliance and maximize the number of 

neurofeedback trials, we aimed to reduce the duration of each training 
session, eventually achieving a timeframe of less than 2 h, including the 
setup time. The entire training protocol including set-up time, 
calibration trials, up to 100 motor attempts during training and ample 
rest time to minimize muscle fatigue or to take snack breaks never 
exceeded 3 h. For our pediatric population with CP which is more 
likely to experience muscle fatigue and become bored with performing 
the same task repetitively, we decided to utilize a machine (transfer) 
learning algorithm here which can appreciably reduce the number of 

FIGURE 4

Peak negativity (PN) error was computed as the temporal difference 
between the PN of each trial (red dashed line), representing the 
desired stimulation time, and the instant at which the model 
activated the NMES (blue dashed line). The shaded blue area around 
blue dashed line represents the potential variability in detecting each 
trial’s PN.
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calibration trials once the initial model is built. The primary goal was 
to pre-train a model using all of the trials of the previous session, and 
subsequently fine-tune it during the calibration phase of the current 
session, as opposed to training an entirely new model for each session. 
This enables them to devote more of their effort and attention on the 
motor training itself. The session-by-session accuracy of the transferred 
LSTM model was calculated and compared with the accuracy of the 
non-transferred model trained on the 50 initial trials of each session.

2.4.2.5 EEG data analysis
EEGLAB open-source software was utilized, with a processing 

stream detailed in an earlier publication (Hinchberger et al., 2023). 
Briefly, steps included attenuation of power line noise using the 
EEGLAB cleanline function, automatic removal of bad channels 
using the clean_rawdata function, creation of a merged file with all 
rest and experimental trials, visual removal of noisy periods, down-
sampling to 250 Hz, application of Artifact Subspace Reconstruction 
(ASR) (Mullen et al., 2013), re-referencing to a common-average, 
and 1 Hz high-pass filtering. Adaptive Mixture Independent 
Component Analysis (AMICA) was used to parse mixed scalp 
signals into maximally temporally independent component (IC) 
signals. The EEGLAB DIPFIT algorithm was used to generate a 
best-fit equivalent current dipole for each IC, removing those with 
residual variance >20% or topographical sparseness >5. Scalp 
topographies, power spectra, and dipole locations were evaluated, 
and those deemed of non-cortical origin were removed. Selected 
epochs were from 1 s before to 1 s after movement onset. Rest trials 
from each assessment were used as the baseline which was 
subtracted from the movement trials for that assessment. To 
demonstrate significant differences across assessment sessions, 
we created significance masked ERSPs using the EEGLAB “condstat” 
function, 200 bootstrapped surrogate datasets, and a significance 
value of less than 0.05. Non-significant values were set to 0 (green) 
in the difference ERSPs (row 3, Figure 6).

3 Results

3.1 Healthy adult cohort

In this study, we assessed the performance of various detection 
algorithms using EEG datasets collected from healthy participants. 
The thresholding algorithm was excluded from further analysis due to 
its frequent misdetections, often stemming from threshold values set 
during calibration that were too high for real-time training trials, 
hindering effective triggering of NMES.

3.1.1 Comparing the deep learning models: MLP 
vs. LSTM NN

The mean detection accuracy of LSTM across healthy participants 
(88% ±10) was significantly higher than that of MLP-NN (85% ± 8), 
p < 0.001. The modest difference in mean accuracy led to the selection 
of the LSTM model. More importantly, LSTM was selected due to its 
ability to handle subject heterogeneity in individuals with CP by 
leveraging its capacity to process long-term and short term 
interdependencies in a time-series, as its name implies.

3.1.2 Comparing the selected deep learning LSTM 
model to the average PN algorithm

Although the RMSE value of 220 ms for LSTM was not 
significantly different from that of the Average PN algorithm (214 ms, 
p = 0.343), LSTM mean error was negative (−70 ms ± 150), whereas the 
Average PN algorithm’s mean error was positive (128 ms ± 180) 
meaning that on average LSTM detected the PN sooner than the 
average PN. This analysis demonstrated that LSTM has comparable 
performance to the Average PN algorithm, however, LSTM can 
be  incorporated in a BCI system and it can be  implemented with 
greater flexibility in parameters optimization increasing accuracy in 
those with neurological injuries who may have greater individual 
variability in PN occurrence and timing.

3.1.3 Data labeling
The model was significantly more accurate under time-based 

labeling (88% ± 10) than PN-based labeling (83% ± 11), p < 0.001.

3.1.4 Spatial filtering
Despite being significantly different, the accuracy of the LSTM 

with a Laplacian spatial filter was not appreciably higher than that of 
an ICA spatial filter (88% ±10 vs. 85% ±11, p < 0.048). The main reason 
we opted for the Laplacian filter over ICA was its faster operation, as 
ICA could take up to 10 min depending on its parameters. Moreover, 
ICA has the potential to alter the polarity of MRCP, which may impact 
detection reliability. Additionally, the selection of the appropriate 
component in ICA requires visual inspection which is not needed 
with Laplacian.

3.2 Participant with CP

The system performed well throughout all assessments and 
training without any major issues. The participant was able to 
complete all needed calibration trials and perform the desired 100 
trials per training session. During the first training session, we noted 

FIGURE 5

Training regimen for the participant with CP. We conducted two assessment sessions, pre- and post-training, and 10 training sessions.
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that our participant was not responding in a timely manner to the cue 
to move, which would delay the EEG signal needed to activate the 
NMES beyond the time window we had allotted. Therefore, for several 
of the subsequent blocks during the first session, we asked him to 
focus on reducing his reaction time, i.e., to attempt to move as soon 
as he was cued to do so. He quickly improved on this aspect and 
retained good timing across all training sessions. It was also noted on 
reviewing his performance during his first training session that he had 
a functional range (greater than 10°) of dorsiflexion. Therefore, for the 
rest of training sessions, we instructed him to focus more on velocity 
while still reaching his target dorsiflexion angle for each session.

3.2.1 Motor outcome
Motor outcomes data are summarized in Table 1, including the 

mean active ankle dorsiflexion angle while seated, peak dorsiflexion 
angle and joint angular velocity during initial contact and the swing 
phase of gait across 20 strides in the free and fast walking trials with 
associated p-values, and temporal–spatial gait measures. Maximum 
dorsiflexion did not increase in any condition, and where significant, 
a small decrease was shown. However, there was a very large increase 
in dorsiflexion velocity after BCI-NFT training which, while 
significant, did not transfer to walking. Interestingly though, gait 
speed, and its components, cadence and step length, all increased after 
the training, with a significant difference in right step length for the 
freely-selected speed condition.

3.2.2 EEG analysis
Event-related spectral perturbation (ERSP) plots pre- and post-

training are shown in Figure  6 for the right and left pre-motor/
supplementary motor regions and for the central motor region that is 

localized just to the right of midline. These plots demonstrate that the 
greatest change in activation was in the central motor region, with 
beta differences being more prominent. Additionally, mean event-
related desynchronization (ERD) values are presented in Table 2. To 
calculate ERD, EEG was epoched from 1 s before to 1 s after 
dorsiflexion movement onset. EEG was recorded during active 
dorsiflexion trials while seated and included data from motor-related 
brain regions. These ERDs indicate the amount of power reduction 
from rest in the alpha and beta bands pre- and post-training.

3.2.3 Transfer learning
Given that the performance of any deep learning model hinges on 

an adequate amount of training data, this strategy ensured a more 
efficient utilization of available data while minimizing calibration 
time. Consequently, the LSTM model was trained with the trials 
collected during the previous session (over100 trials) and then 
transferred to the current session using the first 25 trials. To this end, 
the weightings of the first two layers of this LSTM model were held 
constant, or “frozen,” then a new bilateral LSTM layer with 100 nodes 
was added to the structure (Figure 7). Due to the frozen state of the 
first two layers, only the weights of the new bilateral LSTM and the 
fully connected layer were updated during transfer learning. To 
minimize the impact of session-by-session variability in our feature 
space (preprocessed EEG) we employed Z-score normalization at the 
input layer, i.e., the input EEG was scaled by subtracting its mean and 
dividing by its standard deviation. In the initial session, the model 
underwent training using data from 50 trials. Figure 8 demonstrates 
the session-by-session accuracy of the transferred LSTM compared 
with that of the LSTM model if it was not transferred, i.e., if it was 
trained on only the 50 initial trials of each session. The mean detection 

FIGURE 6

Event-related spectral perturbation (ERSP) plots of the motor regions pre and post training (top and middle row, respectively) and their significance 
masked differences (bottom row). All rows share a common time and frequency axis, with time zero corresponding to dorsiflexion onset of the trained 
leg (vertical line). The top two rows (pre and post) share a common colorbar (change in power in decibels), with blue representing a decrease in power 
relative to that session’s baseline and red representing an increase in power. For the bottom row, the significance masked ERSPs (green means a voxel 
was not significant at an alpha value of 0.05) are scaled symmetrically from −4 db to 4 db*, with the exception of the central motor region, which is 
scaled from −8 to 8 db, to adequately represent the larger relative changes seen in this region.
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accuracy of the transferred model was 80.8% vs. 78.9% without 
transfer learning (p = 0.064). Detection of the wrong signal as the PN 
occurred in about 17% of trials (false positives) with false negatives 
being rare. The session-by-session accuracy results are in Table 3. 
Please note that the accuracy results were processed post-hoc using 
the model that was trained at each session of the data collection.

4 Discussion

To extend the application of BCI-NFT from the stroke population 
to a pediatric population with CP, we designed a MA-based BCI-NFT 
to train ankle dorsiflexion in children with CP. The BCI-NFT system 
employed LSTM to detect PN in MRCP, an EEG feature generated by 
an attempt to dorsiflex the ankle in real-time, and thereby activate 
enriched sensory feedback to the TA muscle by application of NMES, 
in an associative learning paradigm. The system was finalized using a 
cohort of eight healthy individuals and evaluated on a child with CP 
in a 10-session dorsiflexion training protocol. Considering the 
heterogeneity of cortical activity in the CP population and the location 
of the ankle on the somatotopic motor map of the primary motor 
cortex (M1), the system demonstrated good to high reliability in 
applying NMES feedback, as demonstrated by the reported false 

positives and false negatives that may have also been affected by some 
expected fluctuations in attentiveness to the task given the multiple 
repetitions required.

4.1 BCI-NFT system accuracy

Similar to other BCI systems, one of our major considerations in 
designing our system was to achieve as high a detection accuracy of 
motor intent as possible, such that the task is assisted and sensory 
feedback enhanced only during focused efforts to perform the task, 
and not when the participant may not be attending as well to the task. 
Detection accuracy is especially important in BCI-NFT systems as 
false positives may lead to mal-adaptive neuroplasticity by potentially 
enhancing inappropriate associations or failing to promote 
appropriate ones. Previous MA-based BCI-NFT systems 
predominantly used machine learning classifiers such as linear LDA 
(Ono et al., 2013; McCrimmon et al., 2014; Mukaino et al., 2014; 
Osuagwu et al., 2016; Chen et al., 2020), SVM (Chowdhury et al., 
2018; Bhagat et al., 2020; Chowdhury et al., 2020), Gaussian (Biasiucci 
et al., 2018), and logistic regression (Ibáñez et al., 2017). Our study 
uniquely employed LSTM (a deep learning algorithm often utilized 
in BCI applications), for detecting motor intent, demonstrating the 
potential for enhanced accuracy in MRCP detection. The 
performance of motor attempt BCI-NFT systems designed for motor 
rehabilitation in neurological populations has been primarily 
characterized by detection accuracies ranging from 70 to 80% in the 
stroke population. A requisite for effective BCI-NFT, as established 
in MI BCI-NFT systems, is the attainment of a detection accuracy 
exceeding 70% (Vidaurre and Blankertz, 2010). The implementation 
of a Bayesian classifier in a MI BCI-NFT protocol for children with 
CP by Bobrov et  al. demonstrated a maximum 70% detection 
accuracy (Bobrov et al., 2020). In our study, the BCI-NFT system 
showcased a robust detection accuracy of over 88% in the healthy 
cohort. However, our participant with CP exhibited a slightly reduced 
detection accuracy of 79%, but still surpassing the 70% threshold  
and similar to studies in other populations with and without 
neurological conditions.

TABLE 1 Temporal–spatial gait measures and ankle dorsiflexion (DF) measurements pre- and post-training for the participant.

Outcomes
Right pre Left pre

Right 
post Left post Right diff Left diff

Right p 
val Left p val

Gait speed free (m/s) 1.19 1.34 0.15

Cadence (steps/min) 120.1 132.9 125.6 139.3 5.54 6.40

Step length (m) 0.56 0.57 0.61 0.61 0.05 0.04 0.001 0.054

Gait speed fast (m/s) 1.70 1.84 0.14

Cadence fast (steps/min) 138.3 153.1 148.0 157.4 9.68 4.34

Step length fast (m) 0.72 0.69 0.72 0.73 0.001 0.04 0.19 0.08

MAX DF angle swing (°) 4.58 9.90 1.43 6.90 −3.15 −3.00 0.003 0.001

DF angle initial contact (°) −2.70 0.88 −2.86 −1.15 −0.16 −2.03 0.48 0.032

MAX DF velocity stance (°/s) 141.3 110.3 146.9 151.9 5.69 41.6 0.48 0.001

MAX DF velocity swing (°/s) 121.6 199.4 115.0 191.3 −6.67 −8.03 0.62 0.36

MAX DF angle in sitting (°) 10.8 8.46 −2.37 0.001

MAX DF velocity in sitting (°/s) 133.4 234.0 100.6 0.001

The right side was trained, so the greatest differences were anticipated on that side. BOLD = p < 0.05.

TABLE 2 Mean event-related desynchronization (ERD) values indicating 
the amount of power reduction from rest in the alpha and beta bands in 
motor-related brain regions pre-and post-training, recorded during 
active dorsiflexion trials while seated.

Outcome Right 
pre

Left pre Right 
post

Left 
post

Prefrontal alpha 1.61 3.67

Prefrontal beta 2.60 3.35

Premotor region alpha 5.44 6.01 6.29 6.05

Premotor region beta 3.56 3.68 4.15 5.11

Central motor alpha 4.83 7.63

Central motor beta 3.18 5.45
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Among notable studies employing real-time MRCP feature 
detection, Bhagat et al. reported a 79% detection rate in 10 participants 
post-stroke, alongside a 23% false positive rate, utilizing 15 electrodes 
over the sensorimotor cortex (SMC) and an SVM classifier (Bhagat 
et  al., 2020). Xu et  al. introduced a manifold learning algorithm 
followed by LDA, demonstrating a detection delay of 200–400 ms and 
a detection accuracy exceeding 80% for the classification of motor 
intent in healthy individuals (Ren et al., 2014). Additionally, Niazi 
et al. introduced an optimal spatial filter, reducing detection timing by 
66.6 ± 121 ms, accompanied by a detection accuracy of 82.5% (Niazi 
et al., 2013). Lawhern et al. contributed significantly to the utilization 
of deep learning for detecting MRCP features, evaluating EEGNet, a 
convolutional neural network (CNN), in detecting motor intent 
during index finger tapping in 13 healthy individuals, with a within-
subject accuracy of approximately 80% (Lawhern et al., 2018). It is 
important to note that all of these studies reporting BCI performance 
focused on upper limb movement attempts, which involve a larger 
more superficial area of the sensorimotor cortex, which is more easily 
accessible with EEG.

4.2 Case discussion in a participant with CP

Our neurofeedback system worked exactly as intended for all 
assessments and training with our first participant with CP. He was 
initially not as attentive to the cued movement timing as desired, but 
he responded well once prompted to react in a more timely manner. 
The ability to train dorsiflexion range of motion and/or velocity is an 
advantage of our design that was helpful for this particular child who 
needed to practice keeping his foot more dorsiflexed at key points in 
the gait cycle but who could also potentially also benefit from 
improvements in dorsiflexion velocity. Changes were predominanetly 
task specific, i.e., they were the greatest for dorsiflexion velocity, which 
was the primary focus of his training sessions, but only during the 
training task. Improvements in temporal–spatial gait parameters, 
while encouraging, could not be explained by positive changes in 
ankle dorsiflexion range or velocity during gait, which were not found.

The differences in detection accuracy between healthy adults and 
a child with CP are not surprising. Maintaining attention and 
motivation was more challenging in this younger child than it was in 

FIGURE 7

Transfer learning. The LSTM model was trained with trials collected during the previous session (100 trials) and then transferred to the current session 
using the first 25 trials. The weightings of the first two layers of this LSTM model were held constant, or “frozen,” then a new bilateral LSTM layer was 
inserted to model. Due to the frozen state of the first two layers only the weights of the new bilateral LSTM and the fully connected layer were updated 
during the transfer learning.

FIGURE 8

The session-by-session accuracy of the transferred LSTM, trained on 100 trials from the previous session and transferred to 25 trials of the current 
session (red circles), compared with the accuracy of the LSTM model if it was not transferred and instead was trained on the first 50 trials of each 
session (blue squares). Here we only included the sessions that used transferred LSTM as the detection model.
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adults, and we believe that inattention may account at least in part for 
his lower detection accuracy. For future participants, we do not plan 
to provide stimulation if the PN is not detected in the detection time 
window, so that they are not reinforced in a similar manner when they 
are not as engaged in the task, because inappropriate stimulation may 
have a negative effect on neuroplasticity by associating inappropriate 
behavior with enhanced sensory feedback.

The EEG results showed minimal changes post-training in brain 
regions involved in motor planning, with the exception of small 
changes mainly in the beta band in the untrained hemisphere, which 
may indicate a need to recruit ipsilateral pathways to improve 
performance. The most dramatic improvement was in the central 
motor region in the beta band. While this IC was localized slightly to 
the right of midline, the position of the ankle area within the central 
sulcus makes determining hemispheric location difficult at best, 
although it is also possible that this could reflect reorganization due 
to his left brain injury.

While far more data are needed regarding the immediate and 
long-term effects of this training in CP before any generalized 
conclusions can be made, the functional changes reported here after 
only 10 sessions are encouraging. Surprisingly, fatigue did not appear 
to be a limiting factor during the training. This participant’s only 
complaint was of boredom due to the number of repetitions requested. 
Future plans are to gamify the training so that it is more motivating 
and enjoyable. Data collection on additional participants is 
currently underway.

4.3 Future plans

In our BCI-NFT system, we successfully employed LSTM as a 
classifier for motor intent. In the future, we aim to utilize LSTM’s 
predictive capabilities, specifically focusing on predicting future 
states within EEG time series to forecast PN occurrences, thereby 
enhancing the system’s adaptability to the heterogeneity of cortical 
activity in children with CP. Additionally, our strategy involves the 
integration of reinforcement learning techniques to enhance the 
performance of our BCI in accurately predicting or detecting motor 
intent states. Our first participant with CP exhibited fairly good 
motor control in that he could dorsiflex repeatedly on command. 

Children with CP can have a wide range of impairments, and future 
participants may have greater difficulty reliably performing the task, 
may not be able to move the ankle at all, or may be prone to fatigue 
with repeated attempts. These situations would likely present 
additional challenges to our current system and its performance and 
effectiveness that we have not yet addressed here. We also plan to 
collaborate with groups who have commercialized these systems so 
that they can be  utilized in clinics and even in patients’ homes, 
assuming that BCI-NFT demonstrates efficacy and efficiency in 
improving motor function in CP.

5 Conclusion

BCI-NFT systems utilizing motor attempt and newer algorithms 
that can reduce calibration time while maintaining accuracy provide 
a feasible method for motor training in children with CP with the 
possibility of accelerating improvements in motor performance as well 
as neuroplasticity with stronger evidence of effectiveness needed 
before implementation in clinical settings.
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