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AFM signal model for dysarthric
speech classification using
speech biomarkers

Shaik Mulla Shabber and Eratt Parameswaran Sumesh*

School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Neurological disorders include various conditions a�ecting the brain, spinal cord,

and nervous system which results in reduced performance in di�erent organs

and muscles throughout the human body. Dysarthia is a neurological disorder

that significantly impairs an individual’s ability to e�ectively communicate

through speech. Individuals with dysarthria are characterized by muscle

weakness that results in slow, slurred, and less intelligible speech production.

An e�cient identification of speech disorders at the beginning stages helps

doctors suggest proper medications. The classification of dysarthric speech

assumes a pivotal role as a diagnostic tool, enabling accurate di�erentiation

between healthy speech patterns and those a�ected by dysarthria. Achieving

a clear distinction between dysarthric speech and the speech of healthy

individuals is made possible through the application of advanced machine

learning techniques. In this work, we conducted feature extraction by utilizing

the Amplitude and frequency modulated (AFM) signal model, resulting in the

generation of a comprehensive array of unique features. A method involving

Fourier-Bessel series expansion is employed to separate various components

within a complex speech signal into distinct elements. Subsequently, the Discrete

Energy Separation Algorithm is utilized to extract essential parameters, namely

the Amplitude envelope and Instantaneous frequency, from each component

within the speech signal. To ensure the robustness and applicability of our

findings, we harnessed data from various sources, including TORGO, UA Speech,

and Parkinson datasets. Furthermore, the classifier’s performance was evaluated

based on multiple measures such as the area under the curve, F1-Score,

sensitivity, and accuracy, encompassing KNN, SVM, LDA, NB, and Boosted Tree.

Our analyses resulted in classification accuracies ranging from 85 to 97.8% and

the F1-score ranging between 0.90 and 0.97.

KEYWORDS

dysarthric speech, ALS, machine learning, speech signal classification, amplitude and

frequency modulation, bulbar motor dysfunction

1 Introduction

Dysarthria, a prominent and intricate motor speech disorder, originates from

malfunctions within speech production subsystems or coordination issues due to

neurological damage. This neuro-motor condition results from neurological damage that

intricately affects the motor components of speech production. These manifestations

include diminished vocal volume, imprecise articulation, disturbances in coordinating

respiratory and phonatory subsystems, and the presence of irregular speech pauses. The

amalgamation of these defining attributes underscores the multifaceted nature of this

speech disorder (Joshy and Rajan, 2022).

Dysarthria represents a complex range of speech impairments, and its underlying

causes can vary widely. Understanding and addressing specific characteristics and the
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etiology of dysarthria are crucial in developing effective

intervention strategies, thereby improving the quality of life

for individuals affected by this disorder. Due to a variety of

distinguishing characteristics, including decreased vocal tract

volume, restricted tongue flexibility, changed speech prosody,

imprecise articulation, and erratic fluctuations in speech rate,

dysarthric speech is typically difficult to understand (Narendra and

Alku, 2019). These factors collectively contribute to comprehension

challenges in dysarthric communication. Evaluating dysarthric

speech becomes imperative to distinguish it from typical

speech. This evaluation serves as a crucial diagnostic step to

differentiate healthy speech patterns from those indicative of

dysarthria. Typically, speech evaluation is conducted through

conventional methods, often by speech-language pathologists.

These professionals administer intelligibility tests to assess the

presence and severity of dysarthria. Through these evaluations,

healthcare providers gain comprehensive insights into the nature

and extent of the speech disorder, enabling tailored interventions

and treatment strategies for individuals affected by dysarthria

(Ramanarayanan et al., 2022).

This condition is most commonly associated with neurological

injuries or diseases, such as CP, brain tumors, strokes, and

brain injuries. Additionally, it can manifest as a symptom of

various neurodegenerative diseases like PD and ALS. One of the

major characteristics of dysarthria is its significant impairment

on speech clarity. This reduced speech intelligibility primarily

stems from a group of speech-related deficits, including decreased

speech pace, irregular speech prosody, restricted tongue flexibility,

poor articulation, and reduced vocal tract volume. These features

collectively pose considerable challenges for individuals with

dysarthria and those trying to comprehend their speech (Duffy,

2012; Narendra and Alku, 2019). In the field of speech signal

processing, there is a growing acknowledgment of the significance

of using speech-based biomarkers as a means to gain insights

into neurological health conditions. Modern investigations have

explored the potential of speech analysis as a biomarker to detect

a range of neurological disorders and mental health conditions.

This development holds great promise for enhancing disease

identification and diagnostic procedures (Ramanarayanan et al.,

2022).

The analysis of speech patterns in individuals with cerebral

palsy has yielded promising outcomes for the early identification

and continuous monitoring of neurological conditions like ALS

and PD (Hecker et al., 2022). These encouraging results can

be attributed to noticeable alterations in speech and voice

characteristics, including a decrease in speech rate and an increase

in vocal intensity. The onset of slurred speech often serves as one

of the initial indications of these conditions. Leveraging speech

analysis to detect these variations may offer the potential to identify

individuals with these disorders in their early stages and to track the

progression of the diseases over time (Koops et al., 2023).

Speech, as a signal, exhibits non-stationary characteristics.

A non-stationary speech signal is characterized by fluctuating

amplitude and frequency components, making a modulated signal

more suitable for the analysis of such non-stationary signals. To

effectively observe distinct variations in amplitude and changes

in frequency, the utilization of independent modulated frequency

and amplitude signal model is considered as a potential tool.

The AFM signal model integrates both amplitude modulation

(AM) and frequency modulation (FM) signal models, presenting

an improved option for effectively portraying amplitude and

frequency fluctuations in non-stationary speech signals (Bansal

and Sircar, 2019). The segregation of distinct components within

multi-component speech is a pivotal stage in speech signal analysis,

encompassing various attributes such as frequency, phase, and

amplitude. In this paper, the approach employed for feature

extraction from recorded speech phonemes utilizes the AFM

signal decomposition model. This particular model has previously

undergone application and testing across diverse speech-processing

contexts. The multi-component multitone AFM signal model

proves to be well-suited for feature extraction in the analysis of both

voiced and unvoiced speech phonemes (Bansal and Sircar, 2018).

This paper is structured as follows: Section 2 covers the

Literature survey, and Section 3 outlines the discusses the

methodology, Classification techniques and Feature extraction,

while Section 4 explores classification techniques and performance

measures, and presents results. Section 5 provides comparisons

with other approaches, while Section 6 presents the conclusions of

the paper. In addition, we have included a comprehensive list of

abbreviations in Table 1 for reference.

2 Literature survey

One of the key challenges in assessing the severity of different

dysarthria types is the absence of comprehensive analyses derived

from a diverse pool of speakers encompassing various dysarthria

types and differing degrees of severity. Furthermore, the presence

of numerous distinct dysarthria varieties adds to the complexity of

this issue (Kim et al., 2011). In the pursuit of identifying dysarthric

speech, the author exploited the power of neural networks. These

networks were applied to centroid formants, which represent

extended speech characteristics, aiding in the discrimination

between dysarthric and non-dysarthric speech. Subsequently, the

study employed an experimental database consisting of 200 speech

samples from ten individuals with dysarthria and an equal number

of speeches from ten age-matched healthy individuals (Ijitona et al.,

2017). Mani et al. created a software program capable of making

determinations about specific features through the application of

fractal analysis. This was achieved by utilizing both acoustic and

connected articulatory sound recordings from the speech under

examination. The classification method of choice in their study was

the Diadocho kinetic test (Spangler et al., 2017).

Moro-Velazquez et al. conducted an extensive investigation

into the assessment of PD through computerized analysis of

speech signals, focusing on phonatory and articulatory factors.

Their review encompassed a broad spectrum of areas, and their

findings led to the conclusion that the severity of PD is indeed

correlated with challenges in both phonation and articulation

(Moro-Velazquez et al., 2021). Vásquez-Correa et al. (2019)

employed MFCCs for the classification of individuals with PD

and HC. They conducted this classification using the Spanish

PC-GITA database. The authors employed SVMs and utilized

statistical functionals derived fromMFCCs. These coefficients were

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1346297
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shabber and Sumesh 10.3389/fnhum.2024.1346297

TABLE 1 List of abbreviations.

S.No. Abbreviation Definition

1 FB Fourier-Bessel

2 NB Naive Bayes

3 ALS Amyotrophic lateral sclerosis

4 LDA Linear Discriminant Analysis

5 CP Cerebral palsy

6 PD Parkinson’s disease

7 KNN K-Nearest Neighbors

8 AM Amplitude modulation

9 FM Frequency modulation

10 AFM Amplitude and frequency modulated

11 DESA Discrete Energy Separation Algorithm

12 AE Amplitude Envelope

13 IF Instantaneous Frequency

14 DYS Dysarthric Speech

15 HC Healthy control

16 MFCCs Mel-frequency cepstral coefficients

17 TP True positive

18 TN True negative

19 FN False negative

20 FP False positive

21 SVM Support Vector Machine

22 ANN Artificial Neural Network

23 DDK Diadochokinetic rate

computed on the Bark bands and were extracted from various

speech sources, including individual utterances, DDK tasks, text

reading, and monolog segments. The MFCCs were computed

specifically on the Bark frequency scale.

Phonation, a common speech task employed to appraise

the condition of the phonatory speech subsystem, enables the

evaluation of diverse facets of an individual’s voice. In this

work, the authors investigated the application of cepstral analysis

to distinguish individuals with PD from those with alternative

neurological disorders. The researchers gathered vocal recordings

from 50 participants and subsequently examined these recordings

through the application of three distinct cepstral methodologies.

The most favorable outcome reached entailed a remarkable 90%

accuracy, accomplished by employing the first 11 coefficients of the

PLP, coupled with linear SVM kernels. This investigation carries

significant implications for advancing the diagnosis of PD and

other neurological conditions (Benba et al., 2016).

Vashkevich and Rushkevich (2021) introduced a methodology

for voice assessment within automated systems, aimed at

distinguishing individuals without ALS from those afflicted with

the condition. The main focus of the research is on using acoustic

analysis of sustained vowel phonations to classify patients with

ALS. Through the use of MFCC parameters, the authors have

determined that the spectral envelopes of the vowels /a/ and /i/

include essential markers for the early identification of ALS.

3 Methodology

In Figure 1, the workflow of the proposed system is presented.

The proposed methodology for the detection of Dysarthic speech

(DYS) comprises a series of discrete phases, including the

establishment of a phonetic database derived from speech, the

initial processing of acquired data, the extraction of salient

characteristics, and the subsequent differentiation of individuals

with Dysarthic speech from those constituting the healthy

control (HC) group. In the primary stage, we systematically

compile the requisite phonetic elements from speech samples

procured from both Dysarthic speech-affected individuals and their

HC counterparts.

3.1 Database

To ensure clarity and minimize any potential ambiguities in

the establishment of our phoneme database, we have carefully

verified and merged many pre-existing databases. We undertook

this compilation process to minimize any doubts about the content

and structure of the dataset and to provide a solid basis for

our work. To assess the validity of the proposed study, we used

data from established dysarthric databases, namely, the TORGO

database (Rudzicz et al., 2012), the Universal Access dysarthric

speech corpus (UA-Speech) (Kim et al., 2008), and the PD database

(Viswanathan et al., 2019). The TORGO database encompasses

utterances from seven individuals without speech disorders and

eight patients with dysarthria. The UA-Speech database is inclusive

of speech samples contributed by both unaffected individuals

(totaling 13) and those afflicted by dysarthria (totaling 19).

Additionally, 22 healthy controls and twenty-four patients with

Parkinson’s disease (PD) diagnosed in the ten years prior were

gathered from Monash Medical Center’s Movement Disorders

Clinic to assemble the PD database.

We collected data from several datasets, a total of 4,900 vowel

phonemes for our study. Within this phoneme dataset, 2,450 were

sourced from individuals exhibiting healthy speech phonemes,

while an equivalent count of 2,450 originated from individuals

affected by dysarthria. Subsequently, we focused on two specific

datasets derived from this pool. The first dataset exhibits a balanced

distribution, comprising an equal number of samples from both

healthy and dysarthric speech sources. Conversely, the second

dataset represents an imbalanced distribution, where the ratio

between dysarthric and healthy samples stands at 7:3, consisting

of 2,450 instances of dysarthric phonemes and 1,050 instances of

healthy phonemes. This latter dataset, denoted as Dataset 2, forms

the basis for our analysis. The description of this clearly presented

in the below Description of Balanced and Imbalanced Datasets

Table 2.
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FIGURE 1

Workflow of the proposed system.

TABLE 2 Description of balanced and imbalanced datasets.

Dataset Dysarthric speech phonemes Healthy speech phonemes Total phoneme samples

Balanced (Dataset 1) 2,450 2,450 4,900

Imbalanced (Dataset 2) 2,450 1,050 3,500

3.1.1 Pre-processing
In TORGO dataset, words have been identified with the

starting and ending positions of phonemes. We segmented these

words to extract individual phonemes, subsequently utilized these

segmented phonemes for our analysis. Conversely, for the other

datasets (UA-Speech and PD database) we conducted phoneme

segmentation using Praat (Boersma and Weenink, 2001), a robust

speech analysis software, which served as an important pre-

processing step. Additionally, certain pre-segmented phonemes

were included in these datasets, and no pre-processing steps were

applied in the proposed system.

3.2 Feature extraction

After the pre-processing stage, feature extraction and the

classification of individuals into DYS or HC groups are performed.

For feature extraction, we employed an AFM signal model to

analyze speech phonemes. This involved extracting features like

the amplitude envelope (AE) and instantaneous frequency (IF)

functions using the Fourier-Bessel (FB) expansion and the discrete

energy separation algorithm (DESA). The FB expansion helped

separate the individual components of the speech phoneme,

with two components considered in our study. In speech, it’s

common practice to focus on the first two or three components

of a speech phoneme because they usually hold the most

important information about the phoneme’s characteristics (Bansal

and Sircar, 2019). Therefore, in our study, we focused on

analyzing two components of the speech phoneme. The DESA

algorithm was then applied to each component to extract

the AE and IF functions. From the AE function, parameters

such as amplitude, modulation index (µa), modulating angular

frequency (ωa), and modulating phase (θa) of the amplitude

modulation segment are obtained. Similarly, the IF function

TABLE 3 Features of component.

Amplitude

envelope

A µa1 µa2 ωa1 ωa2 θa1 θa2

Instantaneous

frequency

ωc µf 1 µf 2 ωf 1 ωf 2 θf 1 θf 2

yields parameters, including carrier frequency (ωc), modulation

index (µf ), modulating angular frequency (ωf ), and modulating

phase (θf ) of the frequency modulation segment (Bansal and

Sircar, 2021, 2022). These parametric representation employed

aligns with an AFM signal model (Pachori and Sircar, 2010;

Bansal and Sircar, 2018, 2019), as speech signals do not display

stationary characteristics (Sircar and Syali, 1996; Sircar and

Sharma, 1997; Upadhyay et al., 2020). These features were

utilized for the analysis and synthesis of speech phonemes. In

total, we extracted 28 features from the two components, with

each component contributing 14 distinct features. This approach

enabled us to obtain 28 features from the two components

of each phoneme. Each component, namely Component 1 and

Component 2, contributed 14 distinct features, resulting in a

combined set of 28 features utilized for our analysis. The details

of these features extracted from the two components are presented

in Table 3.

Figure 2 provides a detailed flow diagram of feature extraction

and classification. The subsequent sections will delve into

a detailed breakdown of the suggested strategy. Initially,

an AFM signal model is introduced for subsequent signal

analyses. Following this, the subsequent subsections detail

the technique for extracting modulating features utilized

in the proposed methodology, culminating in a binary

classification approach for detecting DYS/HC. This binary

classification is aimed at determining the presence of DYS

or HC.
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FIGURE 2

A schematic diagram of the proposed DYS/HC classification.

3.3 AFM signal model

Non-stationary signals, represented by speech signals

(Sircar and Syali, 1996; Sircar and Sharma, 1997), can be

effectively represented as a sum of sinusoidal functions through

techniques like Fourier analysis. This decomposition process

disaggregates non-stationary signals into their constituent

frequency components. These frequency components can be

modeled using sinusoidal functions with varying frequencies and

amplitudes, forming a multi-tone AFM signal model (Bansal and

Sircar, 2019). The parametric representation of a non-stationary

signal s[n] is presented in Equation (1), which utilizes both

two-tone AM and two-tone FM signals (Equation 2).

s [n] = s1 [n]+ s2 [n] (1)

si [n] = A
(

1+ µi
a1 cos

(

ωi
a1n+ θ ia1

)

+ µi
a2 cos

(

ωi
a2n+ θ ia2

))

×

cos
(

ωi
cn+ µi

f 1 sin
(

ωi
f 1n+ θ if 1

)

+ µi
f 2 sin

(

ωi
f 2n+ θ if 2

))

(2)

where i=1,2; A is the amplitude; ωc is the carrier frequency

of the signal model; ωa1,ωa2,ωf 1,ωf 2 are the modulating

angular frequencies;,µa1,µa2,µf 1,µf 2 are the modulation indexes;

θa1, θa2, θf 1, θf 2 are the modulating phase of the modulated signal.

3.3.1 Mono component separation of speech
signal

Fourier-Bessel expansion is a mathematical method that

effectively decomposes a signal into its constituent frequency

components. Speech, a complex signal composed of various

frequency components, can be effectively analyzed and studied

using this technique. By employing FB expansion, individual

frequency components of speech can be isolated and examined

in detail. This expansion is a mathematical technique that allows

the representation of a signal as a sum of components, each

characterized by its own amplitude and frequency. In the context

of speech signal processing, the Fourier-Bessel expansion is

applied to decompose the multicomponent speech signal into its

constituent components, thereby isolating the individual elements

that contribute to the overall phoneme (Bansal and Sircar, 2019;

Upadhyay et al., 2020). The expansion of the FB series is provided

(Equations 3 and 4).

S [t] =

P
∑

p=1

CpJ0

(

λpt

T

)

(3)

The FB coefficients Cp can be calculated as

Cp =
2 ∗ I

T2
[

J1
(

λp
)]2

(4)

where I =
∫ T
0 t S(t) J0

(

λpt

T

)

dt

Frontiers inHumanNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1346297
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shabber and Sumesh 10.3389/fnhum.2024.1346297

where T is the period of signal, λ1, λ2, λ3...........λp; p = 1, 2, ..., P

are the complex positive roots of J0(λ) = 0 in the increasing order

and Jl(.) is the l
th-order Bessel function for l = 0 and 1.

3.3.2 Discrete energy separation algorithm
DESA, as a methodology, serves the purpose of dissecting

a non-stationary speech signal into its constituent components,

namely the AE and the IF. This separation is achieved by

distinguishing and subsequently analyzing distinct amplitude

and frequency bands. This methodology involves the estimation

of the AE and IF (Upadhyay et al., 2017) function parameters

by employing DESA on a segmented phonemic component

of the speech signal. In the proposed method, we consider a

dual-tone amplitude and frequency modulation. By replacing

the sinusoidal variation with its corresponding complex

exponentials, it becomes possible to extend the estimation of

feature vectors for the AE and IF. Concerning the amplitude

parameters, (Equation 5) illustrates the representation of the

amplitude envelope extracted by the DESA (Pachori and Sircar,

2010; Bansal and Sircar, 2018, 2019) within the signal model

(Equation 1).

a [n] = A

(

1+
1

2
[E1 + E2]

)

(5)

where E1 = µa1

[

ejθa1 ejωa1n + e−jθa1 e−jωa1n
]

and

E2 = µa2

[

ejθa2 ejωa2n + e−jθa2 e−jωa2n
]

for n = 0 :N − 1

and (Equation 6) illustrates the representation of the instantaneous

frequency extracted by the DESA of the signal model (1) is

ω [n] = ωcn+
1

2
[F1 + F2] (6)

where F1 = µf 1ωf 1

[

ejθf 1 ejωf 1n + e−jθf 1 e−jωf 1n
]

and

F2 = µf 2ωf 2

[

ejθf 2 ejωf 2n + e−jθf 2 e−jωf 2n
]

for n = 0 :N − 1

We employed FB-DESA to estimate parameters for recovering

the amplitude envelope and instantaneous frequency functions

from the signal components. The parameters obtained from

the amplitude envelope encompass amplitude (A), modulation

index (µa), modulating angular frequency (ωa), and modulating

phase (θa) of the amplitude modulation section. Correspondingly,

parameters retrieved from the instantaneous frequency involve

carrier frequency (ωc), modulation index (µf ), modulating angular

frequency (ωf ), and modulating phase (θf ) of the frequency

modulation part. We take into account the following features

for the feature extraction: The amplitude, carrier frequency, and

modulation frequencies (AM and FM) of the tone of the AE and IF

spectra of each phoneme are the features employed in this research.

A structured illustration of the extracted modulated features is

presented in Figure 3.

3.4 Machine learning

Machine learning classifiers play a pivotal role in data analysis,

facilitating well-informed decision-making and predictive tasks.

This research inquiry delves into the attributes and practical

applications of some prominent classifiers: LDA, NB, SVM, KNN,

and Boosted tree. These classifiers exhibit unique characteristics

and underlying assumptions, which render them well-suited for

diverse types of data and problem contexts. By unraveling the

intricacies of these classifiers, this study seeks to enhance our

understanding of their capabilities and their respective domains

of applicability within the field of data analysis, contributing to a

comprehensive perspective on the utilization of machine learning

classifiers in real-world scenarios.

In our study, we utilized two distinct datasets: Dataset 1

comprised 2,450 samples each of dysarthric and healthy speech,

while Dataset 2 consisted of 2,450 samples of dysarthric speech and

1,050 samples of healthy speech as discussed in Section 3.1.

The selection of SVM, Naive Bayes, KNN, LDA, and ensemble

boosted tree classifiers was motivated by the unique characteristics

of these datasets. Specifically, the larger size and balanced nature

of Dataset 1 allowed for a comprehensive evaluation of classifier

performance under equal class distribution. On the other hand, the

imbalanced nature of Dataset 2 provided an opportunity to assess

the classifiers’ robustness in handling uneven class proportions,

simulating a more real-world scenario. The suitability of individual

classifiers for the datasets used is summarized below:

• SVM’s capacity to handle high-dimensional data (Sun et al.,

2022) and effective class separation made it a fitting choice for

Dataset 1’s balanced classes.

• NB and KNN were selected for their simplicity and non-

parametric nature, accommodating Dataset 2’s imbalanced

structure and varying feature complexities (Venkata Subbarao

et al., 2021; Ramesh et al., 2023).

• LDA’s role in dimensionality reduction (Haulcy and Glass,

2021) and preserving class discriminatory information

was crucial for both datasets, contributing to effective

feature representation.

• The ensemble-boosted tree classifiers were included to address

the relationships within the datasets and to mitigate potential

overfitting concerns (Sisodia et al., 2020).

4 Results and discussion

In this research, machine learning classifiers were utilized

to analyze features extracted from a AFM signal model.

These classifiers aimed to identify and categorize the various

forms of dysarthric speech observed in each participant

(dysarthric speech exhibited by individuals with ALS, PD,

and CP). ALS patients typically experience slurred speech

and difficulty controlling the pitch of their voice, leading to

noticeable variations in amplitude. Individuals with PD often

exhibit reduced loudness, monotone speech, and hesitations

in their speech patterns. CP patients often demonstrate

speech characterized by imprecise articulation, variations in

speech rate, and inconsistent speech rhythm. These distinct

speech characteristics in ALS, PD, and CP individuals serve as

differentiating factors between these patient populations and

healthy individuals.
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FIGURE 3

A structured illustration of the extracted modulated features.

TABLE 4 Balanced dataset split results.

SNo. Classifier Split Train (%) Test (%) Precision Recall F1 score AUC

1 LDA 80:20 84.11 84.18 0.8623 0.8025 0.8313 0.8407

70:30 84.02 84.69 0.8651 0.8104 0.8368 0.8458

2 NB 80:20 77.93 76.63 0.8049 0.6849 0.7401 0.7641

70:30 78.05 77.62 0.8165 0.6938 0.7502 0.7737

3 KNN 80:20 88.34 85.92 0.8912 0.8088 0.8480 0.8578

70:30 88.10 84.56 0.8714 0.7992 0.8337 0.8442

4 SVM 80:20 89.21 83.16 0.8711 0.7668 0.8156 0.8298

70:30 89.71 82.24 0.8574 0.7598 0.8057 0.8205

5 Boosted tree 80:20 99.92 93.78 0.9387 0.9328 0.9357 0.9376

70:30 99.85 91.56 0.9095 0.9171 0.9133 0.9157

We used three different approaches to enable a robust

evaluation of the model’s generalizability and to avoid potential

biases caused by specific cross-validation techniques:

• Split ratio: to begin, we divided the dataset into training

and testing sets using 80:20 and 70:30 splits, respectively, to

provide preliminary insights into model performance.

• K-fold cross-validation: we then used five-fold and 10-fold

cross-validation, a popular method that randomly divides the

data into five and 10 folds, each of which serves as a test

set once.

• Leave-one-subject-out cross-validation (LOSO CV): because

of the possibility for dependencies within data belonging to

the same subject, we additionally developed LOSO CV, which

iteratively trains the model on all data except that belonging

to a single subject, ensuring subject-independent evaluation.

In our study, we considered a balanced dataset (84 subjects)

comprising 42 healthy controls and 42 dysarthic subjects.

Furthermore, for the imbalanced dataset (63 subjects) we

have taken into account 42 dysarthic subjects and 21

healthy subjects.

Further, we present the performance evaluation of various

classifiers in the context of binary classification. These classifiers

have been assessed using a set of key metrics, shedding light on

their effectiveness in distinguishing between positive and negative
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TABLE 5 Imbalanced dataset split results.

SNo. Classifier Split Train (%) Test (%) Precision Recall F1 score AUC

1 LDA 80:20 93.00 94.43 0.9435 0.8520 0.8954 0.9161

70:30 93.63 92.48 0.9291 0.8058 0.8631 0.8901

2 NB 80:20 89.57 90.71 0.7937 0.9031 0.8449 0.9059

70:30 90.00 89.71 0.8150 0.8414 0.8280 0.8809

3 KNN 80:20 95.21 95.00 0.8966 0.9286 0.9123 0.9435

70:30 95.76 93.24 0.8993 0.8673 0.8830 0.9134

4 SVM 80:20 89.21 83.16 0.8711 0.7668 0.8156 0.8298

70:30 89.71 82.24 0.8574 0.7598 0.8057 0.8205

5 Boosted tree 80:20 99.6 97.86 0.9840 0.9388 0.9608 0.9664

70:30 99.1 95.62 0.9519 0.8964 0.9233 0.9388

TABLE 6 Balanced dataset CV results.

SNo Classifier Fold Train (%) Test (%) Precision Recall F1 score AUC

1 LDA Fold 5 88.2 86.33 0.8286 0.8980 0.8904 0.8633

Fold 10 91 90.57 0.7524 0.9714 0.8272 0.8619

2 NB Fold 5 77.9 77.14 0.6597 0.8770 0.8351 0.7683

Fold 10 90.8 90.86 0.8611 0.9298 0.8532 0.8954

3 KNN Fold 5 88.8 85.51 0.8608 0.8533 0.8540 0.8533

Fold 10 88.5 86.94 0.8688 0.8717 0.8690 0.8717

4 SVM Fold 5 87.2 83.27 0.7437 0.9167 0.8939 0.8302

Fold 10 90.12 87.55 0.8352 0.9238 0.8797 0.8795

5 Boosted tree Fold 5 95.8 93.06 0.9224 0.9388 0.9378 0.9306

Fold 10 95.2 94.29 0.9184 0.9673 0.9414 0.9429

TABLE 7 Imbalanced dataset CV results.

SNo Classifier Fold Train (%) Test (%) Precision Recall F1 score AUC

1 LDA Fold 5 93.16 92.86 0.8095 0.9796 0.9444 0.8946

Fold 10 93.3 90.57 0.7524 0.9714 0.8272 0.8619

2 NB Fold 5 89.83 89.71 0.8431 0.9194 0.8113 0.8812

Fold 10 89.97 90.86 0.8611 0.9298 0.8532 0.8954

3 KNN Fold 5 95.4 95.14 0.9473 0.9340 0.9403 0.9340

Fold 10 95.2 96.57 0.9621 0.9573 0.9596 0.9573

4 SVM Fold 5 97.2 92.57 0.7843 0.9839 0.9524 0.8841

Fold 10 96.3 92.86 0.8148 0.9793 0.8756 0.8971

5 Boosted tree Fold 5 97.45 96.29 0.996 0.8762 0.9340 0.9381

Fold 10 98.63 97.82 0.9902 0.9352 0.9640 0.991

instances. The following metrics can be used to determine how

well the database performs when using the AFM signal model

mentioned in the above section.

In our work, we have chosen to employ the accuracy (Acc)

metric as one of the key methods for assessing the classification

model’s effectiveness. However, it’s important to highlight that

solely relying on accuracymight present a somewhat limited view of

the classifier’s overall performance. To gain a better understanding,

we also considered othermetrics like precision, recall, F1-score, and

area under the receiver operating characteristic curve (AUC). The

performance metrics regarding the proposed work are depicted in

Tables 4–8 provided below.

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1346297
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shabber and Sumesh 10.3389/fnhum.2024.1346297

TABLE 8 LOSO-CV performance metrics.

Dataset Classifier Metrics

Train (%) Test (%) Precision Recall F1-score

Balanced data LDA 85.30 84.44 0.946 0.895 0.906

NB 85.5 85.2 0.996 0.852 0.9164

KNN 92.23 89.86 0.976 0.898 0.943

SVM 86.14 82.32 0.974 0.823 0.897

Boosted 92.80 91.05 0.9880 0.926 0.949

Imbalanced data LDA 86.51 85.17 0.987 0.851 0.907

NB 86.5 85.72 0.981 0.867 0.919

KNN 92.6 87.79 0.916 0.877 0.929

SVM 87.7 84.36 0.923 0.843 0.903

Boosted 93.43 91.65 0.989 0.9267 0.946

This investigation conducted an in-depth evaluation of a

signal model based feature extraction technique applied to speech

signals, yielding 28 distinct features. The analysis encompassed

two primary scenarios: balanced and imbalanced datasets. Each

scenario was further subjected to rigorous testing under varying

train-test split ratios (80:20 and 70:30) and cross-validation

configurations (five-fold, 10-fold and LOSOCV).

Performance under balanced dataset conditions presented

in Table 4 revealed consistent and commendable metrics across

classifiers, irrespective of split ratios. Performance measures such

as accuracy, precision, recall, F1 scores, and AUC values remained

stable. This finding underscores the technique’s proficiency in

distinguishing speech patterns when data distribution is balanced.

Introducing data imbalance presented in Table 5 (2,450

Dysarthic speech/1,050 healthy speech), led to discernible

variations in performance metrics, particularly precision, recall,

and AUC scores. Certain classifiers exhibited sensitivity toward the

minority class (healthy speech), demonstrating a tendency to favor

the dominant class. Others encountered challenges in maintaining

robust performance due to data skewness.

Balanced-data cross-validation Table 6 revealed consistent and

reliable performance metrics across folds for most classifiers,

validating the model’s resilience and stability. Conversely, in

imbalanced data presented in Table 7 situations, while some

classifiers maintained high accuracy, precision, recall, and AUC

scores, others struggled with data skewness, resulting in variations

in performance across folds. This suggests the importance of

considering cross-validation to assess how model performance

generalizes to unseen data, especially in imbalanced settings.

These outcomes underscore the pivotal influence of dataset

composition on classifier performance. The signal model-based

feature extraction technique exhibited robustness and reliability

in handling balanced datasets, while its efficacy in addressing

imbalanced data presented variable outcomes across different

classifiers. These insights yield significant implications for the

development and implementation of speech signal classification

models, emphasizing the necessity of addressing dataset balance for

optimized real-world applications.

The performance metrics of various classifiers, including LDA,

NB, KNN, SVM, and Boosted, are displayed in the Table 8.

These classifiers were tested using Leave-One-Subject-Out Cross-

Validation (LOSO-CV) on two different datasets: one that was

balanced (42 subjects of dysarthic and 42 subjects of healthy control

speech) and the other that was imbalanced (42 subjects dysarthic

speech and 21 subjects healthy control speech). With an accuracy

of 91.05%, recall of 0.926, precision of 0.988, and F1-score of

0.949 on the balanced dataset, the Boosted tree stands out for its

better performance across all measures. Other classifiers also show

strong performance. In contrast, Boosted continues to perform

exceptionally well on the imbalanced dataset, demonstrating its

resilience to class imbalance with an accuracy of 91.65%, recall of

0.9267, precision of 0.989, and F1-score of 0.946.

4.1 Accuracy

Accuracy (Acc) pertains to a metric that assesses the model’s

capacity to make accurate predictions relative to the total number

of predictions generated (Equation 7). This metric is commonly

employed when evaluating classification models to gauge their

effectiveness. Accuracy is calculated by considering the proportion

of correctly classified samples in relation to the overall sample

count, providing insights into the classification system’s efficacy.

To gain a holistic understanding of the classifier’s capabilities,

it is advisable to complement the evaluation of accuracy with

other performance measures, such as precision, recall, and the F1-

score. This multi-dimensional approach ensures a comprehensive

appraisal of the classifier’s performance.

Acc =
TP + TN

TP + FP + TN + FN
(7)

We conducted an in-depth analysis of various machine

learning classifiers into the classification of Dysarthric speech

and healthy speech patterns. Utilizing a diverse set of machine

learning classifiers, including SVM, Naive Bayes, LDA, KNN,

and Boosted Trees, our analysis focused on discerning subtle

nuances in speech characteristics. The robust performance of

the Boosted Trees classifier, attaining an overall accuracy of

98%, further highlights the potential of machine learning models
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FIGURE 4

Test accuracy of the classifiers. (A) Split ratio balanced data 80:20. (B) Split ratio balanced data 70:30. (C) Split ratio imbalanced data 80:20. (D) Split

ratio imbalanced data 70:30. (E) CV five-fold balanced data. (F) CV 10-fold balanced data. (G) CV five-fold imbalanced data. (H) CV 10-fold

imbalanced data. (I) LOSO CV balanced data. (J) LOSO imbalanced data.

in effectively distinguishing Dysarthric speech from healthy

speech. The split ratios, cross-validation and LOSO-CV test

accuracies are presented in Figure 4. These findings contribute

valuable insights to the development of accurate diagnostic tools

and interventions in the field of speech pathology, promising

advancements in personalized healthcare for individuals with

speech disorders.

4.2 Precison

The precision (Pre) metric is a measure of how well a model

predicts favorable outcomes. It measures the ratio of true positives

(TP) to all predicted positives (FP), which is represented as TP

+ FP (Equation 8). FP stands for false positives. Calculating this

ratio provides the precision value for the model, offering a valuable

Frontiers inHumanNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1346297
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shabber and Sumesh 10.3389/fnhum.2024.1346297

means to gauge the model’s ability to consistently recognize

positive instances while concurrently mitigating the occurrence of

false positives.

Pre =
TP

TP + FP
(8)

4.3 Recall

The percentage of true positives (TP) over all actual positive

instances (TP + FN) is measured by the performance metric recall

(Re) (Equation 9). It assesses the model’s capacity to accurately

detect positive cases among all real positive cases. This metric is

valuable for evaluating the model’s sensitivity in detecting positive

cases and is commonly referred to as sensitivity or true positive

rate(TPR).

Re =
TP

TP + FN
(9)

The sensitivit results show that the classifiers are good at being

sensitive, giving us useful information about how well each

model works. The exceptional sensitivity scores, particularly for

SVM and Boosted Trees, hold promising implications for the

development of precise diagnostic tools in speech pathology,

indicating potential advancements in interventions for individuals

with speech disorders.

4.4 F1score

The F1 score is a good metric to use, which finds a balance

between recall and precision, providing a more complete picture

of the model. The F1-score is the weighted average of precision and

recall, where the F1 score reaches its best value at 1 (Equation 10).

F1 =
2 ∗ (Pre ∗ Re)

Pre+ Re
(10)

The SVM and Boosted Trees classifiers showcased exceptional

F1 scores. These outstanding scores underscore the classifiers’

adeptness in achieving a harmonious balance between accurately

identifying dysarthric speech and minimizing false positives.

Furthermore, other classifiers, including Naive Bayes, LDA, and

KNN, demonstrated commendable F1 scores respectively. These

collective outcomes shed light on the classifiers’ effectiveness

in achieving a nuanced trade-off between precision and recall,

providing valuable insights into the distinctive performance of

each model. The exceptional F1 scores, particularly for SVM and

Boosted Trees, hold promising implications for the development

of refined diagnostic tools in speech pathology, suggesting

potential advancements in interventions for individuals with

speech disorders.

4.5 Area under the receiver operating
characteristic curve

AUC, or Area Under the Curve, gives us a general idea of how

well a model can tell the difference between the two classes. In

our study on Dysarthric speech vs. healthy speech, we evaluated

various classifiers, including SVM, Naive Bayes, LDA, KNN, and

Boosted Trees. The AUC scores for these classifiers were ranging

from 0.89 to 0.991 respectively. These scores indicate the models’

overall ability to make a clear distinction between Dysarthric and

healthy speech. The higher the AUC score, the better the model is

at this discrimination task. This information helps us understand

how effective each classifier is in capturing the nuances between

the two speech classes, providing a valuable insight into their

discriminative capabilities.

4.6 Discussion

The evaluation of various classifiers on both balanced and

imbalanced splits reveals distinct performance trends which are

showcased within Figures 5, 6. In the balanced split scenario,

the Linear Discriminant Analysis model showcases consistent

performance across different data splits (80:20 and 70:30),

demonstrating decent precision, recall, and F1 scores around 0.83–

0.86, along with notably high Area Under the Curve values.

Naive Bayes exhibits moderate performance, while K-Nearest

Neighbors demonstrates relatively good performance, consistently

achieving high accuracy, precision, recall, and F1 scores around

0.85–0.89, along with robust AUC values. Support VectorMachines

maintain decent performance but with slightly lower AUC

values compared to other models. However, the Boosted model

consistently outperforms others, displaying significantly high

accuracy, precision, recall, and F1 scores around 0.91–0.94 in both

balanced and imbalanced splits, along with notably high AUC

values, making it a standout performer.

In the context of imbalanced splits, the overall performance

trends remain consistent with the balanced splits. Notably, the

Boosted model continues to exhibit exceptional performance,

showcasing robustness against class imbalances, while SVM’s

performance shows a relatively smaller difference between balanced

and imbalanced scenarios.

Across cross-validation folds (Fold 5 and Fold 10), the models

maintain consistent performance trends observed in the split

results. Particularly, the Boosted model consistently demonstrates

superior performance in both balanced and imbalanced scenarios,

showcasing high accuracy, precision, recall, and F1 scores. KNN

also maintains commendable performance, establishing itself as a

suitable alternative across various scenarios.

This paper integrated advanced methodologies to explore

dysarthric and healthy speech classification. Utilizing various

machine learning classifiers such as SVM, NB, LDA, KNN, and

Boosted Trees, our investigation focused on the multicomponent

multitone Amplitude Frequency Modulation (AFM) model

designed to encapsulate speech phonemes. We employed the

FB-DESA to extract Amplitude Envelope and Instantaneous

Frequency components from AFM signals. This unique approach

enabled us to analyze the nuanced characteristics of speech

phonemes, providing a detailed representation.

For feature extraction, we utilized 28 features from modulated

sinusoidal signals, ensuring a comprehensive representation of

speech characteristics. After completing extensive feature reduction
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FIGURE 5

Split ratio performance as shown in Tables 4, 5.

trials with several feature selection strategies, we assessed the effects

of reducing the feature set from 28 to 26 and 24. Despite our

attempts, removing features had a significant negative impact on

model performancemetrics. After removing only two features from

the initial set of 28, there is a reduction in accuracy, ranging

from 0.2 to 1.5%. Removing four features results in a reduction

of accuracy ranging from 1 to 3.5%. Based on these results we

conclude all 28 features are essential for the proposed model to

produce significant outcomes.

Rigorous testing procedures, including training to testing

(80–20 and 70-30) split, cross-validation (five-fold and 10-fold)

and LOSO-CV on balanced and imbalanced datasets enhanced

the reliability and generalizability of our results. A detailed

results of classifier performance across diverse train-test split

configurations, aiding in the evaluation of their robustness

and efficacy under various dataset distributions are presented

in Tables 4, 5. The k-fold cross-validation results presented in

Tables 6, 7 to provide a comprehensive evaluation of classifier

performance by ensuring that each data point is used for both

training and testing, thereby reducing the risk of overfitting

and providing a more reliable estimation of model performance.

Table 8 showcases the results of Leave-One-Subject-Out Cross-

Validation (LOSO-CV) involves iteratively training on all subjects

except one and testing on the left-out subject, ensuring each

subject serves as a test set exactly once. The reported metrics

include precision, recall, and F1-score, providing insights into

the classifiers’ performance in correctly classifying instances.

Our results highlighted notable performances, with the SVM

classifier achieving a training accuracy of 96.5% and a test

accuracy of 96.7%. Meanwhile, the Boosted Trees classifier
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FIGURE 6

Cross validation performance as shown in Tables 6, 7.

showed robust proficiency, boosting an overall accuracy of

97.8%. While k-fold cross-validation consistently yields higher

metrics, owing to its aggregated training sets enabling robust

model training and generalization, the split ratio shows higher

performance metrics without overfitting. Conversely, LOSO-

CV exhibits lower performance, attributed to its sensitivity to

individual subject variations and potential overfitting, despite its

theoretical advantages in utilizing more data. While LOSOCV

boasts low bias, as it uses each data point once, its high variance

makes it less stable. In contrast to 5-fold and 10-fold cross-

validation and different dataset split ratios, LOSO-CV consistently

yields lower performance metrics (ranging 2–6%) across various

classifiers and dataset configurations. The sensitivity of LOSO-CV

to individual subject variations introduces increased variability in

training sets, which may lead to challenges in model generalization,

particularly in scenarios involving class-specific speech patterns.

Furthermore, the computational complexity of LOSO-CV and

the potential for overfitting to individual subjects’ behavior

may further contribute to the observed decrease in classifier

performance compared to other methods. These outcomes showed

the effectiveness of machine learning models in distinguishing

dysarthric from healthy speech, confirming the practicality of our

approach.

The integration of advanced feature extraction, sophisticated

signal modeling, and powerful machine learning classifiers signifies

a significant step forward in dysarthria detection. By exploring

how specific signals in speech relate to patterns, our study offers

important insights into dysarthria. It also has the potential to

improve healthcare tailored to individuals. This work supports

field of biomedical engineering, possibly enhancing tools to
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TABLE 9 Comparison results of various approaches.

S. No References Features Classifier Accuracy

1

Al-Qatab and Mustafa (2021)

Acoustic features SVM, LDA, ANN 95%

2

Vashkevich and Rushkevich (2021)

Vibrato

MFCC

Jitter Shimmer

LDA 89%

3

Mulfari et al. (2022)

Isolated word-

recognition feature

CNN 96%

4

Meghraoui et al. (2021)

Neurological features
SVM

KNN, RF

95.6%

5

Illa et al. (2018)

Supra-segmental features SVM/DNN 93%

6

Kodrasi and Bourlard (2019)

Weibull distribution

Jitter

Shimmer

SVM 95%

7

Vashkevich et al. (2019)

Perturbation analysis

Vibrato

Jitter

Shimmer

LDA 90.7%

8 Proposed approach Modulating features

SVM

Naive Bayes

KNN

LDA

Boosted tree

Ranging from 85 to 97.8%

diagnose speech problems and improving the lives of people with

such disorders.

5 Comparison results of various
approaches

The comparative results of the proposed approach in this

work using the modulating features and the existing feature

techniques for DYS detection are highlighted in Table 9. This

comprehensive comparison involves several significant studies

conducted in the categorization field. Al-Qatab and Mustafa

(2021) investigated auditory data classification, achieving 95%

accuracy through the use of SVM, LDA, and ANN. Vashkevich and

Rushkevich (2021) analyzed Vibrato, MFCC, Jitter, and Shimmer

features, achieving an 89% accuracy using LDA. Mulfari et al.

(2022) concentrated on word recognition using Convolutional

Neural Networks (CNN), achieving an impressive 96% accuracy.

Meghraoui et al. (2021) employed Support Vector Machines SVM,

KNN and RF achieving a 95.6% accuracy in classifying neurological

characteristics. Illa et al. (2018) explored supra-segmental traits,

achieving 93% accuracy using SVM/DNN. Kodrasi and Bourlard

(2019) investigated Weibull distribution, jitter, and shimmer

features, achieving 95% accuracy with SVM. Vashkevich et al.

(2019) analyzed perturbation analysis, vibrato, jitter, and shimmer

traits, achieving 90.7% accuracy using LDA. In contrast, the

proposed method incorporated modulating features and employed

a diverse set of classifiers such as SVM, Naive Bayes, KNN, LDA,

and Boosted Trees, resulting in a significantly higher accuracy

of 89%–97.8%. This method demonstrates the importance by

integrating a wide array of variables and classifiers, achieving

a higher accuracy compared to the individual methodologies

explored in other studies.

6 Conclusion

In conclusion, our thorough investigation into distinguishing

dysarthric and healthy speech has shown advanced methods

that exhibit promising advancements in speech pathology and

personalized healthcare. This work involves the detection of

dysarthria by integrating various machine learning classifiers such

as SVM, NB, LDA, KNN, and Boosted Trees alongside a novel

multicomponent multitone Amplitude Frequency Modulation

signal model. The incorporation of the new AFM signal model

and the FB-DESA feature extraction method has provided

characteristics of speech phonemes, enhancing the complexity

of our feature set. A comprehensive analysis, encompassing 28

features derived from modulated sinusoidal signals, along with a

robust testing framework employing training to testing (80–20 and
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70–30) split, cross-validation (five-fold and 10-fold) and LOSO-CV

validates the rigor of our study and the reliability of the results. In

this study, various classifiers were evaluated on extracted speech

signal features for binary classification. Across varied splits and

cross-validation folds, Linear Discriminant Analysis, Naive Bayes,

K-Nearest Neighbors, and Support Vector Machines presented

commendable accuracies. However, the Boostedmodel consistently

emerged as the top performer, demonstrating superior accuracy

across balanced and imbalanced scenarios. This underscores the

robustness and efficacy of the Boosted model in discriminating

between classes based on speech signal features, suggesting its

potential suitability for practical applications. In the future, these

models with improved feature sets and network architecture could

be used for speech severity assessment, using their promising

performance in this domain. Another possible future work

may include exploration with increased number of tones and

extraction of significant featuresthrough a feature ranking scheme.

Additionally, there a scope for further research by evaluating the

model on a wider range of datasets.
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