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In this study, we explore the potential of using functional near-infrared

spectroscopy (fNIRS) signals in conjunction with modern machine-learning

techniques to classify specific anatomical movements to increase the number

of control commands for a possible fNIRS-based brain-computer interface (BCI)

applications. The study focuses on novel individual finger-tapping, a well-known

task in fNIRS and fMRI studies, but limited to left/right or few fingers. Twenty-

four right-handed participants performed the individual finger-tapping task.

Data were recorded by using sixteen sources and detectors placed over the

motor cortex according to the 10-10 international system. The event’s average

oxygenated 1 HbO and deoxygenated 1 HbR hemoglobin data were utilized

as features to assess the performance of diverse machine learning (ML) models

in a challenging multi-class classification setting. These methods include LDA,

QDA, MNLR, XGBoost, and RF. A new DL-based model named “Hemo-Net”

has been proposed which consists of multiple parallel convolution layers with

di�erent filters to extract the features. This paper aims to explore the e�cacy

of using fNRIS along with ML/DL methods in a multi-class classification task.

Complex models like RF, XGBoost, and Hemo-Net produce relatively higher

test set accuracy when compared to LDA, MNLR, and QDA. Hemo-Net has

depicted a superior performance achieving the highest test set accuracy of

76%, however, in this work, we do not aim at improving the accuracies of

models rather we are interested in exploring if fNIRS has the neural signatures

to help modern ML/DL methods in multi-class classification which can lead

to applications like brain-computer interfaces. Multi-class classification of fine

anatomical movements, such as individual finger movements, is di�cult to

classify with fNIRS data. Traditional ML models like MNLR and LDA show inferior

performance compared to the ensemble-based methods of RF and XGBoost.

DL-based method Hemo-Net outperforms all methods evaluated in this study

and demonstrates a promising future for fNIRS-based BCI applications.
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functional near-infrared spectroscopy (fNIRS), deep learning, individual finger
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1 Introduction

fNIRS (functional near-infrared spectroscopy) is a non-invasive

neuroimaging technique that uses near-infrared light to measure

changes in oxygenated (1 HbO) and deoxygenated hemoglobin

(1 HbR) in the brain (Ferrari and Quaresima, 2012; Wilcox

and Biondi, 2015). Neural activity in a brain region is associated

with blood flow changes due to neurovascular responses; fNIRS

measures the brain activation by using near-infrared light (optical

window of wavelength: 650 − 1100; nm) (Strangman et al.,

2003; Sato et al., 2004). The change in the optical densities

is then converted to hemoglobin concentration changes using

Modified Beer-lambert Law (MBBL) (Wilcox and Biondi, 2015).

fNIRS is becoming popular in brain-computer interface (BCI)

research because it is non-invasive, portable, and relatively low-

cost compared to other neuroimaging techniques such as functional

magnetic resonance imaging (fMRI) (Naseer andHong, 2015; Khan

et al., 2021a). In early 2000, it was potentially complemented

that the new developments in fMRI equipment, preprocessing

algorithms, and robust statistical approaches will make it suitable

for BCI applications (Sitaram et al., 2007). However, with its

limitation of temporal resolution, restricted movements, constraint

due to strong magnetic field, and calibration issues, fNIRS is

becoming more popular for BCI applications compared to fMRI.

The fNIRS measurements of concentration changes yield a similar

signal as the blood oxygen level-dependent (BOLD) response

acquired through fMRI with additional information about 1 HbR

(Strangman et al., 2002; Gagnon et al., 2012). Additionally, it can

measure changes in brain activity at a relatively high temporal

resolution, which is important for real-time BCI applications.

Among the main challenges in fNIRS-based BCI include a

reduction in the response time, an increase in the number of

control commands, and improving the classification accuracy of

the system (Hong and Khan, 2017). To achieve these goals and

utilize the advantage of different brain imaging modalities for BCI

applications, a new sub-field emerged within BCI called hybrid

BCI (hBCI). In hybrid BCI, at least two brain signal modalities

are combined with one another (Pfurtscheller et al., 2010; Hong

et al., 2018). Different modalities, such as EEG-fMRI and EEG-

fNIRS, have been merged to enhance the BCI system. Considerable

technical and analytical developments havemade valuable scientific

contributions to the field of BCI, but due to some series of technical

challenges such as fMRI magnetic field interface with EEG signals,

portability, and other safety concerns due to strong magnetic

field made it limited (Warbrick, 2022). On the other hand, fNIRS

technology can easily be combined with other modalities, such

as electroencephalogram (EEG) and Electromyography (EMG),

to provide a better picture of brain activity. There is evidence

that combined EEG, and fNIRS-based BCI systems perform better

than individual EEG and fNIRS-based BCI systems. although

it should be noted that it is still necessary to conduct further

research to understand the physiological interactions of EEG

and fNIRS in detail. Hybrid EEG-fNIRS setups are fraught with

problems based on the differences in measurement methods and

the ground differences of the nature of these biosignals in two

different domains (temporal and spatial) that must be analyzed

simultaneously (Ahn and Jun, 2017; Khan et al., 2021a). The focus

of our study is to individually explore the potential of information

in fNIRS signals to increase the number of control commands.

However, our future work will explore the individual finger-tapping

task with a hybrid EEG-fNIRS study.

In this study, we investigate the possibility of utilizing fNIRS

signals from individual channels with advanced machine-learning

techniques to classify specific anatomical movements instead of

relying on hybrid modalities to increase the number of control

commands for BCI applications. To achieve this, we focus on

a well-known task in fNIRS and fMRI studies called finger

tapping. To make the task more complex, we focus on the fine

anatomical movements, such as individual finger movements,

which to the author’s knowledge, have never been explored with

fNIRS. fNIRS is more feasible to use in a naturalistic setting

where the participant can move around compared with an fMRI

environment. The reason is very apparent that fNIRS has very

low spatial resolution compared to fMRI. It is worth noting that

each body part has a distinct area in the primary motor cortex

dedicated to it. However, due to its lower spatial resolution than

fMRI, accurately classifying individual finger movements using

fNIRS alone presents challenges. fNIRS as a single modality has

the advantage of supplying additional information about 1HbR,

which could possibly be used to estimate the metabolic rate (Boas

et al., 2003). Nevertheless, we hypothesize that the motor cortex

signals contain valuable information that can be leveraged for

enhancing control commands through modern machine learning

algorithms.

Till 2017, deep learning methods did not show any significant

improvements compared to state-of-the-art techniques used for

bio-signals classification in BCI (Lotte et al., 2018). However,

recent research shows its future potential due to its ability to

simultaneously learn useful features and classifiers from raw

data. Based on the potential of the deep learning model, this

research hypothesizes that fNIRS signal features can be used

to distinguish even finite movements, such as individual finger

tapping. This will be useful for various future applications in the

field of fNIRS-based BCI. The increase in classification accuracy

and control command generation is significant in BCI because

they directly impact the usability and effectiveness of the system.

Classification accuracy of the BCI system refers to the ability

to correctly identify and interpret the user’s intent from their

brain signals (Lotte et al., 2007). The finger tapping task is a

well-understood and relatively simple motor task with specific

brain activation patterns used in the BCI experiment (Middendorf

et al., 2000). But even for such tasks, detecting delicate anatomical

structures, such as recognizing individual finger movements in BCI

applications, is a complex and ongoing area of research. So far,

continuous individual finger movements decoding and control in

BCI are achieved using EMG signals, but it cannot be achieved

in the case of muscle paralysis. On the other hand, invasive

brain signal modalities, Electrocorticography (ECoG)-based BCI,

shows promising results in distinguishing between individual

finger movements due to its good spatio-spectral features, such

as discriminating between ipsilateral or contralateral along with

thumb or index finger movements (Zanos et al., 2008). In another

study, using ECoG arrays, the intention for individual finger

movements was classified using LDA with an overall accuracy of
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67% for people with tetraplegia to use the BCI system accuracy

(Jorge et al., 2020). However, these invasive methods are not

feasible for BCI applications. To develop a deeper understanding

of the motor control system during the individual finger-tapping

exercise and to classify the specific finger movements, we will

explore state-of-the-art data analytic tools. Machine Learning

(ML) is characterized by learning hidden patterns from the data.

In supervised ML the labels for the target variable are known

in the data, and a function or model is learned to map the

input to the output space. The targets can be continuous in the

case of regression and discrete in classification. Similarly, the

input variables can be pixels of an image, a portion of a time

series, coefficients of statistical models, statistical summaries of

data, Fourier and Wavelet transformations, etc. Many traditional

statistical techniques and machine learning algorithms such as

Linear Regression, Logistic Regression, K-Nearest Neighbors, and

other available methods, rely on pre-processed features for learning

the classification and regression functions. In a recent study using

the modern machine learning approach, an improved and fast

decoding of all five fingers along with resting state (six class)

with a classification accuracy of 77% was achieved using ECoG

(Yao et al., 2022). However, ECoG is limited due to its invasive

nature. Therefore, inspired by ECoG, researchers attempted to

classify non-invasively using EEG to decode individual finger

movements. Liao et al. (2014) decode individual finger movements

from one hand with an average accuracy of 77.11% using binary

classification and support vector machine (SVM) as a classifier

to classify between the pair of fingers using spectral changes in

EEG data. In a recent study using a high-density EEG electrode

setup, the average classification (SVM as a classifier) accuracy

achieved using pairwise finger was 64.8%. Most other EEG studies

demonstrate decoding of multiple finger movements to enhance

the control command generation for the BCI system instead of

single or contralateral finger movements (Gannouni et al., 2020).

All these findings motivate the investigation of individual finger

movements with fNIRS that can be utilized in various fNIRS-

based BCI applications such as prosthetic arm development and

rehabilitation.

The fMRI has a comparable high spatial resolution to

fNIRS demonstrating reasonable classification accuracies for the

classification of related tasks. In a study using real-time whole-

brain imaging the right and left index finger movements were

classified with an accuracy of 80% (LaConte et al., 2007). Decoding

individual finger movements from the right hand using single-

trial fMRI data was processed in one study using multivariate

pattern classification analysis approaches (Shen et al., 2014). The

average accuracy of 63% (best trail 84.7%) was achieved to classify

between five fingers. Another study using fMRI data demonstrated

that hyperalignment provides better between-subject classification

accuracy of 88.8% than conventional anatomical alignment 46%

using the four (index to little) finger presses movements (Kilmarx

et al., 2021). Due to fNIRS’s relatively lower spatial resolution,

empirical data on how fine anatomical movements can be decoded

from hemodynamic responses have yet to be investigated. In

this research, we hypothesize that the fNIRS signal, with its rich

information, could be used to distinguish delicate anatomical

structures with modern classification algorithms to help enhance

control commands for BCI systems, for example, the control

of prosthetic hands and finger movements. The current fNIRS-

based BCI research is limited to tapping one or more fingers,

single or both hand-tapping, right and left finger-tapping, or

hand-tapping. Significantly higher classification accuracy has been

achieved using two classes (98.7± 1%, left vs. right finger tapping)

and three classes (98.7 ± 6.9%, left versus right finger tapping

vs. rest condition) problems using vector-based phase analysis

(Nazeer et al., 2020). Using statistical features along with 1HbO

and 1HbR data is also one of the common approaches to

enhance classification accuracy even for motor imaginary (MI)

tasks (Shin and Jeong, 2014). In a single-trail MI study, a finger

tapping task was used to discriminate between thumb tapping

vs. complex sequential tapping task with an accuracy of 81%

(Holper and Wolf, 2011). In our pilot study on the collected

dataset, we classified the individual finger movements against the

baseline with classical machine learning algorithms such as SVM,

random forests (RF), AdaBoost, (SVM), random forests (RF),

decision trees (DT), AdaBoost, quadratic discriminant analysis

(QDA), artificial neural networks (ANN), k-nearest neighbors

(kNN), Artificial neural networks (ANN), and k-nearest neighbors

(kNN). The average classification accuracies achieved were 75 ±

4%, 75 ± 5%, and 77 ± 6% using kNN, RF, and XGBoost,

respectively (Khan et al., 2021b). The current study performed

a classification of in-between finger movements, which is more

difficult than finger movements with baseline or resting states.

Comparing fNIRS with fMRI data, the misclassification rate is

comparable for hand or finger movement tasks. However, as noted,

fNIRS is a more promising modality because of its portability,

relatively low cost, and its amenability to more naturalistic

settings.

In this paper, we explored machine and deep learning

(DL) models to classify fine anatomical movement (individual

finger tapping) using fNIRS data. There are two primary

difficulties: firstly, the classification of such minute movements

using fNIRS, and secondly, the classification is a multi-class

problem (classifying five fingers and the resting state). DL is

inspired by information processing in the human brain; these

models can learn complex and non-linear functions. It can

potentially learn complex non-linear interactions between brain

regions; and associations between the fNIRS signal and the

motor movement. Moreover, feature extraction is usually not

required for DL models as the feature are extracted hierarchically

in the hidden layers, where the initial layers learn the low-

level features and the deep layers learn more complex high-

level features corresponding to the task and loss function (Zeiler

and Fergus, 2014). Therefore, these models learn the best

representations from the data in the hidden layers. The study

will be a foundation for classifying fine anatomical movement

using fNIRS-based BCI. The paper is structured to describe the

methodology in Section 2, results and discussion in Section 3,

limitation of the current work in Section 4, and conclusion

Section in 5.

2 Materials and methods

In this section, we describe the methods used for data

collection, experimental design, and data analysis.
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FIGURE 1

(A) Experimental setup demonstrating fNIRS NIRScout (NIRx Medical Technology GmbH, Germany) (B) Sixteen sources and detectors each were

placed over the motor cortex according to the 10− 10 international system.

FIGURE 2

Experimental paradigm: a single run of the experiment includes three repetitive sessions of each finger-tapping.

2.1 Participant recruitment and training

The experiment involved 24 healthy right-handed participants,

18 males (M = 30.44 ± 3.03 in years; range: 24 to 34 years

old) and six females (F = 29.17 ± 3.06 in years; range: 24 to

34 years old). It was required that participants write with their

right hands with no neurological disorders or limitations in hand

or finger motor abilities to meet the inclusion criteria. All the

participants performed the finger tapping with finger from right

hand only. The experiment was performed in a relatively controlled

environment such as a quiet room to reduce any attentional bias,

and a black shower cap to reduce the background noise from

lamps and computer screens. A visual presentation in the textual

format of resting and task (finger name to tap) was displayed on

the computer monitor. Experiments were preceded by practice

sessions in which participants were informed of the protocol

and procedures. Medium-to-fast finger tapping was performed

without any specific frequency. Experiments were repeated for

each participant based on their comfort and convenience. The

experiment followed the declaration of Helsinki. Research Ethics

Committee (REK No. 322236) no objection letter was obtained

for experimental work. According to the Norwegian Center for

Research Data AS (NSD Ref. No. 647457), informed consent for

voluntary participation was given by all the participants before the

experiment. Further details can be found in Khan et al. (2021b).

2.2 Instrumentation, experimental
paradigm, and montage

A continuous-wave (λ1 = 760 nm, λ2 = 850 nm) optical

tomography machine NIRScout (NIRx Medizintechnik GmbH,

Germany) was used to acquire brain data with a sampling rate of

3.9063 Hz as shown in Figure 1A. The block design consists of

blocks of rest and task (thumb, index, middle, ring, and little finger-

tapping) of the right hand, as shown in Figure 2. A baseline rest of

30 sec and a tapping duration of 10 sec was performed to achieve
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a robust hemodynamic response in response to finger-tapping

activity (Khan et al., 2020). The single experimental paradigm

consisted of three sessions of each finger-tapping trial. The total

length of the experiment was 350 sec. The single trial included

10 sec of rest followed by 10 sec of the task. Before placing the

fNIRS cap on the participant’s heads, cranial landmarks (inion and

nasion) were marked to locate Cz . The emitter and detector were

placed according to the 10–10 International electrode positioning

layout. The distance between the source and the detector was kept

at a minimum of 3 cm using optode holders. Sixteen emitters

and detectors were positioned over the motor cortex according

to standard motor16x16 shown in Figure 1B. The source detectors

are assumed to cover the part of the frontal lobe, frontal-central

sulcus lobe, central sulcus lobe, part of the central-parietal lobe, and

temporal-parietal lobe.

2.3 Signal prepossessing

fNIRS data were processed using the pipeline as shown in

Figure 3. The data processing included data truncation (removal

of data points before and after the first and last stimuli appeared,

respectively), spike removal (using the interpolation method),

and channel rejection based on the criteria of coefficient of

variation (CV) of 7.5%. The Modified Beer-Lambert Law (MBBL)

converted optical densities into hemoglobin concentration changes.

The spontaneous contamination of physiological and non-

physiological noise was removed using the Butterworth filter (low-

pass frequency: 0.01 Hz, high-pass frequency: 0.5 Hz). Data were

then cleaned for motion noises by applying temporal-derivative

distribution repair (Fishburn et al., 2019). Signal correction such

as z-normalization and baseline-zero adjustments (value = 10) was

performed.

2.4 Classification

2.4.1 Event-related averages
After the signal processing step mentioned in Section 2.3 the

filtered event averages from each run corresponding to each finger-

tapping task were calculated. The task was averaged into epochs

from 5 sec before stimulus onset to 15 sec (including 10 sec task

duration and 5 sec of post-task) ensuring no conflict with the onset

of the next stimulus presentation, which may occur as early as 20

sec after the previous stimulus onset. The channel-specific event

averages for 1HbO, 1HbR, and 1HbT are considered features of

the machine learning model presented in the upcoming section.

2.4.2 Classifier
Time series classification (TSC) deals with classifying time

series as belonging to specific classes. Given dataset D = (Xi,Yi),

the goal in TSC is to learn a mapping function (f: X → Y), this

mapping function is called a classifier. Machine learning was used

to learn the classification function to predict the class probabilities

given the feature vector Xi. In the case of multivariate time series,

a single training example Xi ∈ R
m×t , where m is the total

number of time series, and t is the length of each time series

in the data. The problem of finger-taping can be modeled as a

multi-class classification problem, in the present case Xi is a 1

× 77-dimensional vector representing the oxygenation level at

discrete time steps of an individual channel. Mathematically, the

classification problem can be written as

P(Y = yi|X = xi) = f (X = xi,w) (1)

where Y , is the target vector containing the class labels for the

5-finger taping respectively. X is the feature vector, and f (X) is

the classification function which is learned from the data, w are

the parameters of the model that need to be learned to build this

classifier, xi is the event averages from one of the channels and yi
is the label for the i-th training example. The classification function

can be learned using parametric models like a deep learning (DL)

model, parameterized by the weights w of the neural network, or

non-parametric models like KNN. The length of the time series

(event-related averages) considered for each channel is 77-time

points corresponding to the event average data of 20 sec of data for

each tapping task as mentioned in Section 2.4.1. We are interested

in the class conditional probability of a specific finger tapping given

one of the channel’s time series data.

2.4.3 Data preparation
Deep Learning (DL) also known as representation learning is

end-to-end learning. The traditional ML models require feature

extraction and engineering, which are generally not required for

DL models, as the features are learned in hidden layers. The DL

models learn by forward and back-propagation of errors, in which

gradients are calculated to update the model’s weights until a

convergent solution is obtained for minimizing the loss function.

Scaling of the input or feature vector is required for the DL models

for faster convergence when using gradient-based methods and

comparable input features. For this reason, we scaled the input

feature vector using standard scaling.

2.4.4 Model evaluation
The classifier’s evaluation metrics are mainly accuracy,

precision, and recall. In a classification problem, accuracy is defined

as the ratio of correctly classified samples to the total number of

samples in the data. Define Yp,i and Yt,i to be the predicted label

and true label for the i-th sample and N be the total number of

examples, then accuracy is defined mathematically as

Accuracy =

∑

I(Yp,i == Yt,i)

N
(2)

where “I” is an indicator function. Precision is defined as the

ratio of the true positives in the data to the total number of samples

predicted as positives by the classifier. For a class k, let Tp be the

total number of samples belonging to class k that the model has

accurately predicted, Tn be the total number of samples correctly

predicted as belonging to other classes, Fp be the total number of

instances of wrong predictions made by the model as belonging

to class k, and Fn be the total number of instances of wrong
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FIGURE 3

Data processing steps followed before application of DL model.

predictions made by the model as belonging to other classes. Then

precision is defined to be

Precision =
Tp

Tp + Fp
(3)

The recall is also known as sensitivity and is defined as the ratio

of the true positives to the sum of true positives and false negatives,

recall is defined as follows

Recall =
Tp

Tp + Fn
. (4)

2.5 Machine learning classifiers

This section gives the details of various ML-based multi-

class classifiers, built for the classification of individual finger

tapping. Our analysis compares the performance of Random

Forest (RF), XGBoost, Linear Discriminant Analysis (LDA),

Quadratic Discriminant Analysis (QDA), andMultinomial Logistic

Regression (MNLR).

2.5.1 Linear discriminant analysis
Linear Discriminant Analysis (LDA) is a supervised machine

learning algorithm for classification (Fisher, 1936; Johnson et al.,

2002). In LDA, classification is viewed as a problem of dimension

reduction. It finds the linear boundary that separates the classes

by learning the discriminant functions by projecting data in a

lower dimensional space. The LDA finds the best projections using

discriminant functions to maximize the separation between classes

(the means of the projected vectors) and minimize the variance

within a class. Let X = x1, x2, ..., xN be the data where xi ∈ Rd,

and Y = y1, y2, ..., yN be the class labels for K classes respectively.

Let µk be the class-specific mean, and µ be the overall mean of the

data.

ŜW =

K
∑

k=1

∑

x∈k

(x− µk)(x− µk)
T (5)

where ŜW represents the variance within each class also called

within class scatter matrix. The between-class variance or scatter

matrix, which has to bemaximized is given by the following relation

ŜB =

K
∑

k=1

nk(µk − µ)(µk − µ)T (6)

where ŜB is the between class variance matrix, and nk is the

number of examples in class k, µ is the overall mean vector. The

projection matrix W can be obtained by solving the generalized

eigenvalue problem given in Equation 7, by selecting the largest M

λi eigenvalues and corresponding vi eigenvectors.

(Ŝ−1
W ŜB)v = λv (7)

We applied 5-fold cross-validation and values of solver

[svd, lsqr, eigen] and shrinkage [auto, none] hyper-parameters were

tuned using grid search.

2.5.2 Quadratic discriminant analysis
The Quadratic Discriminant Analysis (QDA) is a supervised

learning classification algorithm, an extension of LDA that relaxes
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the equal variance assumption across all classes (Hastie et al., 2009).

For each class, the QDA computes the class conditional densities

separately and makes predictions using the Bayes Rule. In QDA,

the class conditional densities are modeled using multi-variate

Gaussian distributions. Let πk be the prior probability for a training

sample Xi belonging to class k. These prior probabilities for each

class can be estimated from the data equivalent to the proportion

of the data containing the sample belonging to the class k. Let

µk represent the class-specific mean, and 6k be the class-specific

covariance matrix. The posterior probability for a sample Xi as

belonging to class k can be computed using Bayes Rule as follows:

P(Yi = k|X = Xi) =
πk · fk(Xi)

∑K
l=1(πl · fl(Xi))

(8)

where fk is a multivariate Gaussian density function

corresponding to class k, defined to be

fk(Xi) =
1

(2π)
z
2 · |6k|

1
2

· exp

(

−
1

2
(Xi − µk)

T · 6−1
k

· (Xi − µk)

)

(9)

where z indicates the dimension of the vector Xi, each Xi, µk

∈ Rz . The 5-fold cross-validation was used during training, for

tuning hyper-parameter reg param [0.0, 0.1, 0.5, 1.0] which controls

the regularization on the covariance estimates was tuned using grid

search.

2.5.3 XGBoost
Extreme Gradient Boosting (XGBoost) is an ensemble

learning model widely used for supervised machine learning, i.e.,

classification and regression problems (Chen and Guestrin, 2016).

The goal of XGBoost is to minimize the cross-entropy loss, which

can be stated as follows

L(Yt ,Yp) = −

N
∑

i=1

K
∑

k=1

[yit log yip] (10)

where yip is the predicted class probability or the predicted label

for the instance i. The vector yit for true class labels is one hot

encoded with a dimension equal to K the number of classes. DT

is used as base learners in the XGBoost algorithm, and the splits

are performed based on the reduction in the loss. The 5-fold cross-

validation was used during training, hyper-parameters including

the number of estimators [50, 100], maximum depth [None, 5, 10],

learning rate: [0.1, 0.01, 0.001] were tuned using grid search.

2.5.4 Random forest
The Random Forest (RF) is a widely used supervised ensemble

learning method that can be used for classification and regression

problems (Breiman, 2001). As the name suggests RF comprises

multiple classifiers which are traditionally Decision Trees (DT)

if not otherwise stated. RF builds different classifiers and uses

Bagging and feature randomness to reduce the prediction variance

and make the model more robust and stable. RF also provides

feature importance which can be used for feature selection for

downstream tasks. RF reduces the correlation of the individual DT

used for the construction of RF by incorporating a random split

of the features; however, due to the inclusion of multiple DT, RF

is complex and not easily interpretable. The 5-fold cross-validation

was used during training, hyper-parameters including the number

of estimators [50, 100], maximum depth [None, 5, 10], minimum

samples required to split a node [2, 5], and minimum samples

required at leaf node [1, 4] were tuned using grid search.

2.5.5 Multi-nomial logistic regression
The Logistic Regression (LR) algorithm is a commonly used

statistical model for binary classification (McCullagh, 2019). The

extension of LR employed for dealing with the case of multiple

classes is called Multi-nomial Logistic Regression (MLR). Let X

represent the features for the independent variables, and Y be the

true labels. Y has labels for more than two distinct classes. In the

present case, there will be five distinct labels in Y and Xi ∈ R1×77.

For every five classes, we can learn a separate set of weightsWk. Let

us define the discriminant function in Equation 11, and to calculate

the probabilities for each class we need to use the softmax function.

f (Wk,X) = W
⊺

k
× X (11)

P(Xi ∈ k)) =
ef (Wk ,Xi)

1+
∑K−1

k=1 ef (Wk ,Xi)
(12)

The Equation 12 gives the probability that the sample unit

i with features Xi belongs to a specific class. The 5-fold

cross-validation was used, and the hyper-parameters for the

regularization as L1 and L2 were searched using grid search. The

values considered for the regularization are [0.01, 0.1, 1, 10, 20]. A

Saga solver was used to determine the optimal estimates for the

model parameters.

The sklearn package in Python was utilized to implement all

machine learning models (Pedregosa et al., 2011).

2.6 Deep learning classifiers

2.6.1 Baseline model
A baseline model with 5 fully connected dense hidden layers

was developed. A batch normalization layer and a ReLU activation

follow each linear layer. The layers have 1, 024, 512, 128, 64, and 5

neurons, respectively.

2.6.2 LSTM
Proposed by Hochreiter and Schmidhuber (1997) Long Short

Term Memory (LSTM), solves the vanishing gradient problem of

Recurrent Neural Networks (RNN). LSTMs find their application

in sequence modeling tasks (Sundermeyer et al., 2012; Cao et al.,

2019; Yu et al., 2019; Zhang et al., 2020). These sequence modeling

applications may include DNA analysis, speech recognition, time

series prediction, etc. Using a gating mechanism LSTM can capture

the long-term dependencies in the data by maintaining cell states.

LSTM uses three gates called output, forget, and update gates to

learn the temporal dependence in the data. Let xt ∈ Rd be the

multivariate time series input, at be the activation, γt be the cell
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state at the instance t. Corresponding to theseWγ = [Wγ a :Wγ x],

Wu = [Wua :Wux], Wf = [Wfa :Wfx], Wo = [Woa :Wox], bγ ,

bu, bf , and bo are the learnable parameters (weights and biases)

associated with the cell state, forget, output and update gates. θf ,

θu, θo represents the output for the forget, update, and output gates.

Non-linear activation functions tanh and σ are used in LSTM, the

computations for the forward pass through LSTM can be stated as

follows

γ
′t = tanh

(

Wγ a.at−1 +Wγ x.xt + bγ

)

(13)

θu = σ
(

Wua.at−1 +Wux.xt + bu
)

(14)

θf = σ
(

Wfa.at−1 +Wfx.xt + bf
)

(15)

θo = σ
(

Woa.at−1 +Wox.xt + bo
)

(16)

γt = σ

(

θu ∗ γ
′

t + θf ∗ γt−1

)

(17)

at = σ (θ0 ∗ γt) (18)

The candidate new cell state is given by γ
′

t , (.) is the dot

product and (∗) is the hadamard product (element wise). The

cell state at instance t in Equation 17 is expressed as a linear

combination of the candidate cell state at instance t Equation 13

and cell state at instance t− 1. These states are scaled by the output

of update θu and forget θf gates. In a multi-class classification

problem, LSTM units are followed by a Dense layer with a softmax

activation which computes the class conditional probabilities to

minimize the cross-entropy loss. We used a 5 layer-deep network

for multi-class classification. The first 2 layers are LSTM layers

with 50 units, followed by 2 dense layers with 50 and 20 units

each with Relu activation. Each of these layers is regularized using

L2 regularization and followed by batch normalization layers. The

output layer has 5 units with a softmax activation.

2.6.3 Bi-directional LSTM
Standard LSTM/RNN blocks are based on the recurrence of

past information to the future time steps. However, in many

sequence modeling tasks like named entity recognition, etc., to

infer the information about the current time step, informatBatch

normalization layers follow these layers in a time series context;

these models depend on future information as well. Given a

sequence of time series, we can use bi-directional LSTM where

the recurrence is calculated based on hidden states and gating

mechanisms from the past and future (Huang et al., 2015). We

constructed a bi-directional LSTM for multi-class classification of

fNIRS finger-tapping time-series event averages data. The deep

learning model consists of 5 layers, 3 of which are bi-directional

LSTM layers with 50, 50, and 20 units. These layers are followed

by batch normalization layers. Stacked bi-directional LSTM layers

are followed by a dense layer with 20 units with Relu activation.

Stacked bi-directional LSTM layers followed by a dense layer are

regularized using L2 regularization. The output layer consists of 5

units with softmax activation.

2.6.4 LSTM-CNN hybrid
LSTM-CNN hybrid architectures have shown promising results

in time series classification tasks Liu et al. (2019a,b); Garcia et al.

(2020); Xie et al. (2020). We use a model with 2 separate heads

to process the time series data using 1D convolution and Bi-

directional LSTM layers. The CNN head consists of 3 stacked 1D-

convolution layers with 64, 64, and 32 filters followed by a dense

layer with 32 units. These layers have kernel sizes of 3, 5, and 3

with the same padding, L2-kernel regularization, and Leaky Relu

activation. All these layers are followed by batch-normalization

layers. LSTM head consists of 3 stacked LSTM layers with 64, 64,

and 32 units followed by a dense layer with 32 units with a Leaky

Relu activation. All layers are regularized using L2 regularization

and followed by batch-normalization layers. The output from

LSTM and CNN heads is concatenated and passed to a dense block

which has 2 layers with 32 units followed by batch normalization

layers with Leaky Relu activation. The output of the dense block is

passed to the output layer with 5 units and softmax activation.

2.6.5 Hemo-Net
We propose a modified model for multiclass classification

of fNIRS data in particular tasks like finger tapping, inspired

from Ismail Fawaz et al. (2020). The model is named Hemo-

Net after the inspiration from both hemodynamic response and

neural network. This model is based on the inception time

model and has three inception blocks. The model is shown in

Figure 4, which is composed of three inception blocks followed by

average pooling and a classifier layer. Our model uses the same

inception blocks described in the (Ismail Fawaz et al., 2020). The

details of the inception block are given in Figure 4. The inception

block comprises bottleneck, max pooling, convolution, and batch-

normalization layers followed by a ReLU activation. The main

advantage of using the Inception block is that it allows convolving

the same input with varying kernel sizes. In this work, we use

the kernels of dimensions 10 × 10, 20 × 20, and 40 × 40 based

on experimentation inception blocks followed by average pooling

layers to help reduce the dimensionality of the data. The pooling

layer is connected to a fully connected classification layer with

softmax activation. Residual connection is used in the model to

avoid the problem of vanishing gradients.

3 Results and discussion

This study explores the potential of robust information about

the subtle motor movements in fNIRS signals with classical ML

and DL techniques. We evaluated the performance of various

machine learning and deep learning algorithms on the multi-

class classification task. We considered 5 machine learning models,

including MNLR, QDA, LDA, RF, XGBoost, and 5 deep learning

models DNN, LSTM, Bi-directional LSTM, LSTM-CNN Hybrid,

and Hemo-Net. The Hemo-Net model is inspired by Ismail Fawaz

et al. (2020) which consists of inception blocks that allow learning

filters with different dimensions in a single block to extract the

useful features from the time series by back-propagation. Among

all the models (including machine learning and deep learning), the

DL-based model Haemo Net has shown superior performance on
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FIGURE 4

Schematic illustrations of Inception time model adaptation for Hemo-Net (left) and a single Inception block (right).

FIGURE 5

Confusion matrix C1-C5 represent respective class as shown in Table 1.

the test set. Among machine learning models RF has depicted a

superior test set performance. Haemo-Net depicted a test accuracy

score of 76%. The confusion matrix is given in Figure 5. The

precision is around 75% for each class. We have not observed a

high variance between the precision of each class on the test set

for Haemo-Net. One reason for this balance can be the balance in

the data set for all of the classes, in our training data, we have the

same number of examples for the model to learn for all five classes.

Recall is also balanced for all of the five classes around 75%. The

F1 score which is the harmonic mean of precision and recall and

is generally used for the evaluation of the multi-class classifiers is

also 76%, which means that all of the classes are being predicted

with good precision and recall, the classification report of themodel

is given in Table 1. We compared the performance of different

machine learning and deep learning classifiers. The performance

of all the machine and deep learning models on the training and

test data is listed in Tables 2, 3 respectively. RF, XGBoost, and

Hemo-Net depicted overfitting, while LDA, QDA, and MNLR did

not depict this phenomenon. The reason for this behavior can

be attributed to the complexity of the models. RF, XGBoost, and

Hemo-Net are comparatively complex algorithms involving larger

learnable parameters when compared to LDA, QDA, and MNLR.

The simple models like LDA, QDA, and MNLR could not perform

well on either training or test data. The QDA algorithm achieved a

better performance in terms of accuracy on the test set with a score

of 51.3%. Among the overfitting models, DL-based Hemo-Net
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TABLE 1 Hemo-Net classification report test data.

Finger
(Class
label)

Precision Recall F1-
Score

Support

Thumb (C1) 0.76 0.75 0.76 1,900

Index (C2) 0.75 0.76 0.76 1,901

Middle (C3) 0.75 0.76 0.76 1,901

Ring (C4) 0.77 0.76 0.76 1,901

Little (C5) 0.76 0.75 0.76 1,901

Accuracy 0.76 9,504

Macro Avg. 0.76 0.76 0.76 9,504

Weighted Avg. 0.76 0.76 0.76 9,504

TABLE 2 Machine learning models performance.

Model Training
accuracy

(%)

Test
accuracy

(%)

HyperParameters

Random forest

(RF)

100 60.2 Max depth: None,

Min samples leaf: 1,

Min samples split:

2, N estimators: 100

XGBoost 95.9 57.4 Max depth: 10,

Learning rate: 0.1,

N estimators: 100

Linear

discriminant

analysis (LDA)

33.4 31.9 shrinkage: None,

solver: lsqr

Quadratic

discriminant

analysis

(QDA)

54.9 51.3 reg param: 0

Multinomial

logistic

regression

(MNLR)

30.8 29.7 C : 20, penalty: L2

performs better on the test set than the LSTM, DNN, LSTM-CNN

hybrid ensemble-based methods of RF and XGBoost.

The results demonstrate the potential rich information in the

fNIRS signal to represent and classify fine anatomical movements

such as decoding individual finger tapping. The classifier has

been demonstrated to perform remarkably better than the baseline

models. This model can serve as a baseline for training more

complex models using big data because DLmodels tend to perform

better when trained on large data sets, as observed previously.

Also, our model can be used for transfer learning for similar tasks

like foot tapping, etc. With pre-trained weights, we can further

improve the accuracy of our model which can be used to classify

various related fNIRS-based BCI tasks. The classification accuracy

achieved with our Hemo-Net model for five class problems was

also much approved compared to our previous work (Khan et al.,

2021b) for binary classification of the same data with classical ML

models which was approximately (77% for XGBoost). The multi-

class classification problem is comparatively complex to learn for

TABLE 3 Deep learning models performance.

Model Training
accuracy

(%)

Test
accuracy

(%)

HyperParameters

Baseline DL

model

96 68 Batch size: 32,

penalty: L2,

Learning rate:

Cyclic

[0.01–0.00001]

Hemo-

Net(Ours)

96 76 Batch size: 32,

penalty: L2,

Learning rate:

Cyclic

[0.01–0.00001]

LSTM 74 56 Batch size: 32,

penalty: L2,

Learning rate: 1e-4

Bi-directional

LSTM

96 63 Batch size: 32,

penalty: L2,

Learning rate: 1e-4

CNN-LSTM

Hybrid

94 63 Batch size: 32,

penalty: L2,

Learning rate: 1e-4

machine learningmodels compared to the binary classification task.

The brain imaging data sets are generally based on the design of

experiment strategies and are therefore limited in the size of the

data. By conducting more experiments and collecting more data for

the finger-tapping task the accuracy of the model can be improved.

One possible direction with limited data sets can be to explore

deep generative models for data augmentation and then retrain the

classifier with the augmented data.

There are different sources of randomness that might be

contributing to the 25% error in classification. There is variation

in the person-to-person tapping pattern and corresponding brain

activation. There is also variation within the trials or replication of

the same person. The futuremodel can include these random effects

tomakemore robust classifiers.We also identify that event averages

might also be deteriorating the inherited rich information in the

raw signals, therefore in future works, we can experiment with

models to extract the features directly from the raw or minimally

processed data. This can also be helpful in real-time applications as

withminimal pre-processing of the data and taking total leverage of

the data-drivenDL technologies, the lags in the BCI can be reduced.

Our primary focus in this study is to investigate the

classification of fine anatomical movements, specifically individual

finger-tapping tasks, utilizing fNIRS. By exploring the potential

of fNIRS in brain-computer interface (BCI) applications, we aim

to enhance our understanding of the hemodynamic responses

associated with such movements. In the future, our research will

expand to include the localization and temporal response analysis

of brain activity by utilizing hybrid EEG-fNIRS techniques. In the

future, if we can accurately measure finger movements using fNIRS

and classify the signals correctly, it could have several advantages

from a biomedical perspective. These include improved prosthetic

control, enhanced rehabilitation assessment and monitoring,

better understanding and treatment of neurological disorders,

advancements in human-computer interaction, development
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of brain-machine interfaces, and the potential for cognitive

assessment. This technology has the potential to significantly

benefit individuals with motor impairments and neurological

conditions, providing them with greater control, functionality, and

improved quality of life. Our ultimate goal is to develop effective

and efficient BCI systems that can improve the quality of life for

individuals with motor impairments.

4 Limitations and future work

In this work, we analyzed the performance of different ML

and DL algorithms on the task of multi-class classification of

finger tapping from the event averages data. We observed that

the DL-based architecture Hemo-Net has a better performance,

but suffers from overfitting. This can be attributed to the data

scarcity and the model’s complexity. We propose to extend our

work to collect more data for these complex models while utilizing

transfer learning to initialize the models from the pre-learned

weights on this data set. Event averages have been currently used

for the fNIRS channels however event averages can destroy the

temporal dependence structure in the data. Therefore we can build

the models on the raw time series instead of event averages and

compare the difference in the evaluation metrics for the classifiers

for both approaches. Moreover using raw signals with minimal pre-

processing also is beneficial for the real-time application of these

classifiers on embedded systems.

Generative AI and DL methods can also be explored for

building robust classifiers. The data can be augmented by using

Generative Adversarial Neural Networks (GANs) or Variational

Auto Encoders (VAEs) for the 5 classes. The classifiers can then be

trained on these augmented data, and the real data can be used for

evaluation in 3-folds with training, testing, and validation, with the

test set never used for augmentation. The hypothesis behind this

approach is that each generative model for the classes is assumed

to capture the class-specific patterns in the data while minimizing

the randomness from the uncontrolled sources (sensing, noise,

inter-person tapping variation, intra-person tapping variation).

5 Conclusion

We explore the potential of functional near-infrared

spectroscopy (fNIRS) in classifying fine anatomical movements

using classical, modern machine learning (ML), and deep learning

(DL) approaches. The results are promising, demonstrating

acceptable accuracies for such challenging tasks that involve

classifying fine anatomical movements. These findings highlight

the potential of fNIRS signals in capturing information related

to fine movements. However, to further enhance the application

of brain-computer interfaces (BCIs), we require larger datasets,

improved models, and reduced computational requirements.

The proposed model, Hemo-Net exhibits superior performance

compared to others. It has been observed that complex models

tend to overfit the training data but perform better when evaluated

on the test set than simpler models. This suggests the complexity

of the problem at hand and the limited size of the available data.

Collecting more future data can help improve these models’

performance. Instead of training Hemo-Net from scratch, we

propose training it with additional data using the pre-learned

weights obtained from this study. This approach may decrease the

training time required for the model.
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