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Stroke, also known as cerebrovascular accident, is an acute cerebrovascular 
disease with a high incidence, disability rate, and mortality. It can disrupt the 
interaction between the cerebral cortex and external muscles. Corticomuscular 
coherence (CMC) is a common and useful method for studying how the cerebral 
cortex controls muscle activity. CMC can expose functional connections between 
the cortex and muscle, reflecting the information flow in the motor system. 
Afferent feedback related to CMC can reveal these functional connections. This 
paper aims to investigate the factors influencing CMC in stroke patients and 
provide a comprehensive summary and analysis of the current research in this 
area. This paper begins by discussing the impact of stroke and the significance 
of CMC in stroke patients. It then proceeds to elaborate on the mechanism of 
CMC and its defining formula. Next, the impacts of various factors on CMC in 
stroke patients were discussed individually. Lastly, this paper addresses current 
challenges and future prospects for CMC.
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1 Introduction

Stroke, also known as a cerebrovascular accident, refers to a group of acute diseases where 
brain tissues are deprived of normal blood supply due to ruptured or blocked blood vessels, 
leading to subsequent brain tissue damage (Fang et al., 2022). Following a stroke, inadequate 
blood supply to the brain hinders the delivery of sufficient nutrients to the brain tissue, leading 
to neurological impairment (Dabrowska et al., 2019). Once the damage affects the motor 
cortex, the transmission of nerve impulses carrying motor commands is disrupted, leading to 
impaired transmission from the brain to the muscles, ultimately causing motor dysfunction 
in the limbs. Simultaneously, the motor information from the limbs, conveyed through the 
sensory cortex, cannot be promptly regulated by the impaired motor cortex, thus intensifying 
the motor impairments observed in stroke patients (Sun et al., 2014; Chen et al., 2018a; Li 
et al., 2022; Figure 1).
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In essence, the primary factor behind movement disorders in 
stroke patients is the irregular transmission of nerve oscillations. This 
disruption impacts the connectivity of the corticospinal pathway 
between the cerebral cortex and muscle, consequently diminishing the 
neural control exerted by the brain on the muscle (Choi, 2016). 
Nonetheless, the clinical assessment of motor impairment and 
functional recovery in stroke patients predominantly relies on diverse 
scales and the expertise of physicians, resulting in a less efficient and 
more subjective approach (Jalloul, 2018). An index is required to 
measure the interaction between the cerebral cortex and controlled 
muscle activity, facilitating an objective assessment of motor function 
recovery post-stroke. Consequently, corticomuscular coherence 
(CMC) has been introduced as one of the effective approaches to 
examine the neural oscillations of the cortex and muscles. Its purpose 
is to objectively assess the functional connectivity of cerebral muscles 
in stroke patients. The discovery of CMC initially occurred in a case 
involving treatment-resistant epilepsy, where electroencephalography 
(EEG) and surface electromyography (sEMG) were employed 
(McLachlan and Leung, 1991). Large individual differences exist in 
CMC itself (Ushiyama et al., 2011). A significant CMC may indicate 
utilization of the corticospinal pathway during voluntary contraction, 
whereas a non-significant CMC does not conclusively suggest 
non-utilization of the pathway. Instead, it may imply variation in 
synchronous oscillation strategies between the cortex and muscles of 
participants, thereby affirming the utility of CMC in studying 
abnormal neural oscillation transmission in the corticospinal pathway 
in stroke patients.

Currently, many scholars apply CMC in studying stroke patients 
to elucidate the pathological mechanisms underlying motor 
dysfunction. Techniques such as EEG and magnetoencephalography 
(MEG) (Conway et  al., 1995) or functional magnetic resonance 

imaging (fMRI) (Ward et al., 2003) are employed. However, fMRI 
suffers from low temporal resolution, limiting its ability to capture 
neural activity and muscle responses during rapid movements, 
potentially leading to loss of detail in the study of brain-muscle 
interaction (Farr et al., 2016; Rojas et al., 2018). Furthermore, motor 
execution tasks commonly used in studying CMC in stroke patients 
can introduce significant motor artifacts that heavily impact fMRI 
results (Dash et al., 2019; Kuhara et al., 2023). Conversely, MEG, while 
expensive and less clinically accessible, offers higher temporal 
resolution. Thus, the prevalent method for analyzing CMC in stroke 
patients involves synchronous EEG and surface electromyography 
(sEMG) to investigate brain-myoelectric coupling, facilitating the 
study of abnormal neural oscillations and cortical muscle control 
responses post-stroke (Ito et al., 2021). This approach enhances our 
understanding of stroke pathology and provides a scientific basis for 
stroke rehabilitation treatment.

The primary sections of this paper include: the CMC definition 
formula and improvement, which presents an extensive definition of 
CMC and a method for its enhancement; an in-depth analysis of the 
factors impacting CMC in stroke patients, encompassing pathological 
state, rehabilitation training, and experimental design; and the 
Existing Problems and Prospects section, which outlines the current 
issues in CMC research and the envisioned future direction.

2 The CMC definition formula and 
improvement

Coherence serves as an extension of the Pearson correlation 
coefficient in the frequency domain. It is defined as the ratio of the 
auto-spectrum to the cross-spectrum and provides a normalized 

FIGURE 1

Mechanism of movement disorders in stroke patients.
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correlation measure, denoted as a real number between 0 and 1. A 
value of 1 signifies complete linear correlation between two signals, 
while a value of 0 indicates no linear correlation whatsoever (Mima 
and Hallett, 1999). Assuming the existence of two signals, x  and y, the 
coherence value (CMC) at a signal frequency f  is calculated as follows:
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In Equation (1), C fxy ( ) represents the coherence value of the two 
signals at frequency f , while P fxy ( ) denotes the cross-spectrum at 
frequency f  for signals x  and y, and P fxx ( ) or P fyy ( ) represents the 
auto-spectrum for signal x  or signal y at frequency f . These power 
spectra are calculated using Equation (2). Here, R mxy ( ) denotes the 
cross-spectrum sequence signals of the time series for x  and y, with 
m  indicating the cross-spectrum sequence signal of the first m 
coordinate of the sampling point. When x  represents the EEG signal 
and y represents the sEMG signal, CMC can be used to assess their 
linear correlation in the frequency domain, providing a quantitative 
evaluation of the correlation between different neural regions.

EEG signals consist of complex frequency components and are 
influenced by numerous factors. Existing coherence analysis methods 
rely on estimating the spectral density function through the Fourier 
transform (Carter and Knapp, 1973), leading to inter-spectral 
interference that impact the accuracy of coherence spectral estimation 
for the β and γ primary functional frequency bands. Consequently, Ma 
et al. (2014) proposed a coherence analysis method based on wavelet 
decomposition for EEG and sEMG. This approach involves 
decomposing EEG signals into distinct frequency subbands and 
selecting the functional frequency bands (β and γ bands) associated 
with muscle motor control in both EEG and sEMG signals. This 
method more comprehensively elucidates the distinctions in 
coherence across various functional frequency bands of EEG and 
sEMG. Synchronized coupling of EEG and sEMG signals is associated 
with a time delay, which, if ignored, might diminish the coherence 
level. Consequently, Xu et al. (2016) introduced an analytical method 
called corticomuscular coherence with time lag (CMCTL), which 
aligns more closely with physiological observations. Drawing on 
Horak’s motor control theory (Mazzoni et al., 2012), the bidirectional 
nature of the control response between the human cerebral cortex and 
muscles is evident, posing a challenge for CMC in determining the 
direction of coupling. Gao et al. (2017) presented a multifrequency 
band analysis method for bidirectional coupling between cerebral 
EMG based on coherence. This approach involved selecting EEG 
signals from motor area in the cerebral cortex and limb sEMG signals, 
as well as limb sEMG signals and EEG signals from the somatosensory 
area, for multifrequency band bidirectional coupling coherence 
analysis. The outcomes were contrasted with those of the newly 
introduced causality-based coupling analysis. The study revealed that 
the bidirectional coupling, associated with an increase in grip force, 
shifted to the high-frequency band, highlighting the enhanced clarity 
of the coherent coupling analysis method. This approach effectively 

illustrated the pattern of change in coupling strength across frequency 
bands in relation to grip force, thereby addressing the limitation of 
CMC in determining coupling direction. Furthermore, considering 
the fundamental role of motor control, the interaction between the 
sensorimotor cortex and peripheral nerve tissue has been 
demonstrated to be notably nonlinear (Darvas et al., 2009). However, 
CMC is limited to computing the linear correlation of signals solely 
within the frequency domain. Consequently, Yang et al. (2015, 2016b) 
introduced an n:m coherence analysis method, serving as a 
comprehensive coherence measure designed to assess cross-frequency 
coupling between two distinct frequency components. This method 
unveiled, for the first time, both the linear and nonlinear 
corticomuscular coupling between the primary sensorimotor areas, 
their corresponding regions, and the peripheral muscles. Additionally, 
the study indicated that corticospinal tracts predominantly facilitate 
linear corticomuscular coupling, while non-linear coupling might 
be associated with sensory feedback pathways. The introduction of 
these enhanced methods and findings offers a more precise avenue for 
comprehending the communication dynamics between the cerebral 
cortex and muscles, consequently providing a fresh perspective on the 
mechanisms underlying cortical muscle motor control in 
stroke patients.

3 Influencing factors

Summarizing the existing research on CMC in stroke patients, 
this paper identifies various factors influencing CMC in this 
population, including pathological state, rehabilitation training, and 
experimental design (Figure 2). At the same time, the main references 
in this paper are listed in Table 1.

3.1 Pathological state

Stroke refers to a cerebral injury resulting from a significant 
decrease in cerebral blood flow caused by either arterial bleeding 
(hemorrhagic stroke) or blockage (ischemic stroke). The motor 
control system operates as a closed-loop mechanism. Brain damage 
following a stroke leads to modified neural oscillations, compromised 
upload/download pathways, and impaired muscle function. 
Consequently, stroke patients manifest irregularities in various facets 
of CMC. Given that the self-regulation and interaction of motor 
control systems occur at various spatial and temporal scales, structural 
brain damage post-stroke could potentially disturb the coordination, 
feedback, and information exchange between efferent control and 
afferent feedback (Chen et al., 2018a). The majority of studies indicate 
that CMC is comparatively weaker in stroke patients than in their 
healthy counterparts (Fang et  al., 2009; Rossiter et  al., 2012; von 
Carlowitz-Ghori et al., 2014; Chen et al., 2018a). However, it is worth 
noting that the existing research on CMC in stroke patients has 
predominantly concentrated on upper limb functions, with limited 
exploration of the functional connectivity between the brain and 
lower limbs in this population. Xu et  al. (2023) conducted a 
comparative analysis of the tibialis anterior (TA), lateral gastrocnemius 
(LG), and medial gastrocnemius (MG) muscles during unilateral static 
ankle dorsiflexion in both stroke patients and healthy controls. The 
CMC values were notably lower in stroke patients compared to the 
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values observed in healthy controls. Brain topography revealed 
substantial coherence in the cortical centers among the healthy control 
group, whereas such coherence was not observed in the stroke patient 
group. However, it should be  noted that the situation was not 
universally consistent, despite the aforementioned findings 
demonstrating weaker CMC in stroke patients in comparison to 
healthy controls.

Stroke location within the brain varies and is primarily classified 
as either cortical infarcts or subcortical infarcts based on the site of 
cerebrovascular lesions. Disparities in lesion location give rise to 
specific motor impairments among stroke patients (Donnan et al., 
2008). For instance, damage to the central gyrus (motor cortex region) 
results in motor deficits or limb paralysis (Shelton and Reding, 2001). 
Impairment to the internal capsule (subcortical region) hinders both 
motor and sensory functions (Abela et al., 2012). Park et al. (2016) 
classified chronic stroke patients into three subgroups: “SM1+” with 
supratentorial lesions (including primary motor areas), “SM1-” with 
supratentorial lesions (excluding primary motor areas), and those with 
infratentorial lesions. They discovered variations in activation levels 

and electroencephalographic power among the subgroups with 
distinct lesion sites. These findings align with results from fMRI-
related investigations, indicating that brain activation patterns differ 
depending on the lesion location (Luft et al., 2004, 2005; Alexander 
et  al., 2009). A close association exists between CMC and brain 
activation, representing the synchronization and coordination 
between cortical activation and body muscle movement. CMC serves 
as a crucial indicator of brain-controlled movement. Consequently, 
alterations in the lesion site might impact CMC.A study investigating 
alterations in the peak CMC location in brain topography after stroke 
involved 25 stroke patients (Rossiter et al., 2012), encompassing both 
cortical and subcortical infarcts. Patients with CMC peaks on the 
affected side of the brain exhibited five cortical infarcts and four 
subcortical infarcts. Patients with CMC peaks on the healthy side of 
the brain had six cortical infarcts and two subcortical infarcts. Two 
patients experiencing motor cortex damage exhibited peak CMC on 
the healthy side of the brain. Proportionally (cortical infarcts: 
subcortical infarcts), it seems that stroke patients with cortical infarcts 
are more likely to exhibit peak CMC on the healthy side of the brain. 

FIGURE 2

Influencing factors of CMC in stroke patients. VS, versus; CMC, corticomuscular coherence; ES, electrical stimulation; NMES, neuromuscular electrical 
stimulation.
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TABLE 1 Summary of main references on influencing factors of CMC in stroke.

Study Country Influencing factors of CMC in stroke patients Main results

Pathological state Rehabilitation training Experimental 
design

Healthy vs. 
Stroke

Stroke 
location

Stroke 
phases

Training 
duration

Training 
type

Training 
intensity

Motor 
tasks

Target 
muscles

Chen et al. 

(2018a)

China √ Healthy controls exhibited higher coupling

Ma et al. (2014) China √ The rehabilitation training led to varying degrees of improvement 

in motor function on the affected side, accompanied by a tendency 

of γ band CMC on the affected side to increase with the recovery 

of motor function.

Fang et al. (2009) USA √ √ Stroke patients had significantly lower CMC. In stroke patients 

engaging in an upper limb extension dynamic force task, the γ 

band CMC of the TB,AD, and BB muscles was notably lower 

compared to healthy controls.

Rossiter et al. 

(2012)

UK √ √ The gamma CMC value was significantly lower in patients. Stroke 

patients with cortical infarcts are more likely to exhibit peak CMC 

on the healthy side of the brain.

Von Carlowitz-

Ghori et al. 

(2014)

Germany √ √ At acute stage, peak frequencies of CMC of patients were 

significantly smaller. During the acute phase, the peak CMC was 

located on the healthy side of the brain, while in the chronic 

phase, there was no notable distinction in CMC amplitude 

between the affected and healthy brain sides.

Xu et al. (2023) China √ The CMC values were notably lower in stroke patients.

Park et al. (2016) Korea √ The variations in activation levels and electroencephalographic 

power among the subgroups with distinct lesion sites.

Krauth et al. 

(2019)

Germany √ √ In patients with pure subcortical infarction, the peak CMC 

appeared on either the healthy or the affected side of the brain. In 

patients with motor cortex infarction, the peak CMC emerged on 

the healthy side of the brain. CMC amplitude was lower in the 

acute phase and gradually surpassed levels observed in healthy 

individuals during the chronic phase

Zheng et al. 

(2018)

China √ √ The CMC between activities from the paretic limb muscles and the 

contralateral motor cortex for the second time of experiment 

increased significantly compared with that for the first time. The 

significant improvements in CMC after the rehabilitation period 

(for four weeks) compared to before

(Continued)
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TABLE 1 (Continued)

Study Country Influencing factors of CMC in stroke patients Main results

Pathological state Rehabilitation training Experimental 
design

Healthy vs. 
Stroke

Stroke 
location

Stroke 
phases

Training 
duration

Training 
type

Training 
intensity

Motor 
tasks

Target 
muscles

Geertsen et al. 

(2013)

Denmark √ Following 27 min of cocontraction training, the nondancers 

improved their performance significantly and showed a significant 

increase in 15- to 35-Hz coherence

Larsen et al. 

(2016)

Denmark √ Following motor practice performance improved significantly and 

a significant increase in EEG–EMGAPB and EMGAPB-EMGFDI 

coherence in the β band (15–30 Hz) was observed.

Perez et al. (2006) Denmark √ A significant increase in EEG–EMG coherence around 15–35 Hz 

was observed following the visuo-motor skill session in nine 

subjects.

Belardinelli et al. 

(2017)

Germany √ The upper extremity-FMA of the patients improved significantly. 

All patients showed significantly increased CMC in the β 

frequency-band.

Pan et al. (2018) China √ The CMC in strokes (ES group) at fourth weeks was significantly 

higher, and hand function was improved (ES group).

Lai et al. (2016) China √ After ES, EEG–EMG coherence in γ band increased significantly 

for 48.6% in stroke survivors, respectively.

Bao et al. (2021) China √ √ The combined rehabilitation approach integrating NMES and 

traditional methods facilitated CMC of the ipsilesional brain and 

paretic lower limbs. The stronger NMES enhances CMC in both 

the ascending and descending pathways.

Bao et al. (2019) China √ √ Single-session real-time sensory-level NMES during pedaling 

tasks could only modulate corticomuscular coupling in the 

ascending pathways for chronic stroke survivors.

Kwakkel et al. 

(2004)

Netherlands √ Augmenting rehabilitation intensity led to enhancements in motor 

function within the initial 6 months following stroke.

Chen et al. 

(2018b)

China √ When stroke patients performed dynamic force and static force 

tasks, significant CMC appeared in γ band and β band, 

respectively.

(Continued)
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Study Country Influencing factors of CMC in stroke patients Main results

Pathological state Rehabilitation training Experimental 
design

Healthy vs. 
Stroke

Stroke 
location

Stroke 
phases

Training 
duration

Training 
type

Training 
intensity

Motor 
tasks

Target 
muscles

Guo et al. (2020) China √ √ √ The CMC of ED in stroke patients was significantly lower than 

that of healthy controls when performing finger extension tasks 

(20%iMVC), while there was no difference between the two 

groups when performing finger flexion tasks. In stroke patients 

who completed finger stretches with 20 to 40% iMVC, the CMC 

peak in FD was significantly lower than that in healthy controls, 

while the CMC peak in ED was not different in healthy controls.

Bao et al. (2018) China √ When stroke patients dynamically modify wrist extension, the γ 

band CMC on the affected side was notably lower compared to the 

healthy side.

Mima et al. 

(2001)

USA √ The peak CMC for OP and ECR on the affected side was 

significantly lower than that on the healthy side, while the peak 

CMC for BB did not exhibit a significant difference between the 

affected and healthy sides.

CMC, corticomuscular coherence; TBt, ricepsbrachii; AD, anterior deltoid; BB, biceps brachii; EEG, electroencephalogram; EMG, electromyography; APB, abductor pollicis brevis; FDI, first dorsal interosseous; FMA, fugl-meyerassessment; ES, electrical stimulation; 
NMES, neuromuscular electrical stimulation; iMVC, isometric maximum voluntary contraction; FD, flexor digitorum; ED, extensor digitorum; OP, opponens pollicis; ECR, extensor carpus radialis.

TABLE 1 (Continued)
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Specifically, patients with motor cortex damage displayed all their 
CMC peaks on the healthy side of the brain. This aligns with Krauth 
et  al.’s findings (Krauth et  al., 2019), which involved four stroke 
patients, one with combined motor cortex and subcortical infarcts, 
and the remaining three with subcortical infarcts. The results indicated 
that in patients with pure subcortical infarction, the peak CMC 
appeared on either the healthy or the affected side of the brain. In 
patients with motor cortex infarction, the peak CMC emerged on the 
healthy side of the brain. Moreover, it is argued that alterations in the 
lesion site can impact CMC in stroke patients. Post-stroke brain tissue 
damage leads to neural network reorganization through 
neuroplasticity, involving the strengthening or weakening of synaptic 
connections between neurons to restore normal function (Chollet 
et al., 1991; Cramer et al., 1997; Nelles et al., 1999). The function of the 
impaired region is taken on by the adjacent region on the affected side 
or even the unaffected region to compensate for the loss of function 
in the impaired area (Mathiowetz et al., 1985; Chollet et al., 1991). In 
cases where the cortex is not directly affected, as in subcortical 
infarcts, its neighboring areas can compensate for the lost functions, 
resulting in the CMC peak appearing on the affected side, akin to the 
spatial pattern observed in healthy individuals (Chollet et al., 1991). 
In instances of cortical infarcts, the neighboring region on the affected 
side is inadequate to offset the loss of function and necessitates 
compensation from the unaffected region. These findings indicate the 
importance of considering the impact of the lesion site during the 
analysis of CMC in stroke patients, providing a crucial foundation for 
motor rehabilitation research based on brain-computer interfaces.

To gain a deeper understanding of the stroke’s developmental 
process and implement appropriate therapeutic rehabilitation 
strategies, stroke can be classified into acute, subacute, and chronic 
phases based on the time of onset and clinical presentations (Xie et al., 
2022). The prevalent belief is that patients’ motor function gradually 
recovers during the course of stroke progression. This is possibly due 
to cortical reorganization taking place in neighboring or more distant 
regions of the affected area after a stroke, which assumes the functional 
roles of the impaired region, thereby leading to alterations in the 
spatial pattern of brain activation (Nudo, 2007; Assaf and Pasternak, 
2008; Grefkes and Fink, 2011). The alterations in the spatial activation 
pattern of brain regions at various stages of stroke also impact the 
placement of the peak CMC on the brain topography in stroke 
patients, serving as an indicator for measuring the intensity of brain 
and muscle control responses. This was evidenced in a comparative 
study (von Carlowitz-Ghori et  al., 2014). The study revealed that 
during the acute phase, the peak CMC was located on the healthy side 
of the brain, while in the chronic phase, there was no notable 
distinction in CMC amplitude between the affected and healthy brain 
sides. This suggests that in the acute stage of stroke, the healthy side 
of the brain assumed the primary functional activities, and the peak 
CMC was situated on this side. During the chronic stage of stroke, the 
patient’s motor function gradually improved, and the functional 
activity on the affected side of the brain normalized, resulting in no 
noteworthy disparity in CMC amplitude between the two sides during 
this period. The dynamic fluctuations of CMC on both brain sides in 
the acute and chronic stages could potentially reflect the process of 
motor function restoration in stroke patients.

Typically, CMC tends to increase over time during the stroke 
period as motor function is restored in stroke patients (Zheng et al., 
2018). For instance, Krauth et al. (2019) recorded alterations in CMC 

in stroke patients from the acute phase to the chronic phase. The 
findings revealed that CMC amplitude was lower in the acute phase 
and gradually surpassed levels observed in healthy individuals during 
the chronic phase, correlating with substantial motor function 
recovery. This suggests that CMC has the potential to function as a 
biomarker during stroke recovery. However, in contrast to the findings 
of Krauth et al. (2019), the study by von Carlowitz-Ghori et al. (2014) 
demonstrated motor function improvement in stroke patients as they 
transitioned from the acute to the chronic phase, with no notable 
alterations in CMC. The variation in study results could stem from 
discrepancies in the motor capacity and the intensity of voluntary 
EMG activation in the limbs of stroke patients during participation. 
Prior research has established a positive correlation between CMC 
amplitude and EMG activation intensity (Kilner et al., 2000; Ushiyama 
et al., 2011). Patients in the first group exhibited diminished motor 
capabilities during the experiment, evidenced by a Fugl-Meyer 
Assessment (FMA) score of 0 for the wrist (out of a full score of 10), 
and weak voluntary EMG activation during limb movement. This 
condition might hinder the detection or quantification of 
synchronization between neuronal and muscular motor unit activities. 
Consequently, this diminishes the amplitude of the CMC. With the 
progression of the stroke period, patients’ motor capacity gradually 
improves, accompanied by a corresponding increase in EMG 
activation intensity, resulting in elevated CMC amplitudes. Conversely, 
patients in the second group exhibited superior exercise abilities 
during the experiment, with an average score of 4 on the Medical 
Research Council (MRC) scale (on a 5-point scale). During exercise, 
voluntary EMG activation intensity was higher, resulting in relatively 
higher CMC amplitudes with minimal change over time. This 
observation underscores the significance of the voluntary EMG signal, 
a crucial prerequisite for CMC measurement. Similar to previous 
studies’ inclusion and exclusion criteria (Guo et al., 2020), thorough 
consideration of motor capacity and the presence of voluntary EMG 
is imperative when investigating CMC in stroke patients. During the 
acute phase of stroke, patients often have reduced motor capacity and 
may be incapable of exercising, leading to minimal voluntary EMG 
amplitudes that impact CMC measurement. Thus, CMC application 
may be more appropriate for subacute and chronic stroke patients 
with residual motor capacity capable of generating voluntary 
EMG signals.

3.2 Rehabilitation training

Clinically, rehabilitation training for stroke patients encompasses 
a systematic treatment and rehabilitation program aimed at enhancing 
or restoring the patient’s motor and cognitive functions (Sørensen 
et al., 2012). CMC measures the strength of the functional connectivity 
between motor cortical activity and controlled muscles (Stokkermans 
et al., 2023), indicating the restoration of motor function after stroke. 
It serves as an index for evaluating rehabilitation during stroke 
recovery (Geertsen et al., 2013). Repeated rehabilitation training can 
promote the formation of new neuronal connections and synaptic 
plasticity in the brain affected by stroke, thereby strengthening the 
neural functional connections between cortical regions and motor 
muscles (Lin et al., 2015; Morioka et al., 2018). As the motor function 
of stroke patients recovers, their CMC gradually strengthens and may 
even surpass the levels observed in healthy individuals (Zheng et al., 
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2018). A study involving a brief training session in healthy individuals 
revealed that CMC improved shortly after the training (Larsen et al., 
2016). Comparable findings were reported by Perez et al. (2006) and 
Geertsen et al. (2013). They noted changes in CMC corresponding to 
improved motor performance. To address motor dysfunction in stroke 
patients, the duration of rehabilitation training has been prolonged. 
Zheng et  al. (2018) administered regular rehabilitation training 
(including physiotherapy and occupational therapy) for four weeks to 
stroke patients. They observed significant improvements in CMC after 
the rehabilitation period compared to before. Similarly, Belardinelli 
et al. (2017) carried out four weeks of exercise-based rehabilitation 
training in severely paralyzed chronic stroke patients and noted an 
increase in CMC along with improved motor performance post-
exercise rehabilitation training. Ma et al. (2014) conducted a repeated 
follow-up study involving four cycles of rehabilitation training in 
stroke patients, with each cycle lasting 10 days. The rehabilitation 
training led to varying degrees of improvement in motor function on 
the affected side, accompanied by a tendency of γ band CMC on the 
affected side to increase with the recovery of motor function. The 
study suggested that continuous rehabilitation training can stimulate 
damaged neural circuits, facilitate neuroplasticity, aid in the 
establishment of new motor patterns and functional connections, and 
significantly enhance the level of CMC (Hu et al., 2022).

Additionally, the type and intensity of rehabilitation training 
should be  considered. For instance, diverse electrical stimulation 
methods have been extensively employed in motor rehabilitation 
following strokes to facilitate functional enhancement by reconnecting 
the impaired network. These methods encompass transcranial 
electrical stimulation, cerebellar and spinal cord electrical stimulation, 
peripheral electrical stimulation (ES), and other emerging 
technologies (Bao et al., 2020). Notably, ES can produce sustained and 
sufficient sensory input, affecting the excitability of the motor cortex. 
Pan et al. (2018) combined hand function training with ES treatment 
and found that CMC was significantly increased and hand function 
was improved in patients with chronic stroke, this is consistent with 
the findings of Lai et  al. (2016). NMES (neuromuscular electrical 
stimulation, NMES) is also extensively employed for enhancing motor 
function post-stroke (Howlett et al., 2015). In comparison to solely 
traditional rehabilitation training, the combined rehabilitation 
approach integrating NMES and traditional methods is more effective 
in enhancing motor function and improving CMC in stroke patients 
(Bao et al., 2021). A study that compared the impacts of constrained 
rehabilitation training versus traditional training on upper limb 
function 3–9 months post-stroke revealed that constrained 
rehabilitation training led to a more substantial improvement in 
paralyzed upper limb function among stroke patients (Goldstein, 
2007). Contrary to weaker NMES intensity, which solely improves 
CMC in the ascending pathway (Bao et al., 2019), stronger NMES 
enhances CMC in both the ascending and descending pathways (Bao 
et al., 2021). Higher stimulation intensity of NMES at motor levels 
may exert a more significant modulatory effect. Electrical stimulation 
generates motor potentials along the corticospinal tracts, depolarizing 
neuronal cell membranes and subsequently activating muscle and 
brain barriers. This peripheral somatosensory input induced by NMES 
promotes motor control processes (Lai et  al., 2016). Conversely, 
NMES surpassing the motor threshold can potentially enhance 
corticospinal excitability by recruiting additional synaptic motor 
neurons and motor reflexes (Chipchase et al., 2011). Consequently, 

more rigorous rehabilitation could additionally facilitate the effective 
reorganization of impaired bidirectional neuromuscular control 
circuits and bolster CMC in the ascending and descending pathways. 
In a meta-analysis investigating heightened rehabilitation intensity 
after stroke, Kwakkel et  al. (2004) concluded that augmenting 
rehabilitation intensity led to enhancements in motor function within 
the initial 6 months following stroke. Hence, upcoming studies should 
investigate the direct impact of the type or intensity of rehabilitation 
training on CMC in stroke patients. Additionally, refining 
rehabilitation training programs and formulating personalized motor 
rehabilitation plans can better foster the recovery of patients’ 
neurological and motor functions.

3.3 Experimental design

Experiments examining CMC in stroke patients commence with 
the identification of the specific brain region, muscle, and suitable 
motor task. CMC is regarded as an assessment of neural oscillations 
within the brain and regulated muscles (Zheng et al., 2018). Neural 
oscillations are initiated by the coordinated activity of neurons in the 
brain. When the brain issues a motor command, the command 
information is conveyed as neural oscillations through the spinal cord 
to the neuromuscular tissues of the limbs. The muscle neurons then 
react, controlling the upper limbs to execute movements. 
Simultaneously, the motor feedback information from the muscle 
tissues in the limbs ascends through the spinal cord as neural 
oscillations to the sensory-motor cortex of the brain. The sensory-
motor cortex subsequently incorporates the feedback information and 
modifies the motor commands (Conway et al., 1995). Hence, diverse 
movement tasks and muscles within the experimental design 
constitute crucial factors impacting CMC in stroke patients.

Motor tasks are typically classified into static and dynamic force 
outputs. Force results from intricate interactions among components 
of the neuromuscular system, leading to distinct patterns of 
corticospinal oscillations for various movements. Several studies have 
discovered that the motor cortex exhibits heightened β band 
oscillations during the control and maintenance of static force (Baker 
et al., 1997; Salenius et al., 1997; Gross et al., 2000; Watanabe et al., 
2021), and increased γ band oscillations when generating dynamic 
force (Baker et al., 1997; Chen et al., 2018b). This phenomenon arises 
because the muscle length remains constant during static force output 
(Song et al., 2018), necessitating only sufficient tension to counteract 
the external force. Thus, the fluctuations in force complexity are 
minimal, and weaker neuromuscular control effects and lower-band 
neural oscillations (mainly β) are adequate to drive task performance. 
Conversely, during dynamic force output, muscles not only alter 
length when generating force but also swiftly integrate the visual and 
somatosensory information required to generate suitable motor 
commands. Consequently, the force fluctuation complexity is high, 
and the corticospinal oscillatory patterns of the sensorimotor system 
must shift to higher frequencies (mainly γ) to achieve the intended 
movement (Omlor et al., 2007; Duan et al., 2018). However, in stroke 
patients, damage to their cerebral nervous system affects both the 
transmission of regulatory commands from the motor cortex to the 
muscles involved in the movement and the reception of sensory 
feedback from the muscles and the sensorimotor system by the motor 
cortex. This results not only in a reduction in the relevant oscillatory 
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activity (Peng et al., 2023) but also an abnormality in the CMC of the 
corresponding bands.

In stroke patients engaging in an upper limb extension dynamic 
force task (Fang et al., 2009), the γ band CMC of the triceps brachii (TB), 
anterior deltoid (AD), and biceps brachii (BB) muscles was notably 
lower compared to healthy controls. In healthy individuals, upper limb 
extension as a dynamic force task induces γ oscillations in the motor 
control pathway, whereas stroke patients experience relatively weaker γ 
oscillations due to brain damage and an inability to establish effective 
information communication with their muscles. Additionally, 
differences in CMC between stroke patients and healthy individuals are 
also evident in finger extension and flexion movements. In a study on 
cortical muscle connectivity patterns in the upper limb post-stroke (Guo 
et al., 2020), the CMC of the finger extensor digitorum (ED) was notably 
lower in stroke patients compared to healthy controls when performing 
a finger extension task (20% isometric maximum voluntary contraction, 
20% iMVC). Conversely, during the finger flexion task completion (20% 
iMVC), the CMC of the ED in stroke patients did not differ from that of 
healthy controls. This discrepancy in CMC based on movement tasks is 
observed not only between stroke patients and healthy individuals but 
also within the stroke patient group. Bao et al. (2018) examined inter-
hemispheric differences in CMC in chronic stroke patients, where stroke 
patients used online visual feedback to dynamically modify wrist 
extension. The γ band CMC on the affected side was notably lower 
compared to the healthy side. The γ band CMC has been linked to 
dynamic behaviors (Gwin and Ferris, 2012), and as stroke patients are 
unable to sustain coordinated dynamic activities, a reduction in the level 
of γ band CMC on their affected side is plausible. In an upper limb 
movement task for stroke patients (Chen et al., 2018b), participants were 
instructed to perform two consecutive maneuvers: first, slowly raising 
the arm to the chest and then maintaining it motionless at the chest. The 
former constituted a dynamic force output, whereas the latter constituted 
a static force output, resulting in substantial CMC in stroke patients in 
the γ and β bands, respectively. Furthermore, it is noteworthy that in 
motion tasks categorized under static force, significant CMC 
progressively transitions from the low band to the high band with 
escalating force levels (Omlor et  al., 2007). Research indicates that 
notable CMC is observed in the γ band during higher intensity 
contraction tasks (Brown et  al., 1998; Mima et  al., 1999b). This 
phenomenon could be  attributed to heightened cortical excitation 
elicited by stronger contractions, leading to shifts in the oscillation 
patterns of local cortical networks from low to high frequencies.

The selection of target muscles in stroke patients is critical as brain 
damage can lead to irregularities in neuromuscular regulation and 
muscle activity response, resulting in impaired signaling of brain-
muscle control and feedback pathways, ultimately leading to limb 
motor dysfunction (Qiao et  al., 2023). Based on the principle of 
cortical topography, the human hand and upper arm represent a 
significant portion of projections in the sensorimotor region (Penfield 
and Boldrey, 1937), making them more susceptible to functional 
impairment due to brain damage in stroke patients. Statistics indicate 
that as many as 85% of stroke patients experience upper limb motor 
deficits (Cantero-Téllez et al., 2019). Moreover, the hand, the most 
intricate motor organ in the human body, boasts exceptional dexterity, 
fine motor skills, and heightened sensory and tactile capabilities, and 
serves a crucial role in daily life (Du et  al., 2022). Consequently, 
researchers have emphasized the upper limb muscles of stroke patients.

Muscles can be classified into active and antagonist muscles based 
on their functions and interactions in movement, both of which are 

essential for facilitating limb motion (Hobart et  al., 1975). In the 
course of executing a movement, the cerebral cortex intricately 
coordinates the contraction and relaxation of the active and antagonist 
muscles, ensuring their collaboration to regulate the fluidity and 
precision of the movement (Fu et al., 2021). Stroke causes damage to 
cortical brain regions, impacting the precise regulation of active and 
antagonist muscles, resulting in compromised muscle coordination 
and dyskinesia, potentially leading to abnormal CMC compared to 
that of healthy individuals (Fauvet et  al., 2021). Guo et  al. (2020) 
discovered that during finger stretching exercises at a higher strength 
level (40% iMVC), the CMC peak value of the flexor digitorum (FD) 
in stroke patients decreased compared to that at a lower strength level 
(20%iMVC), while the CMC peak value of the ED increased, 
exhibiting a complete reversal of healthy individuals’ responses. This 
phenomenon may stem from reduced FD antagonism in stroke 
patients. Simultaneously, the weakened ED requires greater cortical 
involvement to generate increased power output.

Muscles in the limb can be classified into proximal and distal 
muscles depending on their proximity to the trunk. Proximal muscles 
in the upper limb are predominantly situated in the upper arm and 
shoulder, offering stability and assistance to the upper limb while 
facilitating shoulder joint movements. Distal muscles are primarily 
located in the forearm and hand, enabling precise movements and 
finger control. In a study by Mima et al. (2001) stroke patients in the 
chronic phase were recruited to assess their corticomuscular 
coherence (CMC) during grip strength, wrist extension, and elbow 
flexion tasks involving the thumb opponens pollicis (OP), extensor 
carpus radialis (ECR), and biceps brachii (BB). The study revealed that 
the peak CMC for OP and ECR on the affected side was significantly 
lower than that on the healthy side, while the peak CMC for BB did 
not exhibit a significant difference between the affected and healthy 
sides. This aligns with the clinical observation that proximal shoulder 
and elbow muscles tend to regain function before distal hand muscles. 
One possible explanation is that, as the cortical representation of distal 
muscles occupies a larger area than proximal muscles (Penfield and 
Boldrey, 1937), the dependence of distal muscles on inputs from 
corticospinal pathways is increased (Turton and Lemon, 1999). 
During a stroke, it is more probable that the region of cortical 
representation of distal muscles is impacted, leading to a decreased 
likelihood of neuroplasticity recovery. Similarly, in stroke patients 
engaging in isometric finger extensions (Guo et al., 2020), the peak 
CMC for the finger flexors (flexor digitorum, FD) is observed in the 
central brain region, while the peak CMC for the biceps brachii (BB) 
and triceps brachii (TRI) is detected in the unaffected hemisphere of 
the brain. This phenomenon is associated with the brain’s 
neuroplasticity mechanism to enlist resources from the unaffected 
hemisphere and other regions following a stroke (Chechik et  al., 
1998). However, the displacement of the peak corticomuscular 
coherence (CMC) for proximal muscles exhibited a more significant 
impact compared to the distal muscles, indicating a greater 
neuroplastic response of compensatory mechanisms in proximal 
muscles post-stroke compared to distal muscles (Guo et al., 2020).

In conclusion, the selection of movements and muscles during 
experimental design can significantly influence CMC in stroke 
patients. Therefore, in the design of experiments to investigate CMC 
in stroke patients, emphasis should be placed on specific frequency 
bands that demonstrate significant CMC based on the nature of the 
movement, such as prioritizing the study of β band CMC in stroke 
patients utilizing static force output and concentrating on γ band 
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CMC in stroke patients using dynamic force output and higher 
intensity contraction. Moreover, the sequence of motor function 
recovery in the proximal and distal muscles of the upper extremity 
differs among stroke patients. The distal muscles, primarily responsible 
for intricate movements, exhibit delayed recovery, whereas the 
proximal muscles, involved in gross movements, tend to recover 
earlier, facilitating the execution of related motor tasks. Thus, it is 
imperative to rationally select the target muscles during experimental 
design. While ensuring stroke patients can effectively complete the 
experimental tasks, additional attention should be paid to the distal 
muscles, known for their heightened sensitivity (Rothwell et al., 1991; 
Fu et al., 2021), to effectively identify the aberrant motor function 
mechanisms in stroke patients.

4 Challenges and future prospects

Recent advancements in the field of neuroimaging techniques and 
neurocomputational modeling have significantly advanced the 
research on CMC in stroke patients. These techniques enable 
researchers to gain a deeper understanding of the interplay between 
the cerebral cortex and muscles, thereby offering valuable insights for 
enhancing the recovery of neurological function and the rehabilitation 
of motor function in stroke patients. However, several inquiries still 
require further exploration.

Initially, there continues to be an ongoing debate on the necessity 
of applying EMG rectification in CMC studies. Initial studies suggested 
that preprocessing of implementing EMG rectification might improve 
the temporal precision of action potentials, thereby amplifying the 
significance of β band CMC (Reyes et al., 2017; Chen et al., 2020). 
Myers et al. (2003) were the first to propose this notion, which was 
based on a simulation study devoid of empirical data. Additionally, 
Farina et  al. proposed that EMG rectification might enhance the 
detection of β band CMC (Farina et al., 2013). Nevertheless, Yao et al. 
(2007) examined the impact of EMG rectification on power and 
coherence spectra utilizing EEG and MEG signals. Their findings 
indicated that EMG rectification potentially enhanced the recognition 
of motor unit discharge rates. Nonetheless, the outcomes of cortical 
muscle coherence estimation using both corrected and uncorrected 
EMG signals did not exhibit significant differences. Similar conclusions 
were drawn by Bayraktaroglu et al. (2011) and Yang et al. (2016a), 
among others. Secondly, the majority of ongoing research investigating 
the impact of force level on CMC in stroke patients has employed 
maximum voluntary contraction (MVC) as the standard measure for 
force levels. However, it is crucial to consider that the level of force 
output varies among stroke patients. Particularly during the acute 
phase of stroke onset, patients have severely restricted exercise capacity, 
and a certain proportion of MVC may result in a notably low force 
output level (von Carlowitz-Ghori et al., 2014), thereby influencing the 
anticipated experimental outcomes. Furthermore, while the motor 
system of stroke patients is impacted, the majority do not exhibit any 
tactile deficits. Employing MVC as the benchmark for the target force 
level, subjects may have restored some motor capacity during 
subsequent assessments, potentially leading to heightened tactile 
stimulation. The potential inaccuracy of experimental results arises 
from the unknown impacts of the feedback afferent pathway on CMC 
(Riddle and Baker, 2005; Baker, 2007).

In general, numerous aspects of CMC research in stroke patients 
warrant further exploration and development. Firstly, a dearth of 

studies exists concerning the influence of various stroke types on 
CMC analysis methods. Ischemic stroke involves vascular occlusion 
resulting in ischemic injury, potentially leading to neurological 
damage and functional alterations. In hemorrhagic stroke, the rupture 
of a cerebral blood vessel with hemorrhage can cause more 
pronounced functional changes in the nervous system, posing greater 
challenges to the applicability of CMC analysis methods. Subsequent 
studies should conduct more comprehensive research on the 
distinctive attributes and clinical presentations of different stroke 
types, evaluating their effects on CMC analysis methods and aiming 
to enhance the precision and applicability of such analytical 
approaches. Secondly, despite the prevalence of lower limb motor 
dysfunction in nearly 80% of stroke survivors, the majority of current 
CMC studies in stroke patients have concentrated on upper limb 
assessments, neglecting comprehensive investigations into the 
functional connectivity between the brain and lower limbs. The initial 
investigation into lower limb CMC post-stroke was conducted by Xu 
et al. (2023), revealing a considerable reduction in lower limb CMC 
among stroke patients compared to healthy controls. These findings 
mirror outcomes from numerous studies focusing on the paralyzed 
upper extremities of stroke patients. Furthermore, examining CMC 
disparities between proximal and distal muscles in the lower limbs of 
stroke patients may shed light on whether comparable phenomena 
and mechanisms are present in the lower limbs as observed in the 
upper limbs. Lastly, the influence of visual feedback on CMC warrants 
examination. The vision serves as the precursor and guide for all our 
motor plans (Flanagan and Johansson, 2003). Due to their inherent 
motor dysfunction, a majority of stroke patients tend to depend 
heavily on visual feedback during exercises to enhance the precision 
of motor execution. Research has demonstrated an augmentation in 
β band CMC during motor tasks with visual guidance (Nijhuis et al., 
2021). Furthermore, the impact of age on CMC is contingent upon the 
visual feedback accessible to the participant (Watanabe et al., 2020). 
Consequently, anticipations for further advancements in CMC 
research are high, promising novel pathways for addressing 
neurological disorders and facilitating deeper understandings of 
human motor control and the acquisition of novel movements.
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