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Introduction: The primary objective of this research is to examine acrophobia, a

widely prevalent and highly severe phobia characterized by an overwhelming

dread of heights, which has a substantial impact on a significant proportion

of individuals worldwide. The objective of our study was to develop a

real-time and precise instrument for evaluating levels of acrophobia by utilizing

electroencephalogram (EEG) signals.

Methods: EEG data was gathered from a sample of 18 individuals diagnosedwith

acrophobia. Subsequently, a range of classifiers, namely Support Vector Classifier

(SVC), K-nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT),

Adaboost, Linear Discriminant Analysis (LDA), Convolutional Neural Network

(CNN), and Artificial Neural Network (ANN), were employed in the analysis. These

methodologies encompass both machine learning (ML) and deep learning (DL)

techniques.

Results: The Convolutional Neural Network (CNN) and Artificial Neural

Network (ANN) models demonstrated notable e�cacy. The Convolutional

Neural Network (CNN) model demonstrated a training accuracy of 96% and a

testing accuracy of 99%, whereas the Artificial Neural Network (ANN) model

attained a training accuracy of 96% and a testing accuracy of 97%. The findings

of this study highlight the e�ectiveness of the proposed methodology in

accurately categorizing real-time degrees of acrophobia using EEG data. Further

investigation using correlation matrices for each level of acrophobia showed

substantial EEG frequency band connections. Beta and Gamma mean values

correlated strongly, suggesting cognitive arousal and acrophobic involvement

could synchronize activity. Beta and Gamma activity correlated strongly with

acrophobia, especially at higher levels.

Discussion: The results underscore the promise of this innovative approach

as a dependable and sophisticated method for evaluating acrophobia. This

methodology has the potential to make a substantial contribution toward

the comprehension and assessment of acrophobia, hence facilitating the

development of more individualized and e�cacious therapeutic interventions.
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1 Introduction

Anxiety, as a physiological response, can be traced back
to the evolutionary imperative for survival (Yuan et al., 2020).
The aforementioned primordial alarm system serves to notify
individuals of potential risks, hence promoting a state of vigilance
and increased attentiveness toward one’s surroundings (Giri et al.,
2016). Nevertheless, a significant distinction exists between typical
anxiety reactions and clinical anxiety disorders. Regrettably, the
latter category, encompassing a range of diseases distinguished
by intense fear or apprehension, exhibits a notable prevalence
(Juul et al., 2019). Remarkably, around 30% of persons worldwide
have these diseases at some stage in their lifetimes (Bălan et al.,
2020; Fiani et al., 2023). What is additionally concerning is the
influence exerted by these illnesses. These intangible restraints
serve as impediments to daily activities, impeding productivity
and negatively impacting both professional output and social
interactions (Babaev et al., 2018; De Magistris et al., 2022).
Individuals afflicted with these conditions frequently experience
a sense of entrapment, as they actively avoid situations and
stimuli that have the potential to exacerbate their symptoms (Dat
et al., 2021; Brandizzi et al., 2022). However, a positive aspect
can be identified (Marshall and Bewley, 2015). The medical and
psychological fields have made significant advancements in the
development of various treatments, therapies, and interventions
that provide individuals with comfort, enabling them to regain
control over their life (Ponzi et al., 2021; Zhang Y. et al., 2021).

When examining the various subcategories of anxiety
disorders, it becomes evident that phobias emerge as a prominent
classification (Anderson and Shivakumar, 2013; Iacobelli et al.,
2023). Phobias encompass more than mere apprehensions, as
they entail heightened and frequently illogical anxieties toward
particular circumstances, entities, or organisms (Wiens et al.,
2022). The phenomenon of phobia encompasses more than just
psychological suffering. Individuals afflicted with phobias may
exhibit physiological manifestations that encompass respiratory
abnormalities, heightened heart rate, and in severe instances,
loss of consciousness (Pepe et al., 2022). It is vital to distinguish
between phobias and fears. While fear can be considered a logical
reaction to an actual danger, phobias are distinguished by an
excessive and illogical fear (Bhola and Malhotra, 2014).

When classifying phobias, they can be divided into three
main categories: social phobia, agoraphobia, and specialized
phobias (Horváthová and Siládi, 2016). Social phobias are
characterized by an incapacitating apprehension of being evaluated
by others in social situations. These individuals are frequently
characterized as introverted, and their history may be marked
by negative social experiences (Baek, 2014). Agoraphobia is a
comprehensive word that encompasses apprehensions related to
both enclosed locations, such as elevators, and open, densely
populated environments (Asmundson et al., 2014). In instances of
extreme symptoms, individuals may choose to isolate themselves
within their residences due to an overwhelming fear of the external
environment (Asmundson et al., 2014). Specific phobias, as their
name implies, are anxiety disorders characterized by intense and
irrational anxieties associated with specific stimuli. Instances are
arachnophobia, which pertains to an irrational fear of spiders

(Ganatra and Mistry, 2014), as well as acrophobia, which involves
an excessive fear of heights (Huppert et al., 2020), among numerous
others. The cognitive contemplation or sheer existence of these
stimuli has the potential to immobilize the individual with a
profound sense of dread (Kristjánsson et al., 2021).

Exposure therapy has emerged as a viable intervention in the
battle against phobias (Chalfant and Bernd, 2014). The objective of
this treatment strategy is to facilitate desensitization in individuals
with anxieties by systematically exposing them to fear-inducing
stimuli in controlled settings, ultimately disrupting their pattern
of avoidance (Clemente et al., 2014). According to the American
Psychological Association, exposure therapy can be categorized
into:

• In vivo exposure: the concept of in vivo exposure involves
the deliberate and systematic immersion of individuals into
real-life events that elicit fear or anxiety (Alsaffar, 2021). For
individuals who experience arachnophobia, this could entail
a structured and supervised exposure to spiders, first with the
act of seeing them from a safe distance and progressing toward
the eventual act of tactile contact (Alsaffar, 2021).

• Imaginal exposure: imaginal exposure, conducted in vitro,
involves instructing patients to engage in mental visualization
of their phobic stimuli. The efficacy of the intervention is
somewhat reduced for individuals with a less pronounced
capacity for imaginative thinking (Martial et al., 2018).

• Systematic desensitization: systematic desensitization is a
therapeutic therapy that employs a dual strategy, wherein
relaxation techniques are initially employed to induce a state
of calmness in the patient. Following this, individuals are
systematically exposed to stimuli that elicit fear, to diminish
the fear response (Oing and Prescott, 2018).

• Flooding: flooding involves a kind of therapy that entails
subjecting individuals to direct and strong exposure to the
source of their anxiety (Markowitz and Fanselow, 2020).
This approach is based on the belief that the overpowering
experience of terror will not endure indefinitely.

• Virtual reality exposure (VRE): Virtual Reality Exposure
(VRE) is a technique that utilizes contemporary technology
to create simulated environments that replicate scenarios that
are difficult or dangerous to encounter in real life (Wiens et al.,
2022).

Phobias and anxiety disorders, however formidable, can
be overcome. Through appropriate intervention and support,
individuals have the ability to effectively navigate their anxieties,
progressively reducing their influence and ultimately achieving a
life that is not controlled by them.

Fear reduction has advanced using virtual reality (VR) and
its electrophysiological correlates in exposure therapy, particularly
for height and spider phobias. These treatment procedures are
evaluated using physiological indicators and machine learning
(Bousouar et al., 2023, 2024).

The study by Zhang X. et al. (2021) examines the impact of
in-vivo and VR exposure therapy on spider phobia in a sample of
100 individuals. Both spider and neutral photos caused significant
late positive potential (LPP) and early posterior negativity (EPN)
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in the electroencephalogram (EEG). All individuals’ spider-phobias
decreased after therapy. Based on Bayesian analysis, in vivo and VR
exposure therapy have similar effects, as evidenced by consistent
EPN and LPP levels (Zhang X. et al., 2021).

Bălan et al. (2020) introduces a novel real-time VR game
methodology for acrophobia. Using deep neural networks (Nail
et al., 2024), this new technique automated exposure intensity
adjustment. This method, using EEG, HR, and GSR, achieved
73% accuracy in fear detection on a two-choice scale. Another
study suggested treating acrophobia with VR. It measures fear
using machine and deep learning classifiers. Research suggests
that integrating beta rhythm EEG values with GSR and HR can
effectively classify terror levels (Bălan et al., 2020; Tibermacine et al.,
2023).

In acrophobia treatment, acceptance and commitment therapy
(ACT) and virtual reality (VR) were examined. Structured six-
session programmes taught patients acceptance, anchoring, and
diffusion. Treatment findings showed a significant decrease in
avoidance behaviors and an increase in value-based activities,
proving the effectiveness of an integrated approach (Çelik et al.,
2020).

Electroencephalograms have helped us understand acrophobia
in virtual reality. A canyon-themed VR environment was shown
to eight experimental participants. The Random Forest classifier
is highly proficient in the frontal region, with an accuracy rate of
68.2%. Gamma and high-beta frequency bands were shown to be
crucial, with accuracy rates of 61.3 and 57.9%, respectively (Apicella
et al., 2023).

In addition, Freeman et al. (2018) used VR to treat acrophobia.
A support vector machine was used to distinguish relaxed and
worried states with an 88% success rate. The classification was based
on ECG, GSR, and respiration data (Freeman et al., 2018). Diemer
et al. (2016) conducted a study with 80 participants, half of whom
were diagnosed with acrophobia, adding to the current knowledge.
Both groups showed physiological anxiety reactions to increasing
virtual heights, as measured by GSR and HRV (Diemer et al., 2016).

Machine and deep learning approaches, together
with VR technology, may be useful in phobia treatment.
Electrophysiological markers for real-time feedback improve
therapy knowledge and manage the therapeutic setting. Our
comprehensive study examined acrophobia through (1) spectral
analysis of brain waves, (2) brain region correlations, and (3)
the identification and selection of key features that best reflect
the brain’s response to acrophobic stimuli. The chosen features
were validated using advanced neural network models, such as
Convolutional Neural Networks (CNN) and Artificial Neural
Networks (ANN), which performed better at classifying EEG
signals.

2 Methodology and implementation

2.1 Dataset

The EEG dataset was carefully compiled from a group of
18 participants who were enrolled at a university (see Table 1),
resulting in a consistent profile of young adults with an average age
of 25.77 years, standard deviation of 3.44 and age range from 20

to 35 years old. The majority of the student cohort is composed
of individuals who have academic backgrounds in technical
disciplines. This includes Master’s and PhD candidates who
specialize in Artificial Intelligence (AI), Mechanical Engineering
(ME), and Electrical Engineering (EE). Additionally, there are
Bachelor’s students who are pursuing degrees in Computer Science
(CS) and English Literature (EL). Furthermore, it is worth noting
that the cohort also includes Master’s students who have chosen to
specialize in the fields of Electrical Engineering (EE) and Computer
Science (CS). The participants of the study were selected from the
University of Biskra, Algeria, using a casual yet purposive sampling
approach that involved utilizing personal networks of friends and
acquaintances. The research entailed the exposure of participants
to four separate visual stimuli that represented different degrees
of acrophobia within a Virtual Reality setting. The stimuli
utilized in this study were acquired from a specialized company
known as PsyTech VR. Furthermore, the researchers obtained
electroencephalogram (EEG) recordings during periods of rest
from the participants, which served as a baseline for subsequent
study. One of the primary focal points of our research entails the
meticulous safeguarding of the confidentiality of the participants’
data. Prior to the initiation of the electroencephalogram (EEG)
recording, all participants weremandated to provide their informed
consent by affixing their signatures to their student identification
cards, therefore clearly authorizing the utilization of their EEG
data for research purposes. The research technique was granted
authorization by the laboratory located at the University of Biskra,
which is situated in Algeria. The study’s credibility and security
were enhanced by the inclusion of a medical student with a
specialization in neurology and a senior medical student in their
seventh year, both of whom were members of the oversight
committee.

The implementation of tight exclusion criteria aimed to verify
that all subjects had no prior medical history of epilepsy or
any occurrences of epileptic episodes. All of the participants
in the study did not have any previous records of traumatic
brain injuries, neurosurgical procedures, or illicit substance
use that could be linked to their psychiatric condition. None
of the participants included in the study had any recorded
medical history of psychiatric problems, alcohol or substance
misuse, acute cerebrovascular diseases, or serious infections that
impacted the central nervous system. Moreover, it is crucial to
recognize that all participants in the study had no previous
history of psychoactive substance use, showed no signs of
auditory abnormalities, and did not self-report as individuals
with Synesthesia. The primary aim of our investigation was to
establish a thorough comprehension of the cognitive condition and
neurophysiological reactions exhibited by the participants upon
exposure to auditory stimuli. The achievement was attained by
integrating the findings derived from the administration of the
Mini-Mental State Examination with electroencephalogram (EEG)
data. The implementation of this enhanced methodology ensured
that the recorded electroencephalogram (EEG) responses faithfully
and efficiently reflected a representative subgroup of young persons
with unimpaired cognitive capabilities.

The data collecting process was carried out via the
Emotiv Epoc+ 14-channel EEG headset, which facilitated the
comprehensive capture of brainwave patterns in significant

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1348154
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Russo et al. 10.3389/fnhum.2024.1348154

TABLE 1 EEG responses to visual stimuli for university students.

Subject No. Gender Age Education field No. of groups Recording time MMSE

S01 M 34 PhD in AI 4 480 s 30

S02 M 29 PhD in AI 4 484 s 28

S03 M 30 PhD in ME 4 479 s 29

S04 M 29 PhD in ME 4 501 s 28

S05 M 28 PhD in EE 4 483 s 30

S06 M 26 MSc in CS 4 476 s 29

S07 F 26 MSc in CS 4 469 s 30

S08 F 25 MSc in CS 4 482 s 30

S09 M 25 MSc in CS 4 495 s 30

S10 M 25 MSc in CS 4 478 s 29

S11 M 25 MSc in CS 4 482 s 28

S12 M 25 MSc in CS 4 493 s 28

S13 M 24 MSc in CS 4 490 s 29

S14 M 26 MSc in EE 4 505 s 30

S15 M 25 MSc in EE 4 483 s 28

S16 M 20 BSc in CS 4 476 s 30

S17 M 22 BSc in EL 4 501 s 28

S18 F 20 BSc in EL 4 482 s 29

FIGURE 1

Some of the used VR in this study. (A) An apartment balcony, (B) a bridge spanning across a canyon, (C) a city perspective from a skyscraper.

cerebral areas. As a result, the dataset has been divided into
four distinct categories derived from various virtual reality
(VR) settings. These scenes include an apartment balcony,
escalators within a retail mall, a restaurant situated in a
skyscraper offering a city perspective, and a bridge spanning across
a canyon (see Figure 1).

Based on the effect sizes observed in Table 2 and considering
the number of subjects in each study, our sample size of 18
subjects appears to be sufficient for the current study. While
Apicella et al. (2023) and Tychkov et al. (2023) analyzed smaller

samples of 8 and 12 subjects, respectively, Bălan et al. (2020) and
Balan et al. (2019) employed similar or smaller sample sizes of
8 and 4 subjects, respectively. Despite variations in sample sizes
across studies, the effect sizes reported provide valuable context
for our own research. With a sample size of 18 subjects, we aim
to leverage these insights to detect meaningful effects within our
study population. Moreover, by aligning our sample size with
those of previous investigations, we enhance the comparability
of our findings and contribute to the cumulative knowledge in
the field.
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TABLE 2 E�ect size.

References Number of subjects

Apicella et al. (2023) 8

Tychkov et al. (2023) 12

Bălan et al. (2020) 8

Balan et al. (2019) 4

2.2 Preprocessing and feature extraction
methodology

After acquiring and preparing the raw data, the feature
extraction process involved employing the Short-Time Fourier
Transform (STFT) method. The aforementioned methodology is
well-suited for the examination of electroencephalogram (EEG)
signals in the time-frequency domain.

2.2.1 Preprocessing
The first step in the preparation phase involves the extraction

of electroencephalogram (EEG) recordings from the participants.
These recordings are typically stored in Comma-Separated Values
(CSV) file format. The recordings consist of 14 channels that
conform to the MNE standard. The provided format adheres
to a universally accepted nomenclature for EEG channels,
which is derived from the well recognized 10–20 system for
electrode placement with a sampling rate of 128 HZ. The
data is then imported into an MNE RawArray object, which
offers comprehensive preprocessing and analysis capabilities for
neurophysiological data.

In the preprocessing pipeline, two key techniques are employed
to enhance the quality of electroencephalogram (EEG) recordings:
filtering and Independent Component Analysis (ICA). Initially,
bandpass filtering is applied to the EEG signals to attenuate
frequencies outside the desired range, effectively removing noise
and artifacts. Specifically, a bandpass filter with cutoff frequencies
set at 1 Hz (low) and 50 Hz (high) is utilized to isolate relevant
neural oscillations while suppressing unwanted components such
as baseline drift and high-frequency noise. Subsequently, a notch
filter is employed to target the removal of specific frequencies
known to be sources of interference, notably the 50 Hz powerline
noise. This filter further refines the EEG signals, ensuring a
cleaner dataset for subsequent analysis. Following the application of
these conventional filtering techniques, Independent Component
Analysis (ICA) is employed as a sophisticated method for
artifact removal. By decomposing the EEG data into statistically
independent components, ICA enables the separation of signal
sources, including brain activity and various types of noise and
artifacts. Through the identification and removal of artifact-related
components, ICA enhances the interpretability and reliability of
the EEG recordings, allowing for more accurate analyses of neural
dynamics and cognitive processes. In combination, these filtering
and ICA techniques play a pivotal role in preprocessing EEG data,
facilitating the extraction of meaningful insights from complex
neurophysiological signals.

2.2.2 Feature extraction
The Short-Time Fourier Transform (STFT) is a commonly

used signal processing technique that is performed to analyse the
time-varying frequency characteristics of a signal. The procedure
involves dividing the signal into distinct windows of data, where
each window consists of 128 samples. Following this, the Fourier
Transform is implemented on each individual window, and the
magnitude is calculated using the “stft" function provided by the
scipy.signal package. The technique described above was executed
individually for each EEG channel, resulting in a three-dimensional
array consisting of complex values representing time, frequency,
and channel, respectively. The mean magnitudes of frequency
segments at each temporal instance were determined by calculating
the average over specific time intervals. The process of averaging
was utilized to reduce the dimensionality of the data and generate
a more thorough representation of the frequency content for each
channel across the whole recording period. The resulting matrix of
features serves as a great dataset for subsequent inquiry or machine
learning endeavors. The technique described above is executed
in an iterative manner for the electroencephalogram (EEG) data
of each individual participant, leading to the generation of a set
of feature sets. The sets are then vertically merged to create a
comprehensive matrix that encompasses data from all individuals.
The size of the extracted features vector is 42, which corresponds to
the extraction of three waves from each of the 14 channels.

2.3 Classification

The classification of EEG data has gained the attention
of many researchers in the last few decades. Various machine
and deep learning classifiers, including Support Vector Classifier
(SVC), Random Forest (RF), Decision Tree, Ada Boost, Linear
Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), and
Artificial Neuron Networks (ANN) classifiers, in addition to Multi-
Layer Perceptron (MLP) and Convolutional Neural Networks
(CNN), have been suggested to generate conclusions about the
current state of the subject based on the EEG feature vectors
generated during the feature extraction phase.

In our research on the classification of EEG signals collected
from individuals experiencing various levels of acrophobia in
virtual reality (VR), we chose to use both Convolutional Neural
Networks (CNNs) and Artificial Neural Networks (ANNs) as
our primary classifiers after careful consideration of the distinct
strengths each architecture provides. First, CNNs were chosen
because of their inherent capacity to properly capture spatial
dependencies within multidimensional data sets. Given that EEG
signals are captured across several channels, CNNs are ideal for
automatically learning and extracting spatial information from
the data. This is especially important since brain activity across
the scalp exhibits spatial distribution patterns, and CNNs excel
at detecting complicated spatial patterns indicating varying levels
of acrophobia reflected in EEG signals. In contrast, ANNs were
used in our classification system to supplement CNN capabilities
by capturing the temporal dynamics found in EEG data. ANNs,
with their fully connected layers and ability to learn complicated
correlations within sequential data, excel at handling temporal
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FIGURE 2

Layout of the proposed model.

features of EEG signals, such as changes in brain activity over
time. By incorporating ANNs alongside CNNs, we hoped to use the
complimentary strengths of both architectures to properly capture
the delicate interplay between spatial and temporal variables inside
the EEG data, thus boosting the overall accuracy and robustness of
our classification model.

Moreover, our decision to utilize well-established CNNs and
ANNs aligns with the principle of ensuring reproducibility in
scientific studies. These architectures have been extensively studied
and validated in various applications, providing a standardized
and transparent framework for training, validation, and testing.
By employing widely recognized neural network architectures, we
enhance the credibility and reliability of our findings, as other
researchers can easily replicate our experiments and verify the
results using the same methodologies.

2.3.1 Machine learning approaches
Machine learning (ML) algorithms are famous methods for

EEG data classification, especially in the field of the current study.
Both supervised and unsupervised ML methods have been used
in similar studies to interpret the EEG signals. In this study,
we try to take advantage of the supervised methods to create a
prediction algorithm based on the labeled EEG feature vectors.
This algorithmwill predict discrete outcomes representing the EEG
signal class based on the 4-choice scale, where 0 is for relaxation,
1 for low fear, 2 for medium fear, and 3 for intense fear. Our
experimental study will employ the SVC, KNN, RF, Decision Tree,
LDA, and Adaboost as ML classifiers to evaluate their effectiveness
for accurately classifying the EEG signals into multiple classes. The
results of each method will be compared with the other proposed
methods used in this experiment.

2.3.2 Artificial Neural Network model
The proposed model is a Keras sequential model for multi-

class classification. The model consists of three hidden layers of 100
neurons in each layer with a relu activation function. The input
shape was 42, which represents the feature vector extracted from
the EEG raw data. Four neurons were used in the output layer,
with a softmax activation function coresponding to the predicted
fear level from 1 to 4. To compile the model, an adam optimizer

TABLE 3 Hyper-parameters of ANN model.

No. Hyper-parameter Value

1 Number of hidden layers 3

2 Number of neurons in each hidden layer 100

3 Activation function Relu

4 Learning rate 0.01

5 Batch size 100

6 Number of epochs 120

7 Train set 80%

8 Test set 20%

9 Optimizer Adam

10 Loss function SPCE

with a learning rate of 0.01 and sparse categorical cross-entropy loss
function were used. The data had been normalized to have 0 means
before training and testing. The model was trained on 80% of the
total dataset and tested on the remaining 20% during 120 epochs
with a batch size of 100 samples. The architecture of the proposed
model and hyperparameters are shown in the Figure 2 and Table 3,
respectively.

2.3.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are one of the most

effective methods for EEG signal classification in the DL field. The
motivation behind using this technique for our experiment lies
in its ability to capture temporal and spatial patterns, especially
with the high dimensional data. Using Pytorch library we create a
timeseries CNNmodel that takes time series data as an input with a
window size of 30 samples and 42 features. The model comprises
three identical blocks, each consisting of a dropout layer with a
dropout rate of 0.2, a Conv1D convolutional layer with a kernel
size of 3, and a batch normalization layer with a Relu function for
activation. The same padding was used for all blocks to preserve
the same dimension of the output as the input. The outcomes of
each block represent the input of the following block. The batch
normalization layer was introduced to normalize the outputs of
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TABLE 4 Hyper-parameters of TimeSeriesCNN model.

No. Hyper-parameter Value

1 Number of epochs 100

2 Time series window size 30

3 Time series stride 2

4 Train set 80%

5 Validation set 10%

6 Test set 10%

7 Optimizer Adam

8 Learning rate 0.001

9 Dropout rate 0.2

10 Batch size 10

11 Loss function Cross-entropy

12 Number of convolutional layers 3

13 Number of Filters 1

14 Padding 1

15 Stride of conv1D 1

each convolutional layer across the mini-batch during training. It
facilitates and speeds up the training and prevents overfitting. The
dropout layer was used to keep the model from becoming overfit.
The convolutional layers 2D tensor was converted to a 1D tensor
using a flattened layer. A fully connected layer with a size of (16*42)
and an output of four classes that refer to the fear levels is then
applied to the outcome after it has been flattened. Finally, the Adam
optimizer with a learning rate of 0.001 and the Cross-Entropy loss
function were applied. 80% of the total samples were used to train
the model, 10% for validation, and 10% for testing. The model
architecture and hyperparameters are described in the Figure 2 and
Table 4, respectively.

3 Results and discussion

For all the models we worked with a dataset of 1940 samples of
42 EEG extracted features. Their output is the estimated fear level
from 1 to 4 scale.

3.1 Machine learning approaches

Machine learning (ML) approaches, notably supervised
algorithms, have a long history of being employed for EEG data
classification. This study aligns with the prevailing pattern, aiming
to forecast different degrees of terror encountered by participants.
The target classes are organized in a systematic manner using a
4-choice scale, which places a high importance on the algorithms’
ability to effectively distinguish between these groups.

Based on the obtained data, it is evident that there is a
substantial variation in the performances of the algorithms (see
Table 5).

TABLE 5 ML classifiers accuracies.

Classifier Accuracy

Support vector classifier (SVC) 69%

Decision tree classifier (DT) 53%

Random forest classifier (RF) 75%

K-nearest neighbors classifier (KNN) 86%

Ada boost classifier 50%

Linear discriminant analysis (LDA) 51%

3.1.1 The K-nearest neighbors classifier
The KNN has demonstrated the highest level of accuracy,

reaching an astonishing 86% performance. One of the key
advantages of the K-nearest neighbors (KNN) algorithm is its
non-parametric character, which enables it to effectively capture
intricate decision boundaries. The performance of the EEG feature
space demonstrates the presence of distinct clusters of data points
that correspond to specific classes, and the K-nearest neighbors
(KNN) algorithm is capable of effectively distinguishing between
these clusters.

3.1.2 The Random Forest Classifier
The RF has commendable performance, with an accuracy

rate of 75%. Due to its ensemble structure, Random Forest (RF)
demonstrates proficiency in handling high dimensionality and
effectively mitigating potential overfitting by employing bagging
and random feature selection procedures. The success of the EEG
features implies that they may demonstrate specific decision trees
that, when combined, contribute to a robust classification capacity.

3.1.3 The Support Vector Classifier
The SVC is a robust method commonly employed for

classification tasks, particularly when confronted with data sets
including numerous dimensions. It has been observed to possess
a satisfactory accuracy rate of 69%, rendering it a dependable
approach for various classification challenges. The objective is to
identify the optimal hyperplane that effectively separates distinct
classes. The satisfactory performance can be due to the inherent
characteristics of EEG data, which allow for the successful division
of different fear levels using either a linear or non-linear hyperplane
(with an appropriate kernel).

3.1.4 Linear Discriminant Analysis
The LDA exhibits a modest performance with an accuracy of

51% for a 4-class problem, indicating that its predictive capability
is just marginally better than random chance. The objective of
this approach is to optimize the separation between the means
of distinct classes while simultaneously minimizing the dispersion
(variance) within each class. The average performance of the model
may suggest the presence of a substantial intersection among the
classes or non-linear boundaries within the dataset, which the
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Linear Discriminant Analysis (LDA)method is unable to accurately
represent.

3.1.5 Decision Tree Classifier
The performance of the Decision Tree Classifier is ∼53%,

which is close to the baseline. Decision Trees partition the
data by utilizing specific thresholds associated with features.
The inadequate performance shown implies that employing
basic threshold-based divisions on individual attributes alone is
insufficient for effectively differentiating between the classes.

3.1.6 The AdaBoost classifier
With an accuracy rate of 50%, exhibits sub-optimal

performance on the given data set. The under-performance
of the ensemble method can be attributed to the inherent
limitations of the individual weak classifiers, typically decision
trees, in effectively classifying the EEG data. The application of
boosting techniques does not yield substantial improvements in
accuracy.

In conclusion, it can be observed that KNN and RF had
notable performances, but AdaBoost, DT, and LDA demonstrated
comparatively subpar results in the given job. The diverse
levels of achievement observed among algorithms provide
insight into the intrinsic intricacies and subtleties of the
electroencephalogram (EEG) data. Moreover, this observation
implies the existence of intricate and non-linear patterns within
the EEG data, which may be more effectively captured by
some algorithms compared to others. The subsequent steps
may encompass the optimisation of hyper-parameters for the
under-performing algorithms or the incorporation of domain-
specific expertise to enhance the feature set or the selection
of methods.

3.2 Artificial Neural Network

Artificial neural networks, particularly feed-forward topologies,
have gained recognition for their capacity to effectively mimic any
continuous function given a sufficient number of neurons. These
characteristics render them highly suitable candidates for a wide
range of classification tasks. The inherent ability of individuals
to effectively handle non-linearities is crucial, given the complex
characteristics exhibited by EEG signals. The sequential Keras
model that we have selected consists of three hidden layers. In
this architecture, every layer contains 100 neurons and employs
the rectified linear unit (ReLU) activation function. The selection
of ReLU is attributed to its advantageous property of having
a non-vanishing gradient. The artificial neural network (ANN)
model being investigated was developed and evaluated using
the same dataset that was used to train the machine learning
(ML) classifiers. The dataset consists of 1940 samples, where
each entry contains 42 features taken from EEG signals. In
terms of training, the model exhibited a 96% accuracy rate along
with a loss value of 0.32. During the testing phase, the system
demonstrated a noteworthy accuracy rate of 97%, resulting in a loss
of 0.24. The correctness of the testing is determined by calculating

the values from the confusion matrix, which is illustrated in
the Figure 3.

In order to conduct a more comprehensive analysis, the
confusion matrix provides a detailed examination of the accurate
and inaccurate categorizations produced by the artificial neural
network (ANN).

At Level 1 (relaxation), the artificial neural network (ANN)
model demonstrated its exceptional performance by achieving a
99% accuracy rate. A negligible misclassification rate of 0.95% was
recorded specifically for level 3, whereas no misclassifications were
observed for levels 2 and 4.

Level 2 (low fear): The findings indicate a modest amount of
challenge, as indicated by misclassifications of 6.2 and 2.5% toward
level 3 and level 4, respectively, with an overall accuracy rate of 91%.

At a forecast accuracy of 99%, the level of precision is
commendable. A marginal misclassification rate of 1.1% was
observed specifically for level 2, while no misclassifications were
detected for levels 1 and 4.

The classification model achieved a high accuracy rate of
97% in predicting Level 4 (Intense Fear). However, there were
minor misclassifications of 1.7% each, which were seen in levels
1 and 2. These misclassifications serve to emphasize the model’s
effectiveness in accurately detecting extreme emotional states.

The comprehensive analysis highlights the model’s ability to
accurately differentiate between different levels of fear intensity
based on EEG signals. The presence of minor misclassifications,
particularly in cases when fear intensities are closely related,
highlights the intricate and nuanced characteristics of these
emotional thresholds. The results of this study raise inquiries on the
underlying parallels in EEG patterns observed between successive
levels of terror intensity. This observation suggests the possibility
of further improving the model or incorporating more variables to
accurately capture these subtle distinctions.

In summary, the sequential artificial neural network (ANN)
model, with its layered architecture, has demonstrated notable
proficiency in classifying EEG signals, highlighting its potential as a
reliable tool for detecting emotions based on EEG data.

3.3 Convolutional Neural Network

The suggested TimeSeries CNN model was subjected to
validation and testing using a dataset of consistent dimensions,
specifically 1,940 × 42. The model received time series data as its
input. From this data, a total of 913 tensors were retrieved using
a window size of 30 and a stride of 2. The main aim of the model
was to assess the level of fear, which was classified into four discrete
categories, ranging from 1 to 4.

The accuracy and loss metrics of the model have demonstrated
noteworthy performance across its whole lifespan. Specifically, the
model achieved an accuracy score of 96% during the training
phase, 98% during the validation phase, and reached its highest
accuracy of 99% during the testing phase (see Figures 4, 5). The
measures demonstrate the model’s strong capacity to generalize
across several data segments, suggesting that overfitting is not
present. The claim is reinforced by the consistent loss values
that were recorded, namely 0.1 during the training phase, 0.03
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FIGURE 3

Confusion matrix obtained from testing the ANN model.

FIGURE 4

Plots for training and validation accuracies and losses of the time series CNN model.

in the validation phase, and 0.05 during the testing phase.
The observed trend of enhanced accuracy and reduced loss
throughout the transition from training to testing indicates
that the model has been effectively optimized and possesses
the capability to effectively process the complex EEG time
series data.

The classification of the “Level 1” category demonstrates a
noteworthy strength, as indicated by an accuracy rate of 0.82.
However, it has been noticed that the model frequently confuses
“Level 1” with “Level 3,” resulting in an error rate of ∼17%. The
model demonstrates excellent performance in predicting “Level 2”
with a high accuracy of 0.94, with only minimal misclassifications
in relation to the other levels. The model’s prediction accuracy at

Level 3 is noteworthy, with a score of 0.96. However, there are
minor discrepancies seen, particularly toward Level 4. In the case
of “Level 4,” the model demonstrates a commendable accuracy
rate of 0.92. However, it is worth noting that there is a noticeable
misclassification rate of 6.6% toward the “Level 3" category. The
provided confusion matrix offers valuable insights into the specific
categorization issues encountered by the model. Although the
accuracy metrics as a whole are commendable, there are certain
repeating patterns of misclassification, such as the confusion
between “Level 1" and “Level 3." This phenomenonmay arise due to
the existence of shared electroencephalogram (EEG) characteristics
at these levels or specific complexities that the model may not have
fully comprehended.
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FIGURE 5

Confusion matrix obtained from testing the TimeSeriesCNN model.

In conclusion, the TimeSeries CNN has exhibited exceptional
proficiency in categorizing EEG time series data into different fear
categories, owing to its customized architecture and optimized
hyperparameters. The accuracy and loss graphs supplied, along
with the analysis of the confusion matrix, validate the reliability
of the model in this particular field. In order to optimize future
undertakings, it is advisable to concentrate on the enhancement
of particular domains of misclassification. Potential strategies
encompass a spectrum of methods, including the incorporation of
domain-specific information, augmentation of the training dataset,
and adjustment of the architecture and hyperparameters.

3.4 Comparative study

In comparison to previous works in the field of acrophobia
treatment using EEG data analysis and machine learning
techniques, our proposed TimeSeries CNN model and artificial
neural network (ANN) model demonstrate notable strengths and
areas for improvement.

Compared to Study Balan et al. (2019), which utilizes neural
networks for fear estimation in a VR game, our TimeSeries CNN
model achieves higher accuracy rates across all fear levels during
both training and testing phases. Specifically, our model achieves
an accuracy score of 99% during the testing phase, surpassing the
accuracy rates reported in Study Balan et al. (2019). However,
similar to Study Balan et al. (2019), our model also exhibits
confusion between “Level 1" and “Level 3," suggesting a potential
area for further refinement in fear level classification.

Similarly, in comparison to Study Bălan et al. (2020), which
investigates machine learning classifiers for fear level estimation in
a VR system, our TimeSeries CNN model demonstrates superior
performance in predicting fear levels, particularly achieving
higher accuracy rates for “Level 1" and “Level 3." Additionally,

our model showcases consistent accuracy improvement from
training to testing phases, indicating effective optimization and
generalization capabilities.

Compared to the ANN model evaluated in our work, Study
Apicella et al. (2023) proposes an EEG-based classification system
for fear of heights using VR scenarios. While both studies achieve
high accuracy rates for fear level prediction, our ANN model
demonstrates exceptional accuracy of 99% for “Level 1" and “Level
3," highlighting its robustness in detecting relaxation and moderate
fear states. However, similar to Study Apicella et al. (2023), our
model exhibits misclassifications between adjacent fear levels,
indicating potential challenges in distinguishing between subtle
variations in fear intensity.

Compared to Study Tychkov et al. (2023), which explores
the use of spectral analysis of EEG power for assessing
psychoemotional states in acrophobia using VR technology, our
proposed TimeSeries CNN and ANN models offer complementary
approaches for fear level classification. While Study Tychkov et al.
(2023) focuses on spectral analysis of EEG power to identify
markers for anxious-phobic disorders, our models directly classify
fear levels based on EEG signals. Our models demonstrate superior
accuracy rates for fear level prediction, particularly achieving
high accuracy for “Level 1” and “Level 3.” However, similar
to Study Tychkov et al. (2023), our models may encounter
challenges in distinguishing between closely related emotional
states, as evidenced by misclassifications between adjacent
fear levels.

Overall, our proposed TimeSeries CNN and ANN models
exhibit promising performance in fear level classification,
showcasing strengths in accurately predicting different fear
states. However, further investigation is warranted to address
specific misclassification patterns observed across fear levels and
enhance the models’ ability to differentiate between closely related
emotional states.
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3.5 Exploratory data analysis and statistical
testing of EEG feature sets

In the present study, we conducted an examination of
exploratory data analysis (EDA) and statistical testing on several
sets of Electroencephalography (EEG) features, as documented
in the works of Maghsoudi and Shalbaf (2022) and Staji et al.
(2022). Electroencephalography (EEG) is a non-invasive technique
used to record the electrical activity of the brain. In the context
of our research, we observed distinct characteristics in the form
of mean frequencies, specifically Alpha, Beta, and Gamma, as
shown in the studies by Rochais et al. (2018) and Lin and Fang
(2021). Out of the three feature extraction methods utilized in our
study, the approach that utilized Power Spectral Density (PSD)
through STFT method emerged as the most prominent. This
method yielded 42 unique features, which corresponded to the 14-
channel EEG headset employed in our research. Notably, these
features exhibited superior classification outcomes. However, it
is important to note that we solely focused on optimizing the
analysis by utilizing the mean of each wave. In this study, we
conducted an analysis of descriptive statistics to compute the
measures of central tendency (means) and variability (standard
deviations). The findings are shown in Table 6. The study utilized
Analysis of Variance (ANOVA) using different python libraries
(MNE, Pingouin, Pandas, Scipy) and interpreted manually to
assess the presence of statistically significant differences across the
Alpha, Beta, and Gamma frequency bands across four stimuli. The
corresponding averages for each frequency band and stimulus are
presented in Table 7. The null hypothesis in ANOVA testing posits
that there are no significant differences between the groups being
compared, and any observed deviations are exclusively attributable
to random sampling variability.We performed an exhaustive power
analysis utilizing G*Power to address concerns pertaining to the
adequacy of our sample size in detecting significant and subtle
effects in EEG features across various levels of acrophobia. The
power analysis shows that our sample size is relevant enough to
obtain a statistical power <0.8.

Alpha mean: The analysis of variance (ANOVA) test
conducted on the Alpha mean yielded an F-value of 2.002,
accompanied by a P-value of 0.112. Despite the fact that
the observed P-value does not fall below the commonly
accepted alpha level of 0.05, it does indicate a discernible
pattern indicating potential variations in the mean Alpha
values across various levels of acrophobia. Nevertheless, it
is not possible to definitively dismiss the null hypothesis,
suggesting that there is no statistically significant variation
in the average Alpha frequency responses across the four
acrophobia stimuli.
Beta mean: The F-value obtained for the ANOVA test on
the Beta mean was 7.119, indicating a statistically significant
result. The associated P-value was found to be very significant
(P < 0.01), about 9.357e-05. Based on the obtained results,
our findings indicate that we fall significantly below the
predetermined alpha level of 0.05, hence providing sufficient
evidence to reject the null hypothesis. The results of this study
demonstrate statistically significant variances in the average Beta
frequency responses across the different stimuli associated with

TABLE 6 Descriptive statistics of EEG features for di�erent acrophobia

levels.

Alpha mean Beta mean Gamma
mean

Level 1 (lowest acrophobia level)

Count 498 498 498

Mean 2.76 0.69 –6.06

Std 3.01 3.09 3.83

Min –3.46 –5.69 –13.90

Max 18.15 13.59 12.86

Level 2 (mild acrophobia level)

Count 417 417 417

Mean 2.79 1.00 –5.74

Std 3.84 4.18 4.430

Min –4.67 –5.24 –12.84

Max 18.13 13.68 7.77

Level 3 (moderate acrophobia level)

Count 462 462 462

Mean 3.19 0.84 –6.07

Std 2.63 2.62 2.90

Min –2.60 –3.64 –11.22

Max 32.79 21.50 9.36

Level 4 (highest acrophobia level)

Count 563 563 563

Mean 3.04 1.59 –4.66

Std 3.16 3.64 4.29

Min –4.37 –5.85 –11.47

Max 19.56 13.52 8.88

TABLE 7 The obtained results of the statistical test.

Alpha mean Beta mean Gamma
mean

F-value 2.00 7.11 15.40

P-value 0.11 <0.01 <0.01

acrophobia. These findings reflect noteworthy disparities in the
levels of active, busy, or nervous thinking and concentration
exhibited by the participants.
Gamma mean: The ANOVA test conducted on the Gamma
mean resulted in an F-value of 15.410, indicating a very
significant relationship. The associated P-value was found to
be <0.01, specifically roughly 6.578e-10. Consequently, the null
hypothesis about the mean Gamma frequency responses for
diverse acrophobia stimuli is rejected, indicating the presence
of statistically significant variations. These findings indicate
notable disparities in higher-order cognitive processing and
information processing among the stimuli.

Frontiers inHumanNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1348154
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Russo et al. 10.3389/fnhum.2024.1348154

In the subsequent research, we explore the statistical
interpretations of electroencephalography (EEG) data in relation
to different levels of acrophobia. Significant differences in the
mean values across diverse stimuli were seen through the ANOVA
tests run on the Alpha, Beta, and Gamma frequency bands.
Nevertheless, it is crucial to acknowledge that ANOVA in itself
does not precisely identify the specific distinctions between every
set of stimuli. In order to effectively discern the specific differences
across stimulus levels, it is important to conduct further post-hoc
testing. The inclusion of these supplementary analyses is crucial
not only for comprehending the subtle distinctions among each
level of acrophobia but also for effectively managing the heightened
risk of Type I errors that frequently arise when doing numerous
statistical comparisons. By employing a careful methodology,
our objective is to offer a comprehensive comprehension of
the electroencephalogram (EEG) data, therefore illuminating
the subtle neurophysiological dynamics that form the basis of
acrophobia.

Level 01: At the most basic level of acrophobia, the mean
Alpha wave activity is recorded as 2.76, with a standard
deviation of 3.01. This suggests a significant range of variability
in Alpha wave activity across the participants. The observed
range of relaxation responses, spanning from –3.46 to 18.15,
encompasses a wide spectrum. The Beta mean, which is
calculated to be 0.69, exhibits a notable standard deviation
of 3.09, indicating a wide range of cognitive involvement
levels among the individuals. The mean value of the negative
Gamma activity, –6.06, accompanied with a standard deviation
of 3.83, signifies a decrease in Gamma activity. This decrease is
frequently associated with cognitive activities.
Level 02: At this particular level, the mean value of Alpha
exhibits a modest increase, reaching 2.79. Additionally, the
standard deviation of Alpha extends to 3.84, indicating a
higher degree of variability in the relaxation responses observed
among the subjects. The Beta mean exhibits an increase to
1.00, accompanied by a higher standard deviation of 4.18. This
suggests the presence of heightened alertness or cognitive stress
among certain individuals. The Gamma score, which has a mean
of –5.74 and a standard deviation of 4.43, indicates a cognitive
reaction that is both more uniform and intense.
Level 03: The Alpha mean demonstrates a notable increase
to 3.19, accompanied by a decreased standard deviation of
2.63. This suggests a heightened and more consistent relaxation
response. The Beta mean exhibits a little decline to 0.84,
accompanied by a standard deviation of 2.62. This observation
implies a tendency toward a more homogeneous degree of
awareness. The Gammamean, which is seen to be –6.07, exhibits
a resemblance to Level 1, accompanied with a standard deviation
of 2.90. This finding suggests a consistent pattern in cognitive
processing among the participants.
Level 04: In the most extreme case of acrophobia, the mean
value of Alpha experiences a modest decline to 3.04ease to
3.16. This observation implies a greater degree of variability in
stress responses. The Beta mean exhibits a notable increase to
1.59, accompanied by a substantial standard deviation of 3.64,
indicating a significant level of variability in cognitive stress.
The Gamma mean, which is seen to be –4.66 with a standard

deviation of 4.29, suggests a range of cognitive processing
abilities that may be diverse and potentially enhanced.

Correlation studies were conducted to enhance our
comprehension of the EEG feature sets and their interrelationships
across various levels of acrophobia. Correlation matrices provide
a measurable indication of the extent to which two variables are
associated. The heatmaps presented below depict the correlation
matrices corresponding to different levels of acrophobia. These
heatmaps offer a graphical representation of the magnitude and
direction of the associations between the mean frequency bands
of Alpha, Beta, and Gamma. Matrices play a crucial role in the
identification of patterns that may not be readily discernible alone
through the use of ANOVA.

Upon analyzing the matrices, it becomes evident that the
correlation coefficients exhibit a spectrum of values ranging from
modest to high. This signifies the presence of diverse levels of linear
relationship between the distinct EEG frequency bands.

Level 01: The matrix demonstrates a robust positive correlation
(r = 0.9) between the means of Beta and Gamma activity,
indicating that a rise in Beta activity is associated with a
corresponding increase in Gamma activity within the lowest
level of acrophobia. The variables Alpha and Beta, as well as
Alpha and Gamma, have a statistically significant positive link,
with correlation coefficients of 0.74 and 0.56, respectively.
Level 02: In this observation, a robust positive correlation is
shown between themeans of Beta andGamma (0.95), surpassing
the strength observed at Level 1. The Alpha mean exhibits a
significant association with both the Beta and Gamma averages,
with correlation coefficients of 0.86 and 0.79, respectively. This
suggests a higher degree of synchronized activity between these
frequency bands in individuals with acrophobia at this particular
level.
Level 03: The correlations exhibit a little decline while
maintaining a significant strength, as evidenced by the high
correlation coefficient (0.89) observed between the means of
Beta and Gamma. The Alpha mean demonstrates a robust
positive association with both the Beta mean (0.73) and the
Gamma mean (0.62), which aligns with the observed trend in
prior levels.
Level 04: At the acrophobia level characterized as the greatest,
there exists a strong correlation (0.94) between themeans of Beta
and Gamma, which is comparable to the correlation observed
at Level 2. The Alpha mean has a connection of moderate to
strong magnitude with Beta (0.7) and a correlation of moderate
magnitude with Gamma (0.57).

The observed results suggest a continuous association between
the EEG frequency bands and various levels of acrophobia. The
Beta and Gamma frequency bands, which are frequently linked to
cognitive processing and engagement, consistently exhibit a robust
positive association. This observation may indicate the cognitive
and emotional challenges associated with the processing of cues
that induce acrophobia. The results indicates that there is a positive
correlation between the severity of acrophobia and the degrees of
Beta and Gamma activity. This correlation suggests that persons
with greater levels of acrophobia have increased cognitive arousal
and engagement.
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FIGURE 6

Correlation matrices.

3.6 Cronbach’s alpha

In psychometrics, Cronbach’s alpha stands as a fundamental
measure of internal consistency reliability, pivotal in gauging the
reliability of scales or sets of items within various psychological
constructs (Tavakol and Dennick, 2011). It serves to evaluate
the degree to which items within a scale or measure exhibit
consistent patterns of response, essentially quantifying the
extent to which items correlate with each other. By doing so,
Cronbach’s alpha provides researchers with valuable insights
into the reliability and consistency of the measurements
obtained from multiple items or channels (Vaske et al.,
2017).

The formula to calculate Cronbach’s alpha is as follows:

α =

n− 1

n

(

1−
σ 2
total

∑

σ 2
item

)

(1)

In Equation 1, α represents Cronbach’s alpha, n denotes the
number of items or channels, σ 2

item signifies the variance of
individual items, and σ 2

total
represents the total variance.

In the context of our study, which explores the classification of
EEG signals from individuals with varying levels of acrophobia in
virtual reality, the utilization of Cronbach’s alpha is instrumental.
By evaluating the internal consistency and reliability of the EEG
data, we aim to ascertain the robustness of our measurements and
the consistency of neural activity patterns across different channels.

After combining data from four distinct CSV files, each
containing EEG recordings corresponding to different acrophobia
levels, we proceeded to calculate Cronbach’s alpha. The resulting
value, ∼0.886, with a 95% confidence interval ranging from 0.881
to 0.891, signifies a high level of internal consistency among the
EEG channels measured in our study. This outcome suggests that
the EEG channels reliably capture the underlying neural activity
associated with varying levels of acrophobia in our participant
cohort.

Such findings underscore the validity and reliability of
our EEG data, substantiating its suitability for further analysis
and interpretation. The robust internal consistency revealed by
Cronbach’s alpha reinforces the confidence in the integrity of
our measurements, thus bolstering the credibility of our study
outcomes.
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3.7 EEG analysis

The findings derived from the analysis of descriptive statistics,
analysis of variance (ANOVA), and correlation matrices offer a
comprehensive understanding of the neurophysiological reactions
of acrophobia, as assessed using electroencephalography (EEG).
The descriptive statistics reveal a discernible pattern in the data,
wherein the average frequencies of Alpha, Beta, and Gamma waves
exhibit a consistent tendency across various levels of acrophobia.
An evident correlation exists between the escalating levels of
acrophobia and the average Alpha and Beta frequencies, suggesting
a potential augmentation in alertness and cognitive involvement in
reaction to stimuli that induce fear.

The findings of the analysis of variance (ANOVA) highlight
this fact, indicating notable disparities in the levels of Beta and
Gamma wave activities among individuals with different degrees of
acrophobia. However, there is no statistically significant variation
observed in Alpha wave patterns. The obtained F-value of 15.409
for Gamma wave activity, along with the very significant P-value (P
< 1e-9), provides compelling evidence that Gamma wave activity is
highly responsive to the degree of acrophobia. This finding perhaps
indicates that the heightened cognitive requirements associated
with fear processing contribute to the observed sensitivity. The
Beta waves, which exhibit notable variations across different
levels of acrophobia, may potentially indicate an individual’s
increased vigilance and anxiety when exposed to stimuli related to
acrophobia.

The correlation matrices illustrate the associations between
various brainwave frequencies, visually representing the
relationships. These matrices consistently demonstrate a robust
positive correlation between Beta and Gamma waves. This
observation suggests that as individuals are exposed to more
heightened acrophobic stimuli, there is a corresponding elevation
in both cognitive processing, as indicated by Gamma activity,
and emotional stress or anxiety, as indicated by Beta activity. The
observed positive correlations indicate that the brainwave activities
under investigation may not be independent entities, but rather
components of a coordinated reaction to acrophobia.

The findings indicate that there are moderate correlations
between Alpha wave activity and the other two frequencies. These
connections show that as acrophobia severity grows, Alpha activity
also increases. However, it appears that the relationship between
Alpha activity and cognitive and emotional stress responses may
not be as strong as the relationship between Beta and Gamma
waves and these reactions. This phenomenon may be attributed
to the conventional correlation between Alpha waves and states of
relaxation, which may have a less direct impact on the immediate
stress reaction but can still be influenced by the individual’s overall
emotional and cognitive condition.

The integration of these findings, along with the demonstrated
high accuracy of the Convolutional Neural Network (CNN)
and Artificial Neural Network (ANN) models in identifying
acrophobia levels, presents a persuasive rationale for utilizing EEG
data in comprehending and perhaps diagnosing acrophobia. The
robust performance exhibited by these models serves to confirm
the EEG data’s credibility as a dependable information source
concerning acrophobia. Furthermore, it highlights the capacity of

machine learning methodologies to discern significant patterns
from intricate neurophysiological data.

In summary, the findings of this study indicate that
electroencephalography (EEG) has the potential to be a valuable
instrument for evaluating acrophobia. The examination of distinct
brainwave frequencies provides valuable information regarding
the cognitive and emotional aspects of this particular fear. The
results of the study also support the notion of adopting a holistic
perspective in comprehending acrophobia, wherein cognitive
processes and emotional reactions are recognized as interrelated
components of the acrophobic phenomenon.

3.8 Brain correlation

Brain correlation refers to the statistical relationship between
different brain regions or neural activities, typically measured using
neuroimaging techniques such as electroencephalography (EEG)
or functional magnetic resonance imaging (fMRI). In the context
of this study, brain correlation specifically refers to the degree of
association or synchronization between the activities of different
frequency bands, such as Alpha, Beta, and Gamma, within specific
regions of the brain.

The results presented in Figure 6 demonstrate robust positive
correlations between the means of Beta and Gamma activities
across different levels of acrophobia. These correlations indicate
that changes in Beta activity are consistently associated with
corresponding changes in Gamma activity within each level of
acrophobia. Additionally, significant positive correlations were
observed between Alpha and Beta, as well as Alpha and Gamma
activities, suggesting synchronized activity across these frequency
bands.

Furthermore, the strength of these correlations varied across
acrophobia levels, with higher levels of acrophobia exhibiting
slightly weaker but still significant correlations. These findings
suggest that the degree of synchronization between different brain
regions or frequency bands may vary depending on the severity
of acrophobia, highlighting the complex interplay between neural
activities in response to fear-inducing stimuli.

Overall, these results underscore the importance of
understanding brain correlations in the context of acrophobia,
as they provide valuable insights into the underlying neural
mechanisms associated with fear processing and potentially inform
the development of targeted interventions or treatments for
acrophobia.

3.9 Limitations

While our study presents promising results in fear level
classification using TimeSeries CNN and ANN models, several
limitations should be acknowledged. Firstly, the dataset’s relatively
small sample size may restrict the generalizability of our findings
to broader populations, necessitating validation on larger and
more diverse datasets, since our dataset included only Adults.
Additionally, our models rely solely on EEG signals, neglecting
the potential benefits of incorporating other modalities such
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as Galvanic Skin Response (GSR) or Heart Rate (HR), which
could enhance classification accuracy. Furthermore, individual
differences in EEG patterns and subjective experiences of fear may
introduce variability in classification performance, highlighting the
need to control for factors like age, gender, and previous exposure
to acrophobic stimuli. Despite efforts to mitigate overfitting
through validation techniques, the risk of overfitting to the
training data remains, underscoring the importance of further
validation on independent datasets. Lastly, while our models
achieve high accuracy rates, their interpretability remains limited,
necessitating additional efforts to understand the underlying
neural mechanisms contributing to fear classification. Addressing
these limitations through larger-scale studies, multimodal data
integration, consideration of individual differences, enhanced
interpretability, and rigorous validation can strengthen the
reliability and applicability of our fear level classification models in
real-world scenarios.

4 Conclusion

The present work aimed to do an exploratory investigation
into the classification of electroencephalogram (EEG) signals
across a range of acrophobia levels. By utilizing a combination
of conventional machine learning techniques and sophisticated
deep learning approaches, we have conducted a thorough
examination of electroencephalogram (EEG) data in order to
get comprehensive insights into the intricate neurophysiological
aspects of acrophobia. The analytical process undertaken in our
study encompassed the utilization of spectral analysis techniques
to examine brainwave data, doing correlation assessments across
different regions of the brain, and extracting relevant features.
These methodologies were employed in order to decipher the
story sent by electroencephalogram (EEG) signals pertaining to
acrophobic responses.

The utilization of Time Series Convolutional Neural Networks
(CNN) and Artificial Neural Networks (ANN) within this
framework produced remarkable outcomes, demonstrating a
notable testing accuracy of over 97%. The precision of our results,
particularly demonstrated in the confusion matrices, highlights the
proficiency of these models in distinguishing the complex EEG
patterns linked to different levels of acrophobia. This serves as
evidence of the computational models’ capability to effectively
handle the intricate and diverse nature of EEG signals.

However, it is important to note that every scientific
endeavor possesses its own boundaries of improvement and
advancement. The presence of certain misclassification patterns
and the varying precision levels seen among machine learning
algorithms suggest potential areas for improvement. Additional
optimisation could be pursued by enhancing feature engineering,
augmenting the data, and incorporating domain-specific
knowledge.

Notwithstanding the potential for additional investigation,
the advancements achieved in this study serve as a symbol
of forward movement. Our research not only provides a
detailed quantitative analysis but also lays the foundation for
a more profound integration of artificial intelligence with the
fields of neurology and psychology. We are currently at the

threshold of a period in which the convergence of cutting-
edge technology and cognitive research holds the potential
to enhance our comprehension of the intricate workings of
the human brain. With the ongoing development of artificial
intelligence and the increasing availability of data, it is expected
that increasingly advanced techniques will be developed for the
classification of EEG data. Undoubtedly, this development will
advance the confluence of neurology, emotion, and technology,
hence augmenting our ability to comprehensively analyse
and decipher the complex interplay of human brain and
emotional phenomena.
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