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Reading is vital for acquiring knowledge and studies have demonstrated that 
phonology-focused interventions generally yield greater improvements 
than meaning-focused interventions in English among children with reading 
disabilities. However, the effectiveness of reading instruction can vary among 
individuals. Among the various factors that impact reading skills like reading 
exposure and oral language skills, reading instruction is critical in facilitating 
children’s development into skilled readers; it can significantly influence reading 
strategies, and contribute to individual differences in reading. To investigate this 
assumption, we developed a computational model of reading with an optimised 
MikeNet simulator. In keeping with educational practices, the model underwent 
training with three different instructional methods: phonology-focused training, 
meaning-focused training, and phonology-meaning balanced training. We used 
semantic reliance (SR), a measure of the relative reliance on print-to-sound 
and print-to-meaning mappings under the different training conditions in the 
model, as an indicator of individual differences in reading. The simulation results 
demonstrated a direct link between SR levels and the type of reading instruction. 
Additionally, the SR scores were able to predict model performance in reading-
aloud tasks: higher SR scores were correlated with increased phonological 
errors and reduced phonological activation. These findings are consistent with 
data from both behavioral and neuroimaging studies and offer insights into the 
impact of instructional methods on reading behaviors, while revealing individual 
differences in reading and the importance of integrating OP and OS instruction 
approaches for beginning readers.
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1 Introduction

Reading is an acquired skill that enables people to absorb ideas through written 
languages. To become a proficient reader, children need to learn the mappings between 
orthography (O), semantics (S), and phonology (P). Past literature has shown that reading 
behaviors differ across readers as a function of their sensitivity to OP and OS mappings 
during reading (Hoffman et al., 2015; Woollams et al., 2016; Siegelman et al., 2020, 2022). 
Moreover, these individual differences may be  critical factors that influence the 
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effectiveness of reading instruction. For example, in designing and 
implementing intervention programs for children with reading 
disabilities (RD), Siegelman et al. (2022) demonstrated significant 
intervention gains through phonology-focused instruction for RD 
children that relied more on OP regularities than OS regularities 
for reading. Hence, the differences in sensitivity to OP and OS 
mapping in reading performance motivated the present study to 
examine factors influencing beginning readers’ sensitivity to 
different regularities.

In reading literature, several factors have been proposed to 
contribute to individual differences in reading, such as reading 
experience (Yap et al., 2012; Andrews, 2015), reading capacity (Plaut, 
1997; Dilkina et al., 2008), and oral language skills (Siegelman et al., 
2020; Chang, 2023). Additionally, early reading training (Taylor et al., 
2017; Chang et  al., 2020) could be  critical concerning children’s 
sensitivity to OP and OS regularities. However, whether there is a 
direct link between them remains unclear. Consequently, in this study, 
we  utilised a series of well-established computational models of 
reading trained with three different types of instructional methods 
including phonology-focused training, meaning-focused training, and 
phonology-meaning balanced training. The investigation aimed to 
determine the models’ sensitivity to OP and OS regularities by 
drawing on a measure of semantic reliance (SR hereafter) to 
operationalise as the utilisation of OP and OS pathways. We then 
compared model performance with behavioral data reported in the 
reading literature (Woollams et al., 2016; Siegelman et al., 2020, 2022). 
Here, we  provided a brief overview of individual differences in 
reading, early reading instruction and the computational framework 
employed in our model development.

1.1 Individual differences in reading

Studies have investigated the variability in reading behaviors 
among typical readers (Hoffman et al., 2015; Woollams et al., 2016; 
Davies et al., 2017; Siegelman et al., 2020, 2022; Chang, 2023) and 
dyslexic readers (Ziegler et al., 2008; Perry et al., 2019). Particularly, 
inter-subject variability in efficient OP and OS mapping sensitivity has 
been considered critical in contributing to variations in reading 
performance (Hoffman et al., 2015; Woollams et al., 2016; Siegelman 
et al., 2020, 2022). For instance, Woollams et al. (2016) examined how 
individual differences in the degree to which readers rely on semantic 
access affect reading performances in a reading-aloud task. They 
demonstrated that skilled readers with high SR tend to show a stronger 
imageability effect and produce slower responses than those with low 
SR particularly when reading words with inconsistent spelling-to-
sound mappings (e.g., pint) in a reading-aloud task. Comparable 
variations in reading behaviors among individuals are also evident in 
research involving children (Siegelman et al., 2020, 2022). In a recent 
study involving a large cohort of children, it was observed that 
children demonstrating high sensitivity to OP regularities generally 
outperformed their counterparts in reading tasks, as opposed to those 
with lower sensitivity to OP regularities (Siegelman et  al., 2020). 
Additionally, these children tended to show substantial gains in 
intervention outcomes (Siegelman et al., 2022). These findings suggest 
that children’s sensitivity to both OP and OS regularities may play a 
pivotal role in shaping their reading performance and the effectiveness 
of reading interventions.

As noted earlier, a number of factors may contribute to individual 
differences in adults and children. Critical factors, including reading 
experience (Yap et al., 2012; Andrews, 2015), reading capacity (Plaut, 
1997; Dilkina et al., 2008), and oral language skills (Siegelman et al., 
2020; Chang, 2023), have been proposed and investigated. Overall, the 
findings suggest that individuals with extensive reading experience, 
efficient processing in the reading system, and strong oral language 
skills typically can develop high-quality orthographic, phonological, 
and semantic representations, as well as efficient reading pathways 
(connections between these representations). Besides these factors, 
early reading training (Taylor et al., 2017; Chang et al., 2020) may also 
play a crucial role in influencing readers’ sensitivity to OP and OS 
regularities. However, the extent to which early reading training 
directly correlates with OP and OS mapping sensitivity 
remains uncertain.

1.2 Early reading instruction

For decades, the effectiveness of early reading instruction has been 
a prominent topic in English reading literature (Rayner et al., 2001; 
Nation, 2009; Suggate, 2016; Taylor et al., 2017; Castles et al., 2018; 
Torgerson et al., 2019). When it comes to learning to read in English, 
there are two contrasting types of instructional methods. One is 
phonology-focused training (e.g., Bus and van Ijzendoorn, 1999; Ehri 
et al., 2001), in which children are instructed to learn intensively about 
the relationships between print and sound. The other is meaning-
focused training or a whole language approach (Levy and Lysynchuk, 
1997), in which children are instructed to learn intensively about the 
relationships between whole words and their meanings using word 
cards with or without accompanying pictures.

Phonology-focused training can be  traced back to the 
characteristics of the English writing system. There are more consistent 
mappings between spelling and sound compared to mappings 
between spelling and meaning, particularly for words comprising a 
single morpheme (i.e., monomorphemic words) (Plaut and 
Gonnerman, 2000). Additionally, monomorphemic words are 
frequently encountered in the early reading stages (Rastle, 2019). As 
a result, phonology-focused instruction can assist children in 
leveraging the systematic relationships between letters and sounds 
(e.g., -int in mint and hint), making it a more accessible learning 
approach. Moreover, in line with the self-teaching hypothesis (Share, 
1995), the ability to map spelling to sound serves as a critical self-
teaching mechanism for children. This skill aids in the subsequent 
acquisition of rapid and detailed orthographic representations of novel 
words and facilitates their recognition. Multiple lines of evidence from 
behavioral, neuroimaging and computational studies (Taylor et al., 
2017; Chang et  al., 2020) have demonstrated the effectiveness of 
phonology-focused training not only in word reading but also in tasks 
related to word comprehension. Taylor et al. (2017) conducted both 
behavioral and neuroimaging assessments, revealing that individuals 
undergoing phonology-focused training exhibited notable benefits in 
terms of accuracy and speed in a reading-aloud task compared to 
those who received meaning-focused training. Moreover, comparable 
performance between the two training methods was observed in a 
reading comprehension task. A subsequent modelling study by Chang 
et al. (2020) further highlighted that this transfer effect was largely 
dependent on oral language skills in addition to spelling-to-sound 
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skills. Collectively, these findings align with the framework of the 
Simple View of Reading (SVR) (Gough and Tunmer, 1986), suggesting 
that successful reading comprehension necessitates a combination of 
phonological decoding and oral language skills.

Conversely, advocates of meaning-focused training put forth two 
arguments in support of their perspective (e.g., Davis, 2013). Firstly, 
they emphasise that the ultimate objective of reading is to establish a 
direct connection between the spelling of a word and its meaning, 
warranting a thorough examination of the efficacy of this direct 
mapping approach. Secondly, they point out the presence of 
morphological regularities in English, especially for words consisting 
of more than one morpheme, as exemplified by pairs like bake and 
baker. Research, as indicated by Nation and Cocksey (2009), suggests 
that children can access meaning from an orthography system without 
the need for phonological involvement. Consequently, proponents of 
meaning-focused training propose that it is beneficial for children to 
acquire OS mappings early on in reading (Levy and Lysynchuk, 1997; 
Nation, 2009; Taylor et al., 2015). However, as pointed out by Share 
(1995), meaning-focused training faces a noteworthy hurdle in 
providing a practical acquisition strategy for obtaining orthographic 
representations of unfamiliar words and, consequently, in navigating 
through an orthographic avalanche. This becomes particularly 
challenging considering that, on average, a fifth grader is exposed to 
approximately 10,000 new words in natural printed text (Nagy and 
Herman, 1987). It is important then that current educational practice 
integrates OP and OS strategies in early reading instruction 
and intervention.

The phonology-focused training and meaning-focused training 
are in accordance with neurocomputational models of dual language 
and reading pathways (Hickok and Poeppel, 2004, 2007; Rauschecker 
and Scott, 2009; Ueno et  al., 2011; Bornkessel-Schlesewsky and 
Schlesewsky, 2013). For reading, a dorsal pathway generally consisting 
of the fusiform gyrus, inferior supramarginal, premotor cortex, and 
inferior frontal gyrus (pars opercularis and pars triangularis) 
underpins print-to-sound processes, while a ventral pathway generally 
consisting of the fusiform gyrus, the anterior parts of middle and 
superior temporal gyrus, the anterior temporal pole, and the inferior 
frontal gyrus (orbitalis) underpins print-to-meaning processes (Price, 
2012; Carreiras et al., 2014, for a review; Taylor et al., 2013; Hoffman 
et al., 2015). Additionally, several studies have investigated neural 
activities of learning to read. It is found that modulation of dorsal 
pathway activity is evident when learning print-to-sound associations 
of new words while modulation of ventral pathway activity is elusive 
when learning whole object or word names (Mei et al., 2014; Quinn 
et al., 2017; Taylor et al., 2017). Particularly, a recent neuroimaging by 
Taylor et al. (2017) investigates the neural consequences of reading 
instruction (phonology-focused training versus meaning-focused 
training). The result demonstrated that meaning-focused training 
increased neural effort in dorsal pathway regions compared to 
phonology-focused training; however, there were no differences in 
ventral pathway activity following the two instructional approaches. 
Importantly, the fMRI results from Taylor et al. (2017) showed striking 
benefits of print-to-sound training. The authors suggest that early 
literacy education in alphabetic languages should focus on OP rather 
than OS strategies in order to enhance both reading aloud and 
reading comprehension.

While phonology-focused training and meaning-focused training 
represent distinct reading instructional approaches, they are 

frequently integrated to some extent in practical applications. 
Consequently, assessing their effectiveness and their influence on 
subsequent reading behaviors can be  challenging.1 However, as 
evidence accumulates, a growing consensus in reading research 
suggests that phonology-focused training is crucial for acquiring the 
skill to read words with a semi-transparent relationship between print 
and sound in English, especially in the early stages of reading 
instruction (Castles et al., 2018, for a review; Rastle, 2019), compared 
to meaning-focused training. Nevertheless, research into the impact 
of these different types of reading instructional methods on OP and 
OS mapping sensitivity is still ongoing.

1.3 The computational model of reading

Progress in the computational modelling of reading has offered 
valuable mechanistic explanations for general processing principles 
within the human reading system. These models simulate human 
reading performance across diverse populations including children, 
adults and patients (Seidenberg and McClelland, 1989; Plaut et al., 
1996; Harm and Seidenberg, 1999, 2004; Coltheart et al., 2001; Harm 
et al., 2003; Powell et al., 2006; Ziegler et al., 2008; Perry et al., 2019). 
Within the triangle modelling framework (Seidenberg and 
McClelland, 1989; Plaut et al., 1996; Harm and Seidenberg, 2004), the 
process of learning to read can be achieved through various pathways, 
depending on the division of labour along direct and indirect 
pathways for accessing phonology or semantics from orthography. 
This inherent property of the triangle model positions it as an ideal 
platform for investigating OP and OS mapping sensitivity in reading. 
Our previous modelling research, based on the triangle modelling 
framework, implemented different early reading instructional 
schemes used in the behavioral study by Taylor et al. (2017). The 
simulation results demonstrated the importance of oral language skills 
on the effectiveness of reading instruction (Chang et  al., 2020). 
However, the simulation study did not examine how early reading 
instruction may contribute to individual differences in reading, 
particularly regarding the utilisation of OP and OS pathways in the 
model and its potential impact on later mature reading behaviors.

Therefore, building upon our prior modelling research (Chang 
et al., 2020), the current study aimed to address these challenges. 
Specifically, following the educational approaches reviewed in section 
1.2, two contrasting early reading training schemes were implemented, 
each focusing on a different aspect of reading instructional methods: 
OP-focused and OS-focused. Based on previous behavioral and 
modelling studies (Taylor et  al., 2017; Chang et  al., 2020), the 
OP-focused training model underwent three times the training on OP 
mappings, while the OS-focused training model received three times 
the training on OS mappings. Considering that OP and OS training 
are also frequently integrated to some extent in practical applications, 
we implemented a mixture of OP and OS training models. As there is 
no specific guidance on the proportion of mixture, the model was 
trained with an equal amount of training on both OP and OS 
mappings, termed the OP-OS balanced model. Following Chang 
(2023), the utilisation of OP and OS pathways was characterised by SR 

1 We are grateful to reviewer 3 for expanding on this perspective.
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in the model as an indicator of individual differences. Subsequently, 
we explored the associations between the SR in the model and various 
early training regimens. Additionally, we examined how SR interacted 
with other psycholinguistic reading effects during reading aloud.

Finally, while computational modelling has proven to be  a 
valuable tool for probing the mechanisms underlying language 
processes, training a large-scale deep neural network model, such as 
the fully implemented triangle model of reading employed in this 
study, is often associated with high computational costs. Consequently, 
the time-consuming training process fundamentally limits the model’s 
capacity to simulate a substantial cohort of individuals. To mitigate the 
training burden and facilitate large-scale of computational studies, 
optimising and parallelising the computationally demanding 
algorithms is imperative by leveraging available computing hardware 
resources. In this study, we integrated Single Instruction Multiple Data 
(SIMD) and threading optimisation techniques to enhance the 
computational performance and efficiency. Further details about the 
optimisation approaches and results are reported in the 
Supplementary material.

2 Method

2.1 Model architecture

Figure 1 shows the architecture of the triangle model of reading. 
The model was identical to the one used in previous modelling studies 
exploring the influence of oral language skills on variations in reading 
(Chang, 2023), the effectiveness of reading instruction (Chang et al., 
2020), as well as investigating the impact of word sequence and 
language exposure on reading development (Monaghan et al., 2017; 
Chang and Monaghan, 2019). It had three essential processing layers 

including orthography (O), phonology (P), and semantics (S). There 
were 364 units in the orthography layer, 200 units in the phonology 
layer, and 2,446 units in the semantics layer. All three layers connected 
to each other but between every two layers was a hidden layer. The 
hidden layers between the phonological and semantic layers had 
300 units, while those between the orthographic, phonological and 
semantic layers had 500 units. In phonological and semantic layers, 
there were attractor layers consisting of 50 units. These attractor layers 
helped the model develop robust and accurate phonological and 
semantic representations of words, wherein even partial or noisy 
degraded activation patterns could transition towards familiar 
representations (Harm and Seidenberg, 2004). Moreover, a context 
layer consisting of 4 units was connected to the semantic layer via a 
hidden layer of 10 units to handle homophones (i.e., words have the 
same orthographic form but multiple meanings).

2.2 Word representations

Following previous modelling work (Chang et al., 2019; Chang 
and Monaghan, 2019; Chang, 2023), the model was trained with 
orthographic, phonological, and semantic patterns for 6,229 
monosyllabic English words. This set of vocabulary encompassed 
most of the inflected forms found in monosyllabic English words 
(Harm and Seidenberg, 2004). Orthographic patterns of words were 
represented by 14 letter slots, each containing 26 units corresponding 
to the English alphabet. The alignment of words involved situating the 
first vowel letter on the fifth slot, and if applicable, the second vowel 
letter on the sixth slot. Consonant letters that preceded or followed the 
vowel letters were placed in slots adjacent to the two vowel letter slots. 
For example, yes was represented as _ _ _ y e _ s _ _ _ _ _ _ _, and great 
as _ _ g r e a t _ _ _ _ _ _ _.

FIGURE 1

The architecture of the triangle model of reading. Numbers in brackets indicate the number of units in that layer. S: Semantics; P: Phonology; 
O: Orthography. Adapted from Chang (2023).
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Phonological patterns of words were represented by 8 phoneme 
slots, each comprising 25 units for various phonological features such 
as voiced, nasal, round, etc. The first three phoneme slots were 
designated for onset consonants, the fourth slot for the vowel, and the 
remaining four slots for coda consonants. For example, yes was _ _ y 
E s _ _ _ and great was _ g r eI t _ _ _.

Semantic representations of words were derived from Wordnet 
(Miller et  al., 1990) and consisted of 2,446 semantic units. The 
representational scheme employed binary coding, where one indicated 
the presence of a semantic feature, and zero indicated its absence. 
Context representations for each meaning of the homophone family 
were randomly assigned by activating one of the four units at the 
beginning of training. None of the context units were active for words 
with a single meaning.

2.3 Training procedure

2.3.1 Model training
The procedure for model training was divided into two phases: the 

oral language training phase, which mimicked children’s learning to 
listen and speak, and the reading training phase, which mimicked 
children’s learning to read. For each training trial, the model was 
presented with a word randomly chosen according to its word 
frequency (Marcus et al., 1993).

In the oral language phase, the model was trained with four oral 
language tasks interleaved for two million trials. For each trial, one of 
the four mappings, semantics to phonology (SP), phonology to 
semantics (PS), phonology to phonology (PP), or semantics to 
semantics (SS) was selected for training. The PS and SP mappings in 
the model were used to simulate an oral vocabulary task and a 
meaning naming task in the human behavioral studies, respectively. 
On the other hand, the PP and SS mappings were used for the model 
to develop a reliable phonological attractor and a semantic attractor, 
respectively. The training ratio was 40% of trials for SP, 40% of trials 
for PS, 10% of trials for PP and 10% of trials for SS. For the SP training, 
the model was provided with an input to the semantic layer for eight 
timesteps, and the model was asked to generate the corresponding 
target in the phonological layer. Similarly, for the PS training, the 
model was provided with an input to the phonological layer for eight 
timesteps, and the model was asked to generate the corresponding 
target in the semantic layer. For the phonological attractor, the 
phonological representations were presented for two timesteps and 
the model was allowed to cycle the activation for the next six timesteps 
to recreate initial representations. Likewise, the semantic attractor was 
to map semantic to semantic representations, and the timesteps for 
presentation and cycling were identical to those in training the 
phonological attractor.

In the reading training phase, all weights between the phonological 
and semantic layers obtained from the oral language training phase 
were first loaded and frozen. The model was then trained to learn to 
read by learning the mappings from orthographic to phonological 
representations and from orthographic to semantic representations 
for one million trials. A word was selected and presented for twelve 
timesteps in each trial. Critically, three different early training 
schemes, OP-focused training, OS-focused training, and OP-OS 
balanced training were implemented by varying amounts of exposure 
to OP or OS mapping following previous behavioral and modelling 

studies (Taylor et  al., 2017; Chang et  al., 2020). Specifically, for 
OP-focused training, the probability of exposure to OP mapping was 
75%, and the probability of exposure to OS mapping was 25% (i.e., OP 
exposure was 3x higher than OS exposure). In contrast, for OS-focused 
training, the probability of exposure to OP mapping was 25%, and the 
probability of exposure to OS mapping was 75%. For OP-OS balanced 
training, the probability of exposure to the OP or OS exposure was 
equal, both 50% (i.e., identical mapping exposure).

In both phases of model training, the same training parameters 
were employed. The backpropagation through time algorithm 
(Pearlmutter, 1989, 1995) was used to update weights by reducing the 
differences between target patterns and actual activations produced 
by the model. The learning rate was set to 0.05. To simulate variability 
in each reading training condition, 40 versions of the OP-focused 
model, the OS-focused model, and the OP-OS balanced model were 
trained separately with different initial weights. Thus, there were in 
total 120 simulations of the models.

2.4 Testing procedure

After the end of model training, the evaluation of model 
performance followed the methodology established in prior 
simulation work (Chang and Monaghan, 2019; Chang, 2023). In 
assessing phonology, the error score was computed as the sum of 
squared error (SSE) between the model’s actual phonological pattern 
and its target pattern. Accuracy was determined by identifying the 
closest phoneme to the model’s output through Euclidean distance 
and verifying whether the actual and target phonemes matched across 
all phoneme slots. Similar approaches were used to assess semantics. 
The error score was calculated as the semantic SSE between the 
model’s actual semantic pattern and its target pattern. Accuracy, in 
this context, involved computing the Euclidean distance between the 
model’s actual semantic representation and the semantic 
representation of each word in the training set. The assessment then 
determined if the smallest distance corresponded to the target 
semantic representation.

2.5 Measuring semantic reliance in the 
model

A crucial aim of this study was to explore whether training focus 
would influence individual reading strategies in the model, in terms 
of the degree of utilisation of OP and OS pathways reflected by the 
measure of SR. As demonstrated in a recent simulation study by 
Chang (2023), the SR in the model could be quantified by directly 
measuring the use of the semantic pathway relative to the phonological 
pathway using a lesion technique (Welbourne et al., 2011; Chang and 
Lambon Ralph, 2020), or by indirectly measuring the consistency 
effect when reading exception words, as used in a behavioral study by 
Woollams et al. (2016). Critically, investigations into these two SR 
measures resulted in largely similar patterns regarding their 
predictiveness on reading performance, albeit predictability was 
greater for the direct approach than the indirect one.

Therefore, in the present study, the direct approach was adopted 
to measure SR in the model. Specifically, to quantify the use of the OS 
pathway in accessing semantics in the model, the OPS pathway was 
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damaged, and semantic SSE was recorded. The reverse procedure was 
used to determine the use of the OPS pathway by damaging the OS 
pathway. The assumption is that if one pathway is damaged, and the 
model relies on the undamaged pathway, resulting in minimal 
semantic SSEs, it indicates effective functioning and high reliability of 
the undamaged pathway. Conversely, if reliance on the undamaged 
pathway leads to a substantial semantic SSE, it suggests poor 
functioning of the undamaged pathway. Consequently, the reciprocals 
of the semantic SSE obtained from the OS and OPS pathways were 
computed to denote the proportional contribution across the 
pathways. The SR was quantified by dividing the contribution of the 
OS pathway by the sum of the contributions from the OPS and 
OS pathways.

3 Results

3.1 Model performance

At the end of the oral language training, the model achieved 
92.11% accuracy on the meaning naming task (which required SP 
mappings) and 91.24% on the oral vocabulary task (which required 
PS mappings). At the end of the reading training, the OP-focused 
model, the OP-OS balanced model, and the OS-focused model 
achieved an accuracy of 99.83, 99.96, and 99.23% in phonology, and 
an accuracy of 92.61, 99.43, and 98.91% in semantics, respectively.

3.2 Individual-level analysis: the 
relationship between reading instruction 
and the SR

The SR was calculated for each of the 120 models including 40 
versions of the OP-focused model, 40 versions of the OP-OS balanced 
model, and 40 versions of the OS-focused model. Figure 2A illustrates 
the SR distribution, while Figure  2B presents the SR scores 
corresponding to each type of reading instruction. The SR ranged 

from 0.02 to 0.226 (M = 0.086, SD = 0.040), and the average SR was the 
highest for the OS-focused model (M = 0.114, SD = 0.041), followed by 
the OP-OS balanced model (M = 0.081, SD = 0.031), and then the 
OP-focused model (M = 0.062, SD = 0.028). The SR distribution 
demonstrated that varying training environments could lead to 
different degrees of SR in the model of reading.

The relationship between reading instruction and SR was directly 
investigated using a simple regression technique with training focus, 
OP-focused (OP), OP-OS balanced (OP-OS), and OS-focused (OS) as 
the predictor and SR as the dependent variable. The regression model 
was significant, in which R2 value was 29.5% (Adjusted R2 = 28.3%), 
p < 0.001. The SR difference between the OP model and the OP-OS 
model was significant, β = 0.227, p = 0.013. The SR differences between 
the OP-OS model and the OS model, β = 0.393, p < 0.001, and between 
the OP model and the OS model, β = 0.62, p < 0.001, were 
both significant.

The regression results showed that training focus could explain a 
significant portion of the variance in SR, demonstrating the influence 
of training focus on the utilisation of OP and OS pathways in the 
model. To further explore the extent to which training focus might 
impact learning in terms of the development of precise representations 
in the model and its relationship with SR, we investigated the level of 
activations among units at the phonological layer, referred to as stress 
or polarity (Plaut, 1997). The concept of polarity measurement 
suggests that during training, units at the output layers of the model 
are trained to accurately represent target patterns typically consisting 
of binary values (i.e., 1 or 0). Consequently, higher polarity scores 
generated by the model for a given word indicate the development of 
more refined representations for that word. Following Plaut (1997), 
we used a formula (Equation 1) to compute the index of unit 
binarisation in the model, termed unit polarity:

 y x x x x= ∗ ( ) + −( ) ∗ −( ) +log log2 21 1 1 (1)

where x  is the unit activation ranging from 0 to 1; log2 ( ) is the 
logarithmic function with the base of 2; y is the polarity measure.

FIGURE 2

(A) The distribution of the semantic reliance in the model (B) the semantic reliance generated from the models with different types of reading 
instructional approaches. OP: OP-focused model; OP-OS: OP-OS balanced; OS: OS-focused.
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We computed the average of polarities across all words in the 
training set at the phonological layer for each model, categorised by 
varying SR scores and different training focuses. The result is 
illustrated in Figure 3A. As can be seen, both polarity scores generated 
by the OP-focused models and OP-OS balanced models are higher 
than those generated by the OS-focused models. Critically, these 
scores are further modulated by SR, with an increase in SR resulting 
in a decrease in polarity scores especially for the OS-focused models. 
In Figure 3B, we also showed the corresponding phonological SSE for 
each model, confirming that the models that produced higher polarity 
scores tended to have smaller phonological SSEs, reflecting more 
refined representations.

3.3 Exploring the influence of SR on 
reading performance of the model

The following critical examination in this study was to explore 
whether the SR influenced by varying training focuses could 
impact reading behaviors in the model. Past behavioral 
investigations have shown that SR affects RTs in a reading-aloud 
task for both adults (Woollams et  al., 2016) and children 
(Siegelman et al., 2022). Particularly, skilled readers with high SR 
tend to produce slower responses than readers with low SR; and 
their RTs are moderated by imageability and consistency. Therefore, 
to investigate whether the present model could produce similar 
patterns as observed in behavioral studies, we conducted a series 
of linear mixed-effect model (LMM) analyses on the model’s 
reading-aloud performance. Phonological SSE in the model was 
used as a proxy for human RTs in a reading-aloud task (Monaghan 
et  al., 2017; Chang et  al., 2020). LMM analyses were based on 
“lme4”, a package in R (version 4.1.3, 2022). For the LMM analyses, 
an effect was considered significant at the p < 0.05 level if its t-value 
was greater than 1.96 (Baayen, 2008). To examine the SR effect and 
its relationship with other psycholinguistic variables, we conducted 
two evaluation approaches, one was to replicate the findings 
reported in a factorial experiment reported by Woollams et  al. 

(2016), and the other one was to examine the effect using a 
regression-based approach.

3.3.1 The factorial test of the SR effect
For the factorial test, we investigated whether the model could 

replicate the key behavioral patterns of the reading-aloud task 
observed in Woollams et  al. (2016), wherein the SR effect is 
modulated by imageability and consistency. Four sets of stimuli, 
including high-imageability consistent words, low-imageability 
consistent words, high-imageability inconsistent words, and 
low-imageability inconsistent words were taken from Woollams et al. 
(2016), comprising 40 words for each condition. There was a total of 
19,200 trials (i.e., 4*40*120). Prior to the analysis, 6.7% of the trials 
including words misread by the model and phonological SSEs 
greater than three standard deviations from the mean, were 
discarded as outliers. This resulted in 17,912 data points for further 
analysis. An LMM model was conducted with item and model 
version as random factors, with imageability by consistency by SR as 
fixed factors, and with phonological SSE as the dependent variable. 
All variables were scaled using z-score normalisation for evaluating 
interactions. The results showed that SR significantly predicted 
phonological SSE, β = 0.005, t = 3.72, as well as consistency, 
β = −0.004, t = −2.51. Imageability was not a significant predictor. 
The interaction between SR and consistency, β = −0.002, t = −4.13, 
was significant. The interaction between SR and imageability, 
β = −0.002, t = −2.02 was also significant. The interaction between 
consistency and imageability was not significant. Critically, the 
three-way interaction between SR, imageability, and consistency was 
significant, β = −0.001, t = −2.41.

3.3.2 The regression-based test of the SR effect
For the test using the regression-based approach, in addition to 

SR, we  included a range of psycholinguistic variables previously 
shown to be  important for the reading-aloud task in behavioral 
studies: word frequency (WF), orthographic neighbourhood size 
(ONS) (Coltheart et al., 1977), rime consistency (RC) (Glushko, 1979), 
and imageability (IMG) (Cortese and Fugett, 2004). The descriptive 

FIGURE 3

(A) The phonological polarity (B) the phonological SSE was generated by each of 120 individual models, categorised by varying SR scores and different 
training focuses.
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statistics of the psycholinguistic variables and the correlations between 
them are reported in Table 1.

Data cleaning procedures were similar to those in the previous 
section. Outliers included words that the model misread, had missing 
psycholinguistic measures, and phonological SSE greater than three 
standard deviations from the means. This removal resulted in 590,653 
points. To explore whether the SR effect was moderated by 
imageability and consistency, an LMM analysis was conducted with 
all the psycholinguistic variables and the interaction between SR, 
imageability and consistency as independent variables, and with 
phonological SSE as a dependent variable. As shown in Table 2, WF, 
ONS, RC, and IMG all had significant effects on the model’s reading-
aloud performance. Specifically, the model produced low phonological 
SSEs for words with higher values of WF, ONS, RC, and IMG, 
congruent with previous findings in behavioral studies (Balota et al., 
2004; Cortese and Khanna, 2008). Additionally, SR was also a 
significant predictor, β = 0.006, t = 6.33, indicating the model with 
higher SR tends to produce more phonological SSEs.

Regarding the interaction results, there were significant two-way 
interactions between SR and RC, β = −0.002, t = −13.08, and between 
SR and IMG, β = −0.002, t = −8.44, as shown in Figure 4. The model 
with a larger SR generated stronger consistency and imageability 
effects than that with a smaller SR. On the other hand, the interaction 
between RC and IMG was not significant. Critically, the three-way 
interaction between SR, RC and IMG also reached significance, 
β = −0.001, t = −4.15. Overall, these results are consistent with the 
findings of the factorial test of the SR effect reported in the previous 
section and the behavioral data (Woollams et al., 2016).

4 Discussion

The issue of effective early reading instruction has been a widely 
discussed topic in reading research (Rayner et al., 2001; Nation, 2009; 
Suggate, 2016; Taylor et al., 2017; Castles et al., 2018; Torgerson et al., 
2019). Most studies have focused on investigating the benefits of using 
phonics-style or whole-word style when teaching children to read 
(e.g., Rayner et al., 2001; Nation, 2009; Davis, 2013; Taylor et al., 2017). 
However, little is known about the influence of early reading 
instructional methods on subsequent individual reading behaviors. 
Therefore, using a computational approach, we investigated whether 
early reading instruction could lead to variations among individuals’ 
sensitivity to OP and OS regularities, which in turn has an impact on 
reading behaviors. The simulation results demonstrated that the 
models receiving different training methods showed varying SR 
scores, displaying a spectrum of variations within each training 
condition (see Figure  2). On average, a model focused on 

print-to-meaning (the OS-focused training model) showed stronger 
SR for reading aloud than a model trained with a combination of OP 
and OS mappings (the OP-OS balanced training model), followed by 
a model focused on print-to-sound (the OP-focused training model).

Furthermore, by using both factorial and regression-based 
approaches, the LMM results indicated that the resulting SR scores 
were able to predict model performance on reading aloud. The models 
with higher SR scores tended to produce more phonological SSEs, 
compared to those with lower SR scores. The result was consistent 
with the findings of slower reading-aloud responses observed in 
behavioral studies (Siegelman et  al., 2020, 2022) and reduced 
phonological activations observed in neuroimaging studies (Hoffman 
et  al., 2015). Additionally, we  also observed that the effect of SR 
interacted significantly with imageability and consistency as was 
reported in Woollams et al. (2016). Additionally, the LMM analyses 
revealed that several reading effects identified in behavioral studies 
(Balota et al., 2004; Cortese and Khanna, 2008), such as frequency, 
consistency, orthographic neighbourhood size, and imageability, 
could be accounted for by the model.

4.1 Reading instruction as a source of 
variations in individual differences

The simulation results, revealing diverse SR scores due to different 
reading instructional methods, align with our earlier modelling work 
(Chang et al., 2020), demonstrating the differential patterns of division 
of labour between OP and OS pathways as results of the models 
receiving different reading instructional methods. Our present study 
extends the finding by illustrating that the utilisation of the OP and 
OS pathways can be reframed as a measure of SR, thereby accounting 
for individual differences in reading.

The finding of varying degrees of utilisation of the OP and OS 
pathways relating to early reading instruction is potentially intriguing, 
particularly when considering the characteristics of English words. In 
early English word reading, approximately 80% of words are 
monomorphemic, based on token frequency (Rastle, 2019), and these 
words typically exhibit more systematic OP mappings compared to OS 
mappings (Plaut and Gonnerman, 2000). Thus, when the model learns 

TABLE 1 The descriptive statistics of the psycholinguistic variables and 
the correlations between them.

WF ONS RC IMG

WF (M = 0.34, SD = 0.31) 1

ONS (M = 6.11, SD = 5.17) 0.18*** 1

RC (M = 0.92, SD = 0.20) −0.12*** −0.01 1

IMG (M = 4.26, SD = 1.40) 0.18*** 0.09*** 0.02 1

***p < 0.001; **p < 0.01; *p < 0.05; WF: word frequency; ONS: orthographic neighbourhood 
size. RC: rime consistency; IMG: imageability. M: Mean, SD: standard deviation.

TABLE 2 Linear mixed-effect model fitted to phonological SSE produced 
by the model.

Estimate β t Confidence 
interval

WF −0.0102 −19.07 (−0.0113, −0.0092)

ONS −0.0044 −8.35 (−0.0054, −0.0034)

RC −0.0074 −14.22 (−0.0084, −0.0064)

IMG −0.0035 −6.7 (−0.0045, −0.0025)

SR 0.0056 6.33 (0.0039, 0.0074)

SR x RC −0.0023 −13.08 (−0.0026, −0.0019)

SR x IMG −0.0015 −8.44 (−0.0018, −0.0011)

RC x IMG 0.0001 0.22 (−0.0008, 0.001)

SR x RC x IMG −0.0007 −4.15 (−0.001, −0.0003)

All predictors were scaled through z-score normalisation. Significant Estimate βs were 
marked in bold. WF: Word frequency; ONS: Orthographic neighbourhood size; RC: Rime 
consistency; SR: Semantic reliance; IMG: Imageability.
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the regularities of OP mappings of these words, the use of the direct 
OP pathway for a reading-aloud task should be mostly straightforward. 
Nevertheless, through intensive OS mapping training, there exists the 
potential for increased reliance on the OS pathway in the model. 
However, this enhancement may not be beneficial because the model 
may not be able to effectively exploit the systematic OP mappings, 
reflecting inferior performance in reading aloud for the OS-focused 
model compared to the OP-focused model. Considering rich evidence 
from behavioral and neuroimaging studies (Liberman et al., 1989; 
Simos et al., 2002, 2007; Castles et al., 2018; Rastle, 2019), a better 
practice may be  to teach children OP mappings for developing 
phonological awareness in the early stages of reading instruction, 
followed by teaching OS mappings for integrating orthographic and 
morphological awareness.

Additionally, an important and relevant question is why the 
readers with high SR scores are slower in the reading-aloud task. 
Siegelman et al. (2022) suggest that an excessive reliance on the OS 
pathway might indicate an inadequate integrity of the phonological 
system, resulting in a suboptimal organisation of the reading system. 
According to contemporary neurocomputational models of language 
and reading processing (Hickok and Poeppel, 2004, 2007; 
Rauschecker and Scott, 2009; Ueno et  al., 2011; Bornkessel-
Schlesewsky and Schlesewsky, 2013), the dorsal and ventral pathways 
are involved with print-to-sound and print-to-meaning mappings, 
respectively. Thus, in the present context, one would anticipate 
observing distinctive modulations of neural activities in the dual 
pathways linked to the level of SR because of reading instruction. 
Indeed, neural activities in both pathways have been found to 
correlate with SR levels (Hoffman et al., 2015). Readers with higher 
SR scores display heightened activations in the left anterior temporal 
pole associated with semantic processing, and critically 
simultaneously exhibit reduced activations in the left precentral 
gyrus associated with phonological processing compared to those 
with lower SR scores. This neural evidence provides support for a 
potential explanation that high SR readers are slower in the 
phonologically-demanding task (Hoffman et  al., 2015). This 
explanation aligns with Siegelman et al. (2022) account of a potential 
phonological deficit in the OP pathway in reading impaired children, 
reflected in increased SR. Our further investigations into the impact 

of reading instruction on learning in the model also provided 
computational evidence to support these accounts, demonstrating 
that the models with high SR scores produced lower phonological 
polarity scores and more phonological SSEs, especially for the 
OS-focused models.

Considering the broader implications for education, our 
simulation results suggest that some children entering intervention 
programmes already exhibit differences in their sensitivity to OP vs. 
OS regularities. The sensitivity differences contribute to divergent 
intervention outcomes, as demonstrated by Siegelman et al. (2022), 
wherein children relying more on OP regularities tend to show greater 
improvement in phonologically-weighted intervention programmes 
compared to those relying more on OS regularities. Interestingly, they 
also revealed that post-intervention, reading-impaired children who 
increased their reliance on OP regularities or decreased their reliance 
on OS regularities had better intervention gains. Their results highlight 
the importance of appropriate interventions to optimally shape OP 
and OS pathways in paving the way for reading success. Collectively, 
the results from computational modelling and behavioral 
investigations indicate that the type of training approaches used in 
early reading instruction and interventions can influence individuals’ 
reliance on the OP and OS pathways, contributing to individual 
differences in reading acquisition.

4.2 Limitations and future work

In this study, we have demonstrated a direct link between reading 
instruction and individual differences in reading by using a series of 
widely acknowledged triangle models of reading. Despite conducting 
a substantial number of simulations (i.e., 120 simulations) to capture 
variations in SR through an accelerated training process, this study 
could be  enhanced by training additional simulation samples to 
achieve a scale similar to that of comprehensive behavioral studies 
(e.g., Siegelman et al., 2020, 2022) or to simulate dyslexic readers’ 
reading profiles (e.g., Perry et al., 2019).

Another notable aspect concerns the impact of reading instruction 
on language systems characterised by different forms of systematicity. 
The present study has focused on early English word reading, in which 

FIGURE 4

The interaction between (A) semantic reliance (SR) and rime consistency (RC) and (B) semantic reliance (SR) and imageability (IMG).
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words generally exhibit more systematic OP mappings compared to 
OS mappings. Future investigations could explore language systems 
with a more balanced systematicity in the mappings between 
orthography to phonology and orthography to semantics, such 
as Chinese.

Lastly, the present study has focused on investigating the unique 
impact of early reading instruction on individual differences in 
reading, particularly regarding the utilisation of OP and OS pathways. 
However, literacy development is complex; various elements such as 
oral language knowledge, computational compacity, and reading 
experience may collectively contribute to different aspects of 
individual differences in reading (Plaut, 1997; Dilkina et al., 2008; Yap 
et al., 2012; Andrews, 2015; Siegelman et al., 2020; Chang, 2023). 
Therefore, in connecting to real-world applications, it is possible to 
extend the present simulation framework to incorporate and examine 
various potential factors comprehensively in future research. That 
could enable a better understanding of how to best tailor individual 
interventions and pave the way for the development of an intervention 
program suited to the diverse needs of beginning readers.

5 Conclusion

To conclude, this study utilised a large number of computational 
models of reading, developed using the optimised MikeNet simulator 
(see Supplementary material), to investigate the potential sources of 
individual differences in reading. The simulation results demonstrated 
a direct link between reading instruction and the variations in reliance 
on the OP and OS pathways within the model. This differential 
reliance significantly moderated model performance during reading.
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